1
|
Grgac I, Herzer G, Voelckel WG, Secades JJ, Trimmel H. Neuroprotective and neuroregenerative drugs after severe traumatic brain injury : A narrative review from a clinical perspective. Wien Klin Wochenschr 2024; 136:662-673. [PMID: 38748062 DOI: 10.1007/s00508-024-02367-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/06/2024] [Indexed: 12/11/2024]
Abstract
Traumatic brain injuries cause enormous individual and socioeconomic burdens. Survivors frequently struggle with motor handicaps as well as impaired cognition and emotion. In addition to the primary mechanical brain damage, complex secondary mechanisms are the main drivers of functional impairment. Many of these pathophysiological mechanisms are now well known: excitotoxic amino acids, breakdown of the blood-brain barrier, neuroinflammation with subsequent damage to cell organelles and membranes, cerebral edema, and apoptotic processes triggering neuronal death; however, paracrine resilience factors may counteract these processes. Specific neuroprotective and neuroregenerative intensive care therapies are few. This review highlights medical approaches aimed at mitigating secondary damage and promoting neurotrophic processes in severe traumatic brain injury. Some pharmacologic attempts that appeared very promising in experimental settings have had disappointing clinical results (progesterone, cyclosporine A, ronopterin, erythropoietin, dexanabinol). Thus, the search for drugs that can effectively limit ongoing posttraumatic neurological damage is ongoing. Some medications appear to be beneficial: N‑methyl-D-aspartate receptor (NMDA) antagonists (esketamine, amantadine, Mg++) reduce excitotoxicity and statins and cerebrolysin are known to counteract neuroinflammation. By supporting the impaired mitochondrial energy supply, oxidative processes are inhibited and neuroregenerative processes, such as neurogenesis, angiogenesis and synaptogenesis are promoted by citicoline and cerebrolysin. First clinical evidence shows an improvement in cognitive and thymopsychic outcomes, underlined by own clinical experience combining different therapeutic approaches. Accordingly, adjuvant treatment with neuroprotective substances appears to be a promising option, although more randomized prospective studies are still needed.
Collapse
Affiliation(s)
- Ivan Grgac
- Department of Anaesthesiology, Emergency and Intensive Medicine, State Hospital of Wiener Neustadt, Corvinusring 3-5, 2700, Wiener Neustadt, Austria
| | - Guenther Herzer
- Department of Anaesthesiology, Emergency and Intensive Medicine, State Hospital of Wiener Neustadt, Corvinusring 3-5, 2700, Wiener Neustadt, Austria
| | - Wolfgang G Voelckel
- Department of Anaesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, Salzburg, Austria
- University of Stavanger, Network for Medical Science, Stavanger, Norway
| | | | - Helmut Trimmel
- Department of Anaesthesiology, Emergency and Intensive Medicine, State Hospital of Wiener Neustadt, Corvinusring 3-5, 2700, Wiener Neustadt, Austria.
- Faculty of Medicine and Dentistry, Danube Private University (DPU), 3500, Krems, Austria.
- Institute for Emergency Medicine, Medical Simulation and Patient Safety, Karl Landsteiner Society, Wiener Neustadt, Austria.
| |
Collapse
|
2
|
Reed JM, Wolfe BE, Romero LM. Is resilience a unifying concept for the biological sciences? iScience 2024; 27:109478. [PMID: 38660410 PMCID: PMC11039332 DOI: 10.1016/j.isci.2024.109478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
There is increasing interest in applying resilience concepts at different scales of biological organization to address major interdisciplinary challenges from cancer to climate change. It is unclear, however, whether resilience can be a unifying concept consistently applied across the breadth of the biological sciences, or whether there is limited capacity for integration. In this review, we draw on literature from molecular biology to community ecology to ascertain commonalities and shortcomings in how resilience is measured and interpreted. Resilience is studied at all levels of biological organization, although the term is often not used. There is a suite of resilience mechanisms conserved across biological scales, and there are tradeoffs that affect resilience. Resilience is conceptually useful to help diverse researchers think about how biological systems respond to perturbations, but we need a richer lexicon to describe the diversity of perturbations, and we lack widely applicable metrics of resilience.
Collapse
Affiliation(s)
- J. Michael Reed
- Department of Biology, Tufts University, Medford 02155, MA, USA
| | | | | |
Collapse
|
3
|
Ang HP, Makpol S, Nasaruddin ML, Ahmad NS, Tan JK, Wan Zaidi WA, Embong H. Lipopolysaccharide-Induced Delirium-like Behaviour in a Rat Model of Chronic Cerebral Hypoperfusion Is Associated with Increased Indoleamine 2,3-Dioxygenase Expression and Endotoxin Tolerance. Int J Mol Sci 2023; 24:12248. [PMID: 37569622 PMCID: PMC10418785 DOI: 10.3390/ijms241512248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) and the tryptophan-kynurenine pathway (TRP-KP) are upregulated in ageing and could be implicated in the pathogenesis of delirium. This study evaluated the role of IDO/KP in lipopolysaccharide (LPS)-induced delirium in an animal model of chronic cerebral hypoperfusion (CCH), a proposed model for delirium. CCH was induced by a permanent bilateral common carotid artery ligation (BCCAL) in Sprague Dawley rats to trigger chronic neuroinflammation-induced neurodegeneration. Eight weeks after permanent BCCAL, the rats were treated with a single systemic LPS. The rats were divided into three groups: (1) post-BCCAL rats treated with intraperitoneal (i.p.) saline, (2) post-BCCAL rats treated with i.p. LPS 100 μg/kg, and (3) sham-operated rats treated with i.p. LPS 100 μg/kg. Each group consisted of 10 male rats. To elucidate the LPS-induced delirium-like behaviour, natural and learned behaviour changes were assessed by a buried food test (BFT), open field test (OFT), and Y-maze test at 0, 24-, 48-, and 72 h after LPS treatment. Serum was collected after each session of behavioural assessment. The rats were euthanised after the last serum collection, and the hippocampi and cerebral cortex were collected. The TRP-KP neuroactive metabolites were measured in both serum and brain tissues using ELISA. Our data show that LPS treatment in CCH rats was associated with acute, transient, and fluctuated deficits in natural and learned behaviour, consistent with features of delirium. These behaviour deficits were mild compared to the sham-operated rats, which exhibited robust behaviour impairments. Additionally, heightened hippocampal IDO expression in the LPS-treated CCH rats was associated with reduced serum KP activity together with a decrease in the hippocampal quinolinic acid (QA) expression compared to the sham-operated rats, suggested for the presence of endotoxin tolerance through the immunomodulatory activity of IDO in the brain. These data provide new insight into the underlying mechanisms of delirium, and future studies should further explore the role of IDO modulation and its therapeutic potential in delirium.
Collapse
Affiliation(s)
- Hui Phing Ang
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia (N.S.A.)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (M.L.N.); (J.K.T.)
| | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (M.L.N.); (J.K.T.)
| | - Nurul Saadah Ahmad
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia (N.S.A.)
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (M.L.N.); (J.K.T.)
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia (N.S.A.)
| |
Collapse
|
4
|
Lynch DG, Narayan RK, Li C. Multi-Mechanistic Approaches to the Treatment of Traumatic Brain Injury: A Review. J Clin Med 2023; 12:jcm12062179. [PMID: 36983181 PMCID: PMC10052098 DOI: 10.3390/jcm12062179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Despite extensive research efforts, the majority of trialed monotherapies to date have failed to demonstrate significant benefit. It has been suggested that this is due to the complex pathophysiology of TBI, which may possibly be addressed by a combination of therapeutic interventions. In this article, we have reviewed combinations of different pharmacologic treatments, combinations of non-pharmacologic interventions, and combined pharmacologic and non-pharmacologic interventions for TBI. Both preclinical and clinical studies have been included. While promising results have been found in animal models, clinical trials of combination therapies have not yet shown clear benefit. This may possibly be due to their application without consideration of the evolving pathophysiology of TBI. Improvements of this paradigm may come from novel interventions guided by multimodal neuromonitoring and multimodal imaging techniques, as well as the application of multi-targeted non-pharmacologic and endogenous therapies. There also needs to be a greater representation of female subjects in preclinical and clinical studies.
Collapse
Affiliation(s)
- Daniel G. Lynch
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
| | - Raj K. Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, St. Francis Hospital, Roslyn, NY 11576, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY 11549, USA
- Department of Neurosurgery, Northwell Health, Manhasset, NY 11030, USA
- Correspondence:
| |
Collapse
|
5
|
Ahluwalia M, Kumar M, Ahluwalia P, Rahimi S, Vender JR, Raju RP, Hess DC, Baban B, Vale FL, Dhandapani KM, Vaibhav K. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages - A potential therapeutic approach. Neurochem Int 2021; 150:105192. [PMID: 34560175 PMCID: PMC8542401 DOI: 10.1016/j.neuint.2021.105192] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are dynamic organelles responsible for cellular energy production. Besides, regulating energy homeostasis, mitochondria are responsible for calcium homeostasis, signal transmission, and the fate of cellular survival in case of injury and pathologies. Accumulating reports have suggested multiple roles of mitochondria in neuropathologies, neurodegeneration, and immune activation under physiological and pathological conditions. Mitochondrial dysfunction, which occurs at the initial phase of brain injury, involves oxidative stress, inflammation, deficits in mitochondrial bioenergetics, biogenesis, transport, and autophagy. Thus, development of targeted therapeutics to protect mitochondria may improve functional outcomes following traumatic brain injury (TBI) and intracerebral hemorrhages (ICH). In this review, we summarize mitochondrial dysfunction related to TBI and ICH, including the mechanisms involved, and discuss therapeutic approaches with special emphasis on past and current clinical trials.
Collapse
Affiliation(s)
- Meenakshi Ahluwalia
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| | - Manish Kumar
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Scott Rahimi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raghavan P Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Fernando L Vale
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
6
|
Hemphill JC, James ML. Translational Neurocritical Care Research: Advancing Understanding and Developing Therapeutics. Neurotherapeutics 2020; 17:389-391. [PMID: 32424631 PMCID: PMC7283417 DOI: 10.1007/s13311-020-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- J Claude Hemphill
- Departments of Neurology and Neurological Surgery, University of California, San Francisco, CA, USA.
- Department of Neurology, Zuckerberg San Francisco General Hospital, Building 1, Room 101, 1001 Potrero Avenue, San Francisco, CA, 94110, USA.
| | - Michael L James
- Departments of Anesthesiology and Neurology, Duke University, Durham, USA
| |
Collapse
|