1
|
Liu P, Chen J, Wen X, Shi X, Yin X, Yu J, Qian Y, Gou C, Xu Y. Investigation into Antioxidant Mechanism of Lycium barbarum Extract in Carbendazim-Induced PC12 Cell Injury Model through Transcriptomics and Metabolomics Analyses. Foods 2024; 13:2384. [PMID: 39123576 PMCID: PMC11311554 DOI: 10.3390/foods13152384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Lycium barbarum L., an important functional food in China, has antioxidant and antiaging activity. However, the exact antioxidant activity mechanism of Lycium barbarum extracts (LBE) is not well understood. Therefore, a carbendazim (CBZ)-induced PC12 cell injury model was constructed and vitrificated to study the antioxidant activity of fresh LBE on the basis of extraction parameter optimization via the full factorial design of experiments (DOE) method. The results showed that the pretreatment of PC12 cells with LBE could reduce the reactive oxygen species (ROS) level by 14.6% and inhibited the mitochondrial membrane potential (MMP) decline by 12.0%. Furthermore, the integrated analysis revealed that LBE played an antioxidant role by activating oxidative phosphorylation (OXPHOS) and restoring MMP, maintaining the tricarboxylic acid (TCA) cycle stability, and regulating the GSH metabolic pathway. The results of the present study provide new ideas for the understanding of the antioxidant function of LBE from a global perspective.
Collapse
Affiliation(s)
- Pingxiang Liu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ju Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
- Faculty of Printing and Packaging and Digital Media, Xi’an University of Technology, Xi’an 710048, China;
| | - Xing Wen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
- Faculty of Printing and Packaging and Digital Media, Xi’an University of Technology, Xi’an 710048, China;
| | - Xin Shi
- Institute of Quality Standard and Testing Technology for Agro-Products of NingXia, Yinchuan 750002, China;
| | - Xiaoqian Yin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi’an University of Technology, Xi’an 710048, China;
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
| | - Chunlin Gou
- Institute of Quality Standard and Testing Technology for Agro-Products of NingXia, Yinchuan 750002, China;
| | - Yanyang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (P.L.); (J.C.); (X.W.); (X.Y.); (Y.Q.)
| |
Collapse
|
2
|
Ma D, Pasquale LR, Girard MJA, Leung CKS, Jia Y, Sarunic MV, Sappington RM, Chan KC. Reverse translation of artificial intelligence in glaucoma: Connecting basic science with clinical applications. FRONTIERS IN OPHTHALMOLOGY 2023; 2:1057896. [PMID: 36866233 PMCID: PMC9976697 DOI: 10.3389/fopht.2022.1057896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 04/16/2023]
Abstract
Artificial intelligence (AI) has been approved for biomedical research in diverse areas from bedside clinical studies to benchtop basic scientific research. For ophthalmic research, in particular glaucoma, AI applications are rapidly growing for potential clinical translation given the vast data available and the introduction of federated learning. Conversely, AI for basic science remains limited despite its useful power in providing mechanistic insight. In this perspective, we discuss recent progress, opportunities, and challenges in the application of AI in glaucoma for scientific discoveries. Specifically, we focus on the research paradigm of reverse translation, in which clinical data are first used for patient-centered hypothesis generation followed by transitioning into basic science studies for hypothesis validation. We elaborate on several distinctive areas of research opportunities for reverse translation of AI in glaucoma including disease risk and progression prediction, pathology characterization, and sub-phenotype identification. We conclude with current challenges and future opportunities for AI research in basic science for glaucoma such as inter-species diversity, AI model generalizability and explainability, as well as AI applications using advanced ocular imaging and genomic data.
Collapse
Affiliation(s)
- Da Ma
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | | | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Rebecca M. Sappington
- School of Medicine, Wake Forest University, Winston-Salem, NC, United States
- Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Kevin C. Chan
- Departments of Ophthalmology and Radiology, Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| |
Collapse
|
3
|
Vasudeva K, Dutta A, Munshi A. Role of lncRNAs in the Development of Ischemic Stroke and Their Therapeutic Potential. Mol Neurobiol 2021; 58:3712-3728. [PMID: 33818737 DOI: 10.1007/s12035-021-02359-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022]
Abstract
Stroke is a major cause of premature mortality and disability around the world. Therefore, identification of cellular and molecular processes implicated in the pathogenesis and progression of ischemic stroke has become a priority. Long non-coding RNAs (lncRNAs) are emerging as significant players in the pathophysiology of cerebral ischemia. They are involved in different signalling pathways of cellular processes like cell apoptosis, autophagy, angiogenesis, inflammation, and cell death, impacting the progression of cerebral damage. Exploring the functions of these lncRNAs and their mechanism of action may help in the development of promising treatment strategies. In this review, the current knowledge of lncRNAs in ischemic stroke, focusing on the mechanism by which they cause cellular apoptosis, inflammation, and microglial activation, has been summarized. Very few lncRNAs have been functionally annotated. Therefore, the therapies based on lncRNAs still face many hurdles since the potential targets are likely to increase with the identification of new ones. Majority of experiments involving the identification and function of lncRNAs have been carried out in animal models, and the role of lncRNAs in human stroke presents a challenge. However, mitigating these issues through more rational experimental design might lead to the development of lncRNA-based stroke therapies to treat ischemic stroke.
Collapse
Affiliation(s)
- Kanika Vasudeva
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anyeasha Dutta
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
4
|
"Omics" in traumatic brain injury: novel approaches to a complex disease. Acta Neurochir (Wien) 2021; 163:2581-2594. [PMID: 34273044 PMCID: PMC8357753 DOI: 10.1007/s00701-021-04928-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/23/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND To date, there is neither any pharmacological treatment with efficacy in traumatic brain injury (TBI) nor any method to halt the disease progress. This is due to an incomplete understanding of the vast complexity of the biological cascades and failure to appreciate the diversity of secondary injury mechanisms in TBI. In recent years, techniques for high-throughput characterization and quantification of biological molecules that include genomics, proteomics, and metabolomics have evolved and referred to as omics. METHODS In this narrative review, we highlight how omics technology can be applied to potentiate diagnostics and prognostication as well as to advance our understanding of injury mechanisms in TBI. RESULTS The omics platforms provide possibilities to study function, dynamics, and alterations of molecular pathways of normal and TBI disease states. Through advanced bioinformatics, large datasets of molecular information from small biological samples can be analyzed in detail and provide valuable knowledge of pathophysiological mechanisms, to include in prognostic modeling when connected to clinically relevant data. In such a complex disease as TBI, omics enables broad categories of studies from gene compositions associated with susceptibility to secondary injury or poor outcome, to potential alterations in metabolites following TBI. CONCLUSION The field of omics in TBI research is rapidly evolving. The recent data and novel methods reviewed herein may form the basis for improved precision medicine approaches, development of pharmacological approaches, and individualization of therapeutic efforts by implementing mathematical "big data" predictive modeling in the near future.
Collapse
|
5
|
Woodward KE, de Jesus P, Esser MJ. Neuroinflammation and Precision Medicine in Pediatric Neurocritical Care: Multi-Modal Monitoring of Immunometabolic Dysfunction. Int J Mol Sci 2020; 21:E9155. [PMID: 33271778 PMCID: PMC7730047 DOI: 10.3390/ijms21239155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
The understanding of molecular biology in neurocritical care (NCC) is expanding rapidly and recognizing the important contribution of neuroinflammation, specifically changes in immunometabolism, towards pathological disease processes encountered across all illnesses in the NCC. Additionally, the importance of individualized inflammatory responses has been emphasized, acknowledging that not all individuals have the same mechanisms contributing towards their presentation. By understanding cellular processes that drive disease, we can make better personalized therapy decisions to improve patient outcomes. While the understanding of these cellular processes is evolving, the ability to measure such cellular responses at bedside to make acute care decisions is lacking. In this overview, we review cellular mechanisms involved in pathological neuroinflammation with a focus on immunometabolic dysfunction and review non-invasive bedside tools that have the potential to measure indirect and direct markers of shifts in cellular metabolism related to neuroinflammation. These tools include near-infrared spectroscopy, transcranial doppler, elastography, electroencephalography, magnetic resonance imaging and spectroscopy, and cytokine analysis. Additionally, we review the importance of genetic testing in providing information about unique metabolic profiles to guide individualized interpretation of bedside data. Together in tandem, these modalities have the potential to provide real time information and guide more informed treatment decisions.
Collapse
Affiliation(s)
| | | | - Michael J. Esser
- Alberta Children’s Hospital, University of Calgary, Calgary, AB T3B 6A8, Canada; (K.E.W.); (P.d.J.)
| |
Collapse
|
6
|
Hemphill JC, James ML. Translational Neurocritical Care Research: Advancing Understanding and Developing Therapeutics. Neurotherapeutics 2020; 17:389-391. [PMID: 32424631 PMCID: PMC7283417 DOI: 10.1007/s13311-020-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- J Claude Hemphill
- Departments of Neurology and Neurological Surgery, University of California, San Francisco, CA, USA.
- Department of Neurology, Zuckerberg San Francisco General Hospital, Building 1, Room 101, 1001 Potrero Avenue, San Francisco, CA, 94110, USA.
| | - Michael L James
- Departments of Anesthesiology and Neurology, Duke University, Durham, USA
| |
Collapse
|