1
|
Moultrie F, Chiverton L, Hatami I, Lilien C, Servais L. Pushing the boundaries: future directions in the management of spinal muscular atrophy. Trends Mol Med 2025:S1471-4914(24)00339-3. [PMID: 39794178 DOI: 10.1016/j.molmed.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Spinal muscular atrophy (SMA) is a devastating, degenerative, paediatric neuromuscular disease which until recently was untreatable. Discovery of the responsible gene 30 years ago heralded a new age of pioneering therapeutic developments. Three disease-modifying therapies (DMTs) have received regulatory approval and have transformed the disease, reducing disability and prolonging patient survival. These therapies - with distinct mechanisms, routes of administration, dosing schedules, side effect profiles, and financial costs - have dramatically altered the clinical phenotypes of this condition and have presented fresh challenges for patient care. In this review article we discuss potential strategies to maximise clinical outcomes through early diagnosis and treatment, optimised dosing, use of therapeutic combinations and state-of-the-art physiotherapy techniques, and the development of innovative therapies targeting alternative mechanisms.
Collapse
Affiliation(s)
- Fiona Moultrie
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK.
| | - Laura Chiverton
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Isabel Hatami
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Charlotte Lilien
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Laurent Servais
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK; Neuromuscular Centre, Division of Paediatrics, University Hospital of Liège and University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
2
|
Şimşek DC, Çetin KDK. Emotions experienced by parents whose children have spinal muscular atrophy: A qualitative research. J Pediatr Nurs 2025; 80:e111-e119. [PMID: 39645418 DOI: 10.1016/j.pedn.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND The lifelong and intensive treatment and care process of Spinal Muscular Atrophy may cause a decrease in the life quality of the child and the parents. This study aims to examine the emotions of parents who have a child with Spinal Muscular Atrophy within the framework of a phenomenological design. METHODS This study was conducted with a phenomenological design. The study was carried out between August 2022 and April 2024 with the parents of children treated for Spinal Muscular Atrophy in the pediatric ward of a university hospital. Using a purposive sampling method, 11 parents were involved in interviews. A semi-structured questionnaire was employed during the interviews, and all the interviews were audio recorded. The data analysis done by applying the inductive thematic analysis method. The study was carried out according to the COREQ checklist. FINDINGS It was found that 54.54 % of the children who participated in the study were diagnosed with Spinal Muscular Atrophy between the ages of 0 and 1 year, 72.72 % between 0 and 6 months, and 54.54 % were Spinal Muscular Atrophy TYPE 1 patients. As a result of thematic analysis method, five main and ten sub-themes had emerged. These are; (1) helplessness (helplessness of having to accept, helplessness of not being able to spare time), (2) being upset (being upset about the symptoms of the disease, feeling misunderstood, sadness about their healthy children), (3) stress (stress due to the intensive and exhausting treatment and care process, stress due to the economic situation), (4) fear (fear of death, fear of future pregnancies), (5) unhappiness (being unhappy with the changing living conditions). DISCUSSION It was observed that parents who have a child with Spinal Muscular Atrophy experience emotional challenges. APPLICATION TO PRACTICE Gaining insights into the perspectives of parents can enable healthcare professionals to better understand the negative emotional experiences of parents caring for children with Spinal Muscular Atrophy. Such understanding may guide the development of targeted strategies to provide comprehensive psychological support aimed at improving parental mental health outcomes. Increasing awareness among healthcare professionals and the broader society fosters a more informed and empathetic approach to addressing the challenges faced by children with Spinal Muscular Atrophy and their families, enhancing the quality of care and support provided.
Collapse
Affiliation(s)
- Didem Coşkun Şimşek
- Fırat University, Faculty of Health Sciences, Department of Pediatric Nursing, Elazığ, Turkey.
| | | |
Collapse
|
3
|
Bogomolova AP, Katrukha IA. Troponins and Skeletal Muscle Pathologies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2083-2106. [PMID: 39865025 DOI: 10.1134/s0006297924120010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 01/28/2025]
Abstract
Skeletal muscles account for ~30-40% of the total weight of human body and are responsible for its most important functions, including movement, respiration, thermogenesis, and glucose and protein metabolism. Skeletal muscle damage negatively impacts the whole-body functioning, leading to deterioration of the quality of life and, in severe cases, death. Therefore, timely diagnosis and therapy for skeletal muscle dysfunction are important goals of modern medicine. In this review, we focused on the skeletal troponins that are proteins in the thin filaments of muscle fibers. Skeletal troponins play a key role in regulation of muscle contraction. Biochemical properties of these proteins and their use as biomarkers of skeletal muscle damage are described in this review. One of the most convenient and sensitive methods of protein biomarker measurement in biological liquids is immunochemical analysis; hence, we examined the factors that influence immunochemical detection of skeletal troponins and should be taken into account when developing diagnostic test systems. Also, we reviewed the available data on the skeletal troponin mutations that are considered to be associated with pathologies leading to the development of diseases and discussed utilization of troponins as drug targets for treatment of the skeletal muscle disorders.
Collapse
Affiliation(s)
- Agnessa P Bogomolova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Hytest Ltd., Turku, Finland
| | - Ivan A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, Finland
| |
Collapse
|
4
|
Hoolachan JM, McCallion E, Sutton ER, Çetin Ö, Pacheco-Torres P, Dimitriadi M, Sari S, Miller GJ, Okoh M, Walter LM, Claus P, Wood MJA, Tonge DP, Bowerman M. A transcriptomics-based drug repositioning approach to identify drugs with similar activities for the treatment of muscle pathologies in spinal muscular atrophy (SMA) models. Hum Mol Genet 2024; 33:400-425. [PMID: 37947217 PMCID: PMC10877467 DOI: 10.1093/hmg/ddad192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/08/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by the reduction of survival of motor neuron (SMN) protein levels. Although three SMN-augmentation therapies are clinically approved that significantly slow down disease progression, they are unfortunately not cures. Thus, complementary SMN-independent therapies that can target key SMA pathologies and that can support the clinically approved SMN-dependent drugs are the forefront of therapeutic development. We have previously demonstrated that prednisolone, a synthetic glucocorticoid (GC) improved muscle health and survival in severe Smn-/-;SMN2 and intermediate Smn2B/- SMA mice. However, long-term administration of prednisolone can promote myopathy. We thus wanted to identify genes and pathways targeted by prednisolone in skeletal muscle to discover clinically approved drugs that are predicted to emulate prednisolone's activities. Using an RNA-sequencing, bioinformatics, and drug repositioning pipeline on skeletal muscle from symptomatic prednisolone-treated and untreated Smn-/-; SMN2 SMA and Smn+/-; SMN2 healthy mice, we identified molecular targets linked to prednisolone's ameliorative effects and a list of 580 drug candidates with similar predicted activities. Two of these candidates, metformin and oxandrolone, were further investigated in SMA cellular and animal models, which highlighted that these compounds do not have the same ameliorative effects on SMA phenotypes as prednisolone; however, a number of other important drug targets remain. Overall, our work further supports the usefulness of prednisolone's potential as a second-generation therapy for SMA, identifies a list of potential SMA drug treatments and highlights improvements for future transcriptomic-based drug repositioning studies in SMA.
Collapse
Affiliation(s)
- Joseph M Hoolachan
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Eve McCallion
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Emma R Sutton
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Özge Çetin
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Paloma Pacheco-Torres
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL910 9AB, United Kingdom
| | - Maria Dimitriadi
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL910 9AB, United Kingdom
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Hacettepe University, Ankara, 06100, Turkey
- School of Chemical and Physical Sciences, Lennard-Jones Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Gavin J Miller
- School of Chemical and Physical Sciences, Lennard-Jones Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
- Centre for Glycoscience, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Magnus Okoh
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
| | - Lisa M Walter
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Feodor-Lynen-Straße 31, 30625, Hannover, Germany
- Centre of Systems Neuroscience (ZSN), Hannover Medical School, Bünteweg 2, 30559, Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Feodor-Lynen-Straße 31, 30625, Hannover, Germany
- Centre of Systems Neuroscience (ZSN), Hannover Medical School, Bünteweg 2, 30559, Hannover, Germany
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Level 2, Children's Hospital, John Radcliffe, Headington Oxford, OX3 9DU, United Kingdom
| | - Daniel P Tonge
- School of Life Sciences, Huxley Building, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Melissa Bowerman
- School of Medicine, David Weatherall Building, Keele University, Staffordshire, ST5 5BG, United Kingdom
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, United Kingdom
| |
Collapse
|
5
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
6
|
Yeo CJJ, Tizzano EF, Darras BT. Challenges and opportunities in spinal muscular atrophy therapeutics. Lancet Neurol 2024; 23:205-218. [PMID: 38267192 DOI: 10.1016/s1474-4422(23)00419-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/12/2023] [Accepted: 10/26/2023] [Indexed: 01/26/2024]
Abstract
Spinal muscular atrophy was the most common inherited cause of infant death until 2016, when three therapies became available: the antisense oligonucleotide nusinersen, gene replacement therapy with onasemnogene abeparvovec, and the small-molecule splicing modifier risdiplam. These drugs compensate for deficient survival motor neuron protein and have improved lifespan and quality of life in infants and children with spinal muscular atrophy. Given the lifelong implications of these innovative therapies, ways to detect and manage treatment-modified disease characteristics are needed. All three drugs are more effective when given before development of symptoms, or as early as possible in individuals who have already developed symptoms. Early subtle symptoms might be missed, and disease onset might occur in utero in severe spinal muscular atrophy subtypes; in some countries, newborn screening is allowing diagnosis soon after birth and early treatment. Adults with spinal muscular atrophy report stabilisation of disease and less fatigue with treatment. These subjective benefits need to be weighed against the high costs of the drugs to patients and health-care systems. Clinical consensus is required on therapeutic windows and on outcome measures and biomarkers that can be used to monitor drug benefit, toxicity, and treatment-modified disease characteristics.
Collapse
Affiliation(s)
- Crystal J J Yeo
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Agency for Science, Technology and Research, Singapore; National Neuroscience Institute, Tan Tock Seng and Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain; Genetics Medicine, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Oskoui M, Servais L. Spinal Muscular Atrophy. Continuum (Minneap Minn) 2023; 29:1564-1584. [PMID: 37851043 DOI: 10.1212/con.0000000000001338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
OBJECTIVE This article provides a comprehensive overview of the diagnostic assessment and treatment of individuals with spinal muscular atrophy (SMA) due to homozygous deletions of SMN1 . LATEST DEVELOPMENTS In recent years, most states have incorporated SMA in their newborn screening panel. To provide the earliest diagnosis possible after symptom onset, vigilance is needed for births in states without newborn screening for SMA and when compound heterozygotes are missed by newborn screening programs. Supportive care for respiratory, nutritional, and orthopedic health impacts outcomes and is the cornerstone of care. Adaptive equipment, including assistive home technology, enables affected individuals to gain autonomy in their daily activities. Pharmacologic treatments approved by the US Food and Drug Administration (FDA) include three drugs that increase deficient survival motor neuron protein levels through SMN1 - or SMN2 - directed pathways: nusinersen, onasemnogene abeparvovec, and risdiplam. Efficacy for these trials was measured in event-free survival (survival without the need for permanent ventilation) and gains in functional motor outcomes. Earlier treatment is most effective across all treatments. ESSENTIAL POINTS The diagnostic and therapeutic landscapes for SMA have seen dramatic advancements in recent years, improving prognosis. Optimized supportive care remains essential, and vigilance is needed to define the new natural history of this disease.
Collapse
|
8
|
Lapp HS, Freigang M, Hagenacker T, Weiler M, Wurster CD, Günther R. Biomarkers in 5q-associated spinal muscular atrophy-a narrative review. J Neurol 2023; 270:4157-4178. [PMID: 37289324 PMCID: PMC10421827 DOI: 10.1007/s00415-023-11787-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
5q-associated spinal muscular atrophy (SMA) is a rare genetic disease caused by mutations in the SMN1 gene, resulting in a loss of functional SMN protein and consecutive degeneration of motor neurons in the ventral horn. The disease is clinically characterized by proximal paralysis and secondary skeletal muscle atrophy. New disease-modifying drugs driving SMN gene expression have been developed in the past decade and have revolutionized SMA treatment. The rise of treatment options led to a concomitant need of biomarkers for therapeutic guidance and an improved disease monitoring. Intensive efforts have been undertaken to develop suitable markers, and numerous candidate biomarkers for diagnostic, prognostic, and predictive values have been identified. The most promising markers include appliance-based measures such as electrophysiological and imaging-based indices as well as molecular markers including SMN-related proteins and markers of neurodegeneration and skeletal muscle integrity. However, none of the proposed biomarkers have been validated for the clinical routine yet. In this narrative review, we discuss the most promising candidate biomarkers for SMA and expand the discussion by addressing the largely unfolded potential of muscle integrity markers, especially in the context of upcoming muscle-targeting therapies. While the discussed candidate biomarkers hold potential as either diagnostic (e.g., SMN-related biomarkers), prognostic (e.g., markers of neurodegeneration, imaging-based markers), predictive (e.g., electrophysiological markers) or response markers (e.g., muscle integrity markers), no single measure seems to be suitable to cover all biomarker categories. Hence, a combination of different biomarkers and clinical assessments appears to be the most expedient solution at the time.
Collapse
Affiliation(s)
- H S Lapp
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - M Freigang
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - T Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Science (C-TNBS), University Medicine Essen, Essen, Germany
| | - M Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - C D Wurster
- Department of Neurology, University Hospital Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus at TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany.
| |
Collapse
|
9
|
Claassen WJ, Baelde RJ, Galli RA, de Winter JM, Ottenheijm CAC. Small molecule drugs to improve sarcomere function in those with acquired and inherited myopathies. Am J Physiol Cell Physiol 2023; 325:C60-C68. [PMID: 37212548 PMCID: PMC10281779 DOI: 10.1152/ajpcell.00047.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Muscle weakness is a hallmark of inherited or acquired myopathies. It is a major cause of functional impairment and can advance to life-threatening respiratory insufficiency. During the past decade, several small-molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small-molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin. We also discuss their use in the treatment of skeletal myopathies. The first of three classes of drugs discussed here increase contractility by decreasing the dissociation rate of calcium from troponin and thereby sensitizing the muscle to calcium. The second two classes of drugs directly act on myosin and stimulate or inhibit the kinetics of myosin-actin interactions, which may be useful in patients with muscle weakness or stiffness.NEW & NOTEWORTHY During the past decade, several small molecule drugs that improve the contractility of skeletal muscle fibers have been developed. In this review, we provide an overview of the available literature and the mechanisms of action of small molecule drugs that modulate the contractility of sarcomeres, the smallest contractile units in striated muscle, by acting on myosin and troponin.
Collapse
Affiliation(s)
- Wout J Claassen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Rianne J Baelde
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Ricardo A Galli
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Josine M de Winter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| | - Coen A C Ottenheijm
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan, Amsterdam, Netherlands
| |
Collapse
|
10
|
Lakhina Y, Boulis NM, Donsante A. Current and emerging targeted therapies for spinal muscular atrophy. Expert Rev Neurother 2023; 23:1189-1199. [PMID: 37843301 DOI: 10.1080/14737175.2023.2268276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a progressive neurodegenerative disorder caused by insufficiency or total absence of the survival motor neuron protein due to a mutation in the SMN1 gene. The copy number of its paralog, SMN2, influences disease onset and phenotype severity. Current therapeutic approaches include viral and non-viral modalities affecting gene expression. Regulatory-approved drugs Spinraza (Nusinersen), Zolgensma (Onasemnogene abeparvovec), and Evrysdi (Risdiplam) are still being investigated during clinical trials and show benefits in the long-term for symptomatic and pre-symptomatic patients. However, some ongoing interventions require repeated drug administration. AREAS COVERED In this review, the authors describe the existing therapy based on point of application, focusing on recent clinical trials of antisense oligonucleotides, viral gene therapy, and splice modulators and thepotential routes for correcting the mutation to provide therapeutic levels of SMN protein. EXPERT OPINION In the opinion of the authors, multiple treatment options for patients with SMA shifted the treatment paradigm from palliative supportive care to improvedmotor function, increased survival, and greater quality of life for such patients. They further believe that the future in SMA treatment development lies incombining existing treatment options, targeting aspects of the disease refractory to these treatments, and using gene editing technologies.
Collapse
Affiliation(s)
- Yuliya Lakhina
- Department of Neurosurgery, Emory University, Atlanta, USA
| | | | | |
Collapse
|
11
|
Reilly A, Chehade L, Kothary R. Curing SMA: Are we there yet? Gene Ther 2023; 30:8-17. [PMID: 35614235 DOI: 10.1038/s41434-022-00349-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
Loss or deletion of survival motor neuron 1 gene (SMN1) is causative for a severe and devastating neuromuscular disease, Spinal Muscular Atrophy (SMA). SMN1 produces SMN, a ubiquitously expressed protein, that is essential for the development and survival of motor neurons. Major advances and developments in SMA therapeutics are shifting the natural history of the disease. With three relatively new available therapies, nusinersen (Spinraza), onasemnogene abeparvovec (Zolgensma), and risdiplam (Evrysdi), patients survive longer and have improved outcomes. However, patients and families continue to face many challenges associated with use of these therapies, including poor treatment response and a variability in the benefits to those that do respond, suggesting that the quest for the SMA cure is not over. In this review, we discuss the current therapies, their limitations, and highlight necessary gaps that need to be addressed to guarantee the best outcomes for SMA patients.
Collapse
Affiliation(s)
- Aoife Reilly
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lucia Chehade
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada. .,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada. .,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada. .,Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Respiratory phenotypes of neuromuscular diseases: A challenging issue for pediatricians. Pediatr Neonatol 2023; 64:109-118. [PMID: 36682912 DOI: 10.1016/j.pedneo.2022.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 01/05/2023] Open
Abstract
Neuromuscular disease (NMDs) encompass a heterogeneous group of genetic disorders, with respiratory problems of variable intensity and progression described at any pediatric age, from infancy to adolescence, and they are largely associated with significant lifelong morbidity and high mortality. Restriction of breathing, impaired gas exchange, decline of lung function and sleep disordered breathing progressively develop because of muscular weakness and culminate in respiratory failure. Depending on the disease progression, airways manifestations can take weeks to months or even years to evolve, thus depicting two major respiratory phenotypes, characterized by rapid or slow progression to respiratory failure. Assessing type and age at onset of airways problems and their evolution over time can support pediatricians in the diagnostic assessment of NMD. In addition, knowing the characteristics of patients' respiratory phenotype can increase the level of awareness among neonatologists, geneticists, neurologists, pulmonologists, nutritionists, and chest therapists, supporting them in the challenging task of the multidisciplinary medical care of patients. In this review we examine the issues related to the pediatric respiratory phenotypes of NMD and present a novel algorithm that can act as a guide for the diagnostic agenda and the key preventive or therapeutic interventions of airways manifestations. With prolonged survival of children with NMD, the advent of neuromuscular respiratory medicine, including accurate assessment of the respiratory phenotype, will help physicians to determine patients' prognoses and to design studies for the evaluation of new therapies.
Collapse
|
13
|
Abstract
Spinal muscular atrophy (SMA) is a rare autosomal recessive neuromuscular disorder related to motor neuron degeneration. SMA patients present generally severe muscular weakness and atrophy, which can reduce life expectancy and lead to severe functional disability. In recent years, the management of this condition has been revolutionized by the development of innovative therapies that target alternative splicing of pre-messenger SMN2 RNA by antisense oligonucleotides or small molecules and by the approval of the first vector-based SMN1 gene therapy. The high significance of the trials in children led to fast-tracking of these therapies to all SMA patients despite the absence of data in adults. Real-life data are progressively providing a better understanding of the expected benefits and tolerability. They also highlight the difficulties of evaluating these patients and the need to take into account the patients' reported expectations and outcome. A review of the main data in adult patients is presented. The mechanisms of action of these innovative therapies are discussed as well as the limits of evaluations of these therapies in adults with longstanding severe amyotrophy.
Collapse
Affiliation(s)
- P Cintas
- Service de neurologie, CHU de Toulouse Purpan, centre de référence de pathologie neuromusculaire, place du Docteur Baylac TSA 40031, 31059 Toulouse cedex 9, France.
| |
Collapse
|
14
|
Day JW, Howell K, Place A, Long K, Rossello J, Kertesz N, Nomikos G. Advances and limitations for the treatment of spinal muscular atrophy. BMC Pediatr 2022; 22:632. [PMID: 36329412 PMCID: PMC9632131 DOI: 10.1186/s12887-022-03671-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
Spinal muscular atrophy (5q-SMA; SMA), a genetic neuromuscular condition affecting spinal motor neurons, is caused by defects in both copies of the SMN1 gene that produces survival motor neuron (SMN) protein. The highly homologous SMN2 gene primarily expresses a rapidly degraded isoform of SMN protein that causes anterior horn cell degeneration, progressive motor neuron loss, skeletal muscle atrophy and weakness. Severe cases result in limited mobility and ventilatory insufficiency. Untreated SMA is the leading genetic cause of death in young children. Recently, three therapeutics that increase SMN protein levels in patients with SMA have provided incremental improvements in motor function and developmental milestones and prevented the worsening of SMA symptoms. While the therapeutic approaches with Spinraza®, Zolgensma®, and Evrysdi® have a clinically significant impact, they are not curative. For many patients, there remains a significant disease burden. A potential combination therapy under development for SMA targets myostatin, a negative regulator of muscle mass and strength. Myostatin inhibition in animal models increases muscle mass and function. Apitegromab is an investigational, fully human, monoclonal antibody that specifically binds to proforms of myostatin, promyostatin and latent myostatin, thereby inhibiting myostatin activation. A recently completed phase 2 trial demonstrated the potential clinical benefit of apitegromab by improving or stabilizing motor function in patients with Type 2 and Type 3 SMA and providing positive proof-of-concept for myostatin inhibition as a target for managing SMA. The primary goal of this manuscript is to orient physicians to the evolving landscape of SMA treatment.
Collapse
Affiliation(s)
- John W Day
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Kelly Howell
- Spinal Muscular Atrophy Foundation, New York, NY, USA
| | | | | | - Jose Rossello
- Scholar Rock, Inc, 301 Binney St, Cambridge, MA, USA
| | | | | |
Collapse
|
15
|
Chiriboga CA. Pharmacotherapy for Spinal Muscular Atrophy in Babies and Children: A Review of Approved and Experimental Therapies. Paediatr Drugs 2022; 24:585-602. [PMID: 36028610 DOI: 10.1007/s40272-022-00529-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive degenerative neuromuscular disorder characterized by loss of spinal motor neurons leading to muscle weakness and atrophy that is caused by survival motor neuron (SMN) protein deficiency resulting from the biallelic loss of the SMN1 gene. The SMN2 gene modulates the SMA phenotype, as a small fraction of its transcripts are alternatively spliced to produce full-length SMN (fSMN) protein. SMN-targeted therapies increase SMN protein; mRNA therapies, nusinersen and risdiplam, increase the amount of fSMN transcripts alternatively spliced from the SMN2 gene, while gene transfer therapy, onasemnogene abeparvovec xioi, increases SMN protein by introducing the hSMN gene into various tissues, including spinal cord via an AAV9 vector. These SMN-targeted therapies have been found effective in improving outcomes and are approved for use in SMA in the US and elsewhere. This article discusses the clinical trial results for SMN-directed therapies with a focus on efficacy, side effects and treatment response predictors. It also discusses preliminary data from muscle-targeted trials, as single agents and in combination with SMN-targeted therapies, as well as other classes of SMA treatments.
Collapse
Affiliation(s)
- Claudia A Chiriboga
- Division of Child Neurology, Department of Neurology, Columbia University Medical Center, 180 Fort Washington Ave, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Krosschell KJ, Dunaway Young S, Peterson I, Curry M, Mazzella A, Jarecki J, Cruz R. Clinical and Research Readiness for Spinal Muscular Atrophy: The Time Is Now for Knowledge Translation. Phys Ther 2022; 102:6651754. [PMID: 35904447 DOI: 10.1093/ptj/pzac108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/05/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
UNLABELLED Disease-modifying therapies for spinal muscular atrophy (SMA) are rapidly changing the outlook for many individuals by substantially altering the clinical course, phenotypic expression, and functional outcomes. Physical therapists have played critical roles in the effective conduct and execution of clinical trials leading to the approval of these therapies. Given the treatment landscape, educating practicing clinicians to understand best practice is of great importance, and a timely call to action to facilitate knowledge translation from SMA researchers to clinicians is necessary. The SMA Clinical Trial Readiness Program engaged clinical and research centers, identified physical therapy knowledge gaps related to evaluation and outcomes assessment, and provided educational resources, including the development of a SMA Best Practices Clinical Evaluator Toolkit. Toolkit content synthesizes evidence and covers a breadth of issues relevant to practice, including background on SMA and the drug pipeline; therapist roles and responsibilities related to research; clinical and research evaluation; and useful materials and resources for additional education, training, and professional development. Surveys and telephone interviews were conducted with physical therapists managing individuals with SMA to determine their SMA practice experience and educational needs. Their recommendations, along with synthesized SMA research evidence, provided input into toolkit content development and assisted in identifying gaps important to address. Impact was assessed over time via utilization feedback surveys downloaded by clinicians across various settings. Open-ended feedback supported beneficial use of the toolkit for clinicians and researchers working with individuals with SMA. Next steps should include timely dissemination to bring this resource and others into practice in a systematic, efficacious, and engaging manner. As the treatment landscape for SMA evolves, the therapist's role in multidisciplinary care and research is of great importance, and a call to action for the development, implementation, evaluation and reporting of informed knowledge using evidence-based knowledge translation strategies is critical. IMPACT Partnership among patient advocacy groups, industry collaborators, and key opinion leaders/experts can optimize essential resource development to address the knowledge gap for best practices in physical therapy. This partnership model can be replicated for other diseases, providing an efficient way to support clinical trial readiness and target early development of evidence-based content and resources related to both research and best practice clinical evaluation for physical therapist researchers, clinicians, and patients. While identifying knowledge gaps and resource development are initial steps toward change in SMA practice, a rapidly changing rehabilitation outlook warrants a call to action for enhanced efforts aimed at improving rehabilitation evaluation, assessment, and care for this population. It is critical to forge a timely path forward for development, implementation, and sustainability of effective knowledge translation to practice for SMA.
Collapse
Affiliation(s)
- Kristin J Krosschell
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sally Dunaway Young
- Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Ilse Peterson
- Faegre Drinker Biddle and Reath LLP, Washington, DC, USA
| | - Mary Curry
- Cure SMA, Elk Grove Village, Illinois, USA
| | | | | | | |
Collapse
|
17
|
Mahmud Z, Tikunova S, Belevych N, Wagg CS, Zhabyeyev P, Liu PB, Rasicci DV, Yengo CM, Oudit GY, Lopaschuk GD, Reiser PJ, Davis JP, Hwang PM. Small Molecule RPI-194 Stabilizes Activated Troponin to Increase the Calcium Sensitivity of Striated Muscle Contraction. Front Physiol 2022; 13:892979. [PMID: 35755445 PMCID: PMC9213791 DOI: 10.3389/fphys.2022.892979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Small molecule cardiac troponin activators could potentially enhance cardiac muscle contraction in the treatment of systolic heart failure. We designed a small molecule, RPI-194, to bind cardiac/slow skeletal muscle troponin (Cardiac muscle and slow skeletal muscle share a common isoform of the troponin C subunit.) Using solution NMR and stopped flow fluorescence spectroscopy, we determined that RPI-194 binds to cardiac troponin with a dissociation constant KD of 6-24 μM, stabilizing the activated complex between troponin C and the switch region of troponin I. The interaction between RPI-194 and troponin C is weak (KD 311 μM) in the absence of the switch region. RPI-194 acts as a calcium sensitizer, shifting the pCa50 of isometric contraction from 6.28 to 6.99 in mouse slow skeletal muscle fibers and from 5.68 to 5.96 in skinned cardiac trabeculae at 100 μM concentration. There is also some cross-reactivity with fast skeletal muscle fibers (pCa50 increases from 6.27 to 6.52). In the slack test performed on the same skinned skeletal muscle fibers, RPI-194 slowed the velocity of unloaded shortening at saturating calcium concentrations, suggesting that it slows the rate of actin-myosin cross-bridge cycling under these conditions. However, RPI-194 had no effect on the ATPase activity of purified actin-myosin. In isolated unloaded mouse cardiomyocytes, RPI-194 markedly decreased the velocity and amplitude of contractions. In contrast, cardiac function was preserved in mouse isolated perfused working hearts. In summary, the novel troponin activator RPI-194 acts as a calcium sensitizer in all striated muscle types. Surprisingly, it also slows the velocity of unloaded contraction, but the cause and significance of this is uncertain at this time. RPI-194 represents a new class of non-specific troponin activator that could potentially be used either to enhance cardiac muscle contractility in the setting of systolic heart failure or to enhance skeletal muscle contraction in neuromuscular disorders.
Collapse
Affiliation(s)
- Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Cory S Wagg
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Philip B Liu
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David V Rasicci
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, University Park, PA, United States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, University Park, PA, United States
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
López-Cortés A, Echeverría-Garcés G, Ramos-Medina MJ. Molecular Pathogenesis and New Therapeutic Dimensions for Spinal Muscular Atrophy. BIOLOGY 2022; 11:biology11060894. [PMID: 35741415 PMCID: PMC9219894 DOI: 10.3390/biology11060894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
The condition known as 5q spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease caused by a deficiency of the ubiquitous protein survival of motor neuron (SMN), which is encoded by the SMN1 and SMN2 genes. It is one of the most common pediatric recessive genetic diseases, and it represents the most common cause of hereditary infant mortality. After decades of intensive basic and clinical research efforts, and improvements in the standard of care, successful therapeutic milestones have been developed, delaying the progression of 5q SMA and increasing patient survival. At the same time, promising data from early-stage clinical trials have indicated that additional therapeutic options are likely to emerge in the near future. Here, we provide updated information on the molecular underpinnings of SMA; we also provide an overview of the rapidly evolving therapeutic landscape for SMA, including SMN-targeted therapies, SMN-independent therapies, and combinational therapies that are likely to be key for the development of treatments that are effective across a patient’s lifespan.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170302, Ecuador
- Facultad de Medicina, Universidad de Las Américas, Quito 170124, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
- Correspondence:
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
| | - María José Ramos-Medina
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28001 Madrid, Spain; (G.E.-G.); (M.J.R.-M.)
| |
Collapse
|
19
|
Wu JW, Pepler L, Maturi B, Afonso ACF, Sarmiento J, Haldenby R. Systematic Review of Motor Function Scales and Patient-Reported Outcomes in Spinal Muscular Atrophy. Am J Phys Med Rehabil 2022; 101:590-608. [PMID: 34483260 DOI: 10.1097/phm.0000000000001869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Spinal muscular atrophy is a heterogeneous disease that results in loss of motor function. In an evolving treatment landscape, establishing the suitability and limitations of existing motor function scales and patient-reported outcomes used to monitor patients with this disease is important. A systematic review was conducted to examine utility of motor function scales and patient-reported outcomes in evaluating patients with spinal muscular atrophy. Published literature was reviewed up to June 2021 with no start date restriction. Of the reports screened, 122 were deemed appropriate for inclusion and are discussed in this review (including 24 validation studies for motor function scales or patient-reported outcomes). Fifteen motor function scales and patient-reported outcomes were identified to be commonly used (≥5 studies), of which 11 had available validation assessments. Each instrument has its strengths and limitations. It is imperative that the patient population (e.g., age, mobility), goals of treatment, and outcomes or endpoints of interest be considered when selecting the appropriate motor function scales and patient-reported outcomes for clinical studies.
Collapse
Affiliation(s)
- Jennifer W Wu
- From the Hoffmann-La Roche Limited, Mississauga, Ontario, Canada (JWW, LP, BM, RH); and Synapse Medical Communications, Inc, Oakville, Ontario, Canada (ACFA, JS)
| | | | | | | | | | | |
Collapse
|
20
|
Ryan MM. Gene therapy for neuromuscular disorders: prospects and ethics. Arch Dis Child 2022; 107:421-426. [PMID: 34462265 DOI: 10.1136/archdischild-2020-320908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/11/2021] [Indexed: 11/04/2022]
Abstract
Most childhood neuromuscular disorders are caused by mutations causing abnormal expression or regulation of single genes or genetic pathways. The potential for gene therapy, gene editing and genetic therapies to ameliorate the course of these conditions is extraordinarily exciting, but there are significant challenges associated with their use, particularly with respect to safety, efficacy, cost and equity. Engagement with these novel technologies mandates careful assessment of the benefits and burdens of treatment for the patient, their family and their society. The examples provided by spinal muscular atrophy and Duchenne muscular dystrophy illustrate the potential value and challenges of gene and genetic therapies for paediatric neurological conditions. The cost and complexity of administration of these agents is a challenge for all countries. Jurisdictional variations in availability of newborn screening, genetic diagnostics, drug approval and reimbursement pathways, treatment and rehabilitation will affect equity of access, nationally and internationally. These challenges will best be addressed by collaboration by governments, pharma, clinicians and patient groups to establish frameworks for safe and cost-effective use of these exciting new therapies.
Collapse
Affiliation(s)
- Monique M Ryan
- Children's Neurosciences Centre, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia .,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
21
|
杨 东. Recent research on the treatment of spinal muscular atrophy. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:204-209. [PMID: 35209987 PMCID: PMC8884051 DOI: 10.7499/j.issn.1008-8830.2110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 01/24/2023]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by progressive muscular weakness and atrophy. SMA, as an inherited disease, is the leading cause of death in infants and young children. Rapid progress has been made in the research field of SMA in recent years, and some related treatment drugs have been successfully approved for marketing. This article reviews the recent research advances in the treatment of SMA.
Collapse
|
22
|
[Spinal muscular atrophy]. DER NERVENARZT 2022; 93:191-200. [PMID: 35037967 DOI: 10.1007/s00115-021-01256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by biallelic mutations in the SMN1 (survival motor neuron 1) gene on chromosome 5q13.2, which leads to a progressive degeneration of alpha motor neurons in the spinal cord and in motor nerve nuclei in the caudal brainstem. It is characterized by progressive proximally accentuated muscle weakness with loss of already acquired motor skills, areflexia and, depending on the phenotype, varying degrees of weakness of the respiratory and bulbar muscles, although the facial muscles and eye muscles are not affected. The previously purely symptom-oriented treatment has undergone a significant expansion since 2017 with the approval of three drugs (nusinersen, onasemnogene abeparvovec and risdiplam) that modify the course of the disease at the gene expression level and have led to a change in the natural disease course of SMA. The effect of these new forms of treatment can only be fully assessed in the coming years. New aspects and challenges in this context are discussed in this article.
Collapse
|
23
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|
24
|
Klotz J, Tesi Rocha C, Dunaway Young S, Duong T, Buu M, Sampson J, Day JW. Advances in the Therapy of Spinal Muscular Atrophy. J Pediatr 2021; 236:13-20.e1. [PMID: 34197889 DOI: 10.1016/j.jpeds.2021.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Jenna Klotz
- Stanford University School of Medicine, Palo Alto, CA.
| | | | | | - Tina Duong
- Stanford University School of Medicine, Palo Alto, CA
| | - MyMy Buu
- Stanford University School of Medicine, Palo Alto, CA
| | | | - John W Day
- Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
25
|
Chaytow H, Faller KM, Huang YT, Gillingwater TH. Spinal muscular atrophy: From approved therapies to future therapeutic targets for personalized medicine. Cell Rep Med 2021; 2:100346. [PMID: 34337562 PMCID: PMC8324491 DOI: 10.1016/j.xcrm.2021.100346] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease that, in the most severe cases and when left untreated, leads to death within the first two years of life. Recent therapeutic advances have given hope to families and patients by compensating for the deficiency in survival motor neuron (SMN) protein via gene therapy or other genetic manipulation. However, it is now apparent that none of these therapies will cure SMA alone. In this review, we discuss the three currently licensed therapies for SMA, briefly highlighting their respective advantages and disadvantages, before considering alternative approaches to increasing SMN protein levels. We then explore recent preclinical research that is identifying and targeting dysregulated pathways secondary to, or independent of, SMN deficiency that may provide adjunctive opportunities for SMA. These additional therapies are likely to be key for the development of treatments that are effective across the lifespan of SMA patients.
Collapse
Affiliation(s)
- Helena Chaytow
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Kiterie M.E. Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Behera B. Nusinersen, an exon 7 inclusion drug for spinal muscular atrophy: A minireview. World J Meta-Anal 2021; 9:277-285. [DOI: 10.13105/wjma.v9.i3.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy is an autosomal recessive neuromuscular disease with incidence of 1 in 5000 to 10000 live births and is produced by homozygous deletion of exons 7 and 8 in the SMN1 gene. The SMN1 and SMN2 genes encode the survival motor neuron protein, a crucial protein for the preservation of motor neurons. Use of the newer drug, Nusinersen, from early infancy has shown improvement in clinical outcomes of spinal muscular atrophy patients.
Collapse
Affiliation(s)
- Bijaylaxmi Behera
- Department of Neonatology, Chaitanya Hospital, Chandigarh 160044, India
| |
Collapse
|
27
|
Servais L, Baranello G, Scoto M, Daron A, Oskoui M. Therapeutic interventions for spinal muscular atrophy: preclinical and early clinical development opportunities. Expert Opin Investig Drugs 2021; 30:519-527. [PMID: 33749510 DOI: 10.1080/13543784.2021.1904889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative neuromuscular disease that presents primarily in children. Abnormalities in the SMN1 gene cause reduced levels of the survival motor neuron (SMN) protein, while a second gene, SMN2, produces low levels of functional SMN protein. Currently available drugs do not cure, so a significant unmet need remains for patients treated after symptom onset. AREAS COVERED Drugs available in the clinic, investigational agents and key questions for researchers are discussed. A pragmatic search of the literature was performed to identify therapies in late stages of preclinical, or in early stages of clinical development. This list was compared to the CureSMA pipeline for completeness. Drugs approved for indications that have potential for impact for SMA were included. These drugs target the primary deficiency in SMN protein or other pathways involved in SMA pathophysiology that are not SMN-protein dependent. EXPERT OPINION Children treated after the onset of symptoms continue to have significant disability. Given the heterogeneity of the population phenotype evidenced by variable response to initial therapy, age at treatment onset and the need to demonstrate added value beyond approved therapeutics, the clinical development of new drugs will be challenging.
Collapse
Affiliation(s)
- Laurent Servais
- MDUK Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center Disease, Department of Paediatrics, Liege, Belgium and University of Liege, Liège, Belgium
| | - Giovanni Baranello
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mariacristina Scoto
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aurore Daron
- Neuromuscular Reference Center Disease, Department of Paediatrics, Liege, Belgium and University of Liege, Liège, Belgium
| | - Maryam Oskoui
- Departments of Pediatrics and Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|