1
|
Edwards N, Reboud J, Yan X, Guo X, Cooper JM, Wadsworth J, Waters R, Mioulet V, King DP, Shaw AE. Detection of foot-and-mouth disease virus RNA using a closed loop-mediated isothermal amplification system. Front Microbiol 2024; 15:1429288. [PMID: 39188314 PMCID: PMC11346313 DOI: 10.3389/fmicb.2024.1429288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals responsible for economic losses that amount to >$20 billion annually. Rapid recognition of FMD cases provides vital information to guide control programmes. A range of point-of-need amplification technologies have been developed which allow sensitive detection of the causative virus (FMDV) in the field at locations remote from laboratories. Here we describe a novel system to detect FMDV RNA using loop-mediated isothermal amplification (LAMP). This test was evaluated using a panel of FMDV isolates (n = 79) and RNA standards demonstrating capability to amplify viral genome directly from clinical material in the absence of nucleic acid extraction. This extraction-free RT-LAMP assay was transferred to a bespoke closed-system lateral flow test (LFT) that was used in combination with a low-cost hand-held heater. Our results show that the RT-LAMP-LFT assay retains a high level of diagnostic and analytical sensitivity when using direct clinical material, with a limit of detection under 80 copies per reaction. Together, our data support the potential for the use of this assay at the point-of-need to facilitate rapid feedback on the status of suspect cases.
Collapse
Affiliation(s)
| | - Julien Reboud
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Xiaoxiang Yan
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Xin Guo
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Jonathan M. Cooper
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | | | - Ryan Waters
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | |
Collapse
|
2
|
Zhang J, Hou Q, Ma W, Chen D, Zhang W, Wubshet AK, Ding Y, Li M, Li Q, Chen J, Dai J, Wu G, Zhang Z, Zaberezhny AD, Pejsak Z, Tarasiuk K, Zafar Khan MU, Wang Y, He J, Liu Y. A Naked-Eye Visual Reverse Transcription Loop-Mediated Isothermal Amplification with Sharp Color Changes for Potential Pen-Side Test of Foot-and-Mouth Disease Virus. Viruses 2022; 14:v14091982. [PMID: 36146788 PMCID: PMC9504329 DOI: 10.3390/v14091982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Visual loop-mediated isothermal amplification (LAMP) is qualified to be applied in the field to detect pathogens due to its simplicity, rapidity and cost saving. However, the color changes in currently reported visual reverse transcription LAMP (RT-LAMP) for foot-and-mouth disease virus (FMDV) detection are not so obvious to the naked eye, so interpretation of results is troublesome. In this study, a new naked-eye visual RT-LAMP to detect all seven distinct serotypes of FMDV was established based on the 3D genes by using pH-sensitive neutral red as the indicator, rendering a sharp contrast of color changes between the negative (light orange) and the positive (pink). Analytical sensitivity tests showed that the detection limit of the visual RT-LAMP was 104 copies/µL while those were 103 and 104 copies/µL for the RT-qPCR and conventional RT-PCR methods, respectively. Specificity tests proved that the established visual RT-LAMP assay had no cross-reactivity with other common livestock viruses. Furthermore, the analysis of 59 clinical samples showed 98.31% and 100% concordance with the RT-qPCR and the RT-PCR, respectively. The pan-serotypic FMD visual RT-LAMP assay could be suitable for a pen-side test of all seven serotypes of FMDV because the results could be easily distinguished by the naked eye without the requirement of complicated instruments and professional technicians. Hence, the novel method may have a promising prospect in field tests which exert an important role in monitoring, preventing, and controlling FMD, especially in regions with no PCR or qPCR instrument available.
Collapse
Affiliation(s)
- Jie Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Qian Hou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Weimin Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Danian Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Weibing Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Ashenafi Kiros Wubshet
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yaozhong Ding
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Miaomiao Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Qian Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jiao Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Junfei Dai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Guohua Wu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Ziteng Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Alexei D. Zaberezhny
- Federal State Budgetary Institution, All-Russian Research and Technological Institute of Biological Industry (VNITIBP), Moscow 141142, Russia
| | - Zygmunt Pejsak
- Department of Infectious and Parasitic Diseases, University Center of Veterinary Medicine Jagiellonian University—Agriculture Universities, 31-120 Krakow, Poland
| | - Kazimierz Tarasiuk
- Department of Infectious and Parasitic Diseases, University Center of Veterinary Medicine Jagiellonian University—Agriculture Universities, 31-120 Krakow, Poland
| | | | - Yang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jijun He
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Correspondence: (J.H.); (Y.L.)
| | - Yongsheng Liu
- Hebei Key Laboratory of Preventive Veterinary Medicine, College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
- Correspondence: (J.H.); (Y.L.)
| |
Collapse
|
3
|
Taguchi array optimization of the reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for sensitive and rapid detection of dengue virus serotype 2. Biotechnol Lett 2021; 43:2149-2160. [PMID: 34533679 DOI: 10.1007/s10529-021-03175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Serotype 2 of dengue virus (DENV-2) is the most prevalent cause of dengue fevers. In this study, the C-prM gene was used for specific detection of DENV-2 by RT-LAMP assay. The RT-LAMP assay was optimized using the Taguchi design of experiments. RESULTS The efficiency of the assay in such optimal conditions resulted in 100% sensitivity, 100% specificity, and 100% overall accuracy for detection of 4 copies/μL of the genome of DENV-2. In addition, the detection of 2 copies/μL of the genome of DENV-2 was feasible, although the sensitivity was 50%. Considering the importance of the specific detection of the dengue virus serotypes, the cost-effective RT-LAMP approach can be used for rapid, specific, and sensitive detection of DENV-2. CONCLUSION RT-LAMP, as a cost-effective method, was optimized using Taguchi array approach for specific and rapid detection of DENV-2. Such methods can facilitate the diagnosis procedure in remote regions.
Collapse
|
4
|
Edgü G, Freund LJ, Hartje S, Tacke E, Hofferbert HR, Twyman RM, Noll GA, Muth J, Prüfer D. Fast, Precise, and Reliable Multiplex Detection of Potato Viruses by Loop-Mediated Isothermal Amplification. Int J Mol Sci 2020; 21:ijms21228741. [PMID: 33228234 PMCID: PMC7699554 DOI: 10.3390/ijms21228741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/04/2022] Open
Abstract
Potato is an important staple food crop in both developed and developing countries. However, potato plants are susceptible to several economically important viruses that reduce yields by up to 50% and affect tuber quality. One of the major threats is corky ringspot, which is a tuber necrosis caused by tobacco rattle virus (TRV). The appearance of corky ringspot symptoms on tubers prior to commercialization results in ≈ 45% of the tubers being downgraded in quality and value, while ≈ 55% are declared unsaleable. To improve current disease management practices, we have developed simple diagnostic methods for the reliable detection of TRV without RNA purification, involving minimalized sample handling (mini), subsequent improved colorimetric loop-mediated isothermal amplification (LAMP), and final verification by lateral-flow dipstick (LFD) analysis. Having optimized the mini-LAMP-LFD approach for the sensitive and specific detection of TRV, we confirmed the reliability and robustness of this approach by the simultaneous detection of TRV and other harmful viruses in duplex LAMP reactions. Therefore, our new approach offers breeders, producers, and farmers an inexpensive and efficient new platform for disease management in potato breeding and cultivation.
Collapse
Affiliation(s)
- Güven Edgü
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (G.E.); (L.J.F.); (J.M.)
| | - Lena Julie Freund
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (G.E.); (L.J.F.); (J.M.)
| | - Stefanie Hartje
- Böhm-Nordkartoffel Agrarproduktion GmbH&Co. OHG, Brüggerfeld 44, 29574 Ebstorf, Germany; (S.H.); (E.T.); (H.-R.H.)
| | - Eckhard Tacke
- Böhm-Nordkartoffel Agrarproduktion GmbH&Co. OHG, Brüggerfeld 44, 29574 Ebstorf, Germany; (S.H.); (E.T.); (H.-R.H.)
| | - Hans-Reinhard Hofferbert
- Böhm-Nordkartoffel Agrarproduktion GmbH&Co. OHG, Brüggerfeld 44, 29574 Ebstorf, Germany; (S.H.); (E.T.); (H.-R.H.)
| | - Richard M. Twyman
- Twyman Research Management Ltd., P.O. Box 493, Scarborough YO11 9FJ, UK;
| | - Gundula A. Noll
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany;
| | - Jost Muth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (G.E.); (L.J.F.); (J.M.)
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (G.E.); (L.J.F.); (J.M.)
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany;
- Correspondence: ; Tel.: +49-251-8322302
| |
Collapse
|
5
|
Wong CL, Yong CY, Ong HK, Ho KL, Tan WS. Advances in the Diagnosis of Foot-and-Mouth Disease. Front Vet Sci 2020; 7:477. [PMID: 32974392 PMCID: PMC7473413 DOI: 10.3389/fvets.2020.00477] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a devastating livestock disease caused by foot-and-mouth disease virus (FMDV). Outbreaks of this disease in a country always result in conspicuous economic losses to livestock industry and subsequently lead to serious socioeconomic damages due to the immediate imposition of trade embargo. Rapid and accurate diagnoses are imperative to control this infectious virus. In the current review, enzyme-linked immunosorbent assay (ELISA)-based methods used in FMD diagnosis are extensively reviewed, particularly the sandwich, liquid-phase blocking, and solid-phase competition ELISA. The differentiation of infected animals from vaccinated animals using ELISA-based methods is also highlighted, in which the role of 3ABC polyprotein as a marker is reviewed intensively. Recently, more studies are focusing on the molecular diagnostic methods, which detect the viral nucleic acids based on reverse transcription-polymerase chain reaction (RT-PCR) and RT-loop-mediated isothermal amplification (RT-LAMP). These methods are generally more sensitive because of their ability to amplify a minute amount of the viral nucleic acids. In this digital era, the RT-PCR and RT-LAMP are progressing toward the mobile versions, aiming for on-site FMDV diagnosis. Apart from RT-PCR and RT-LAMP, another diagnostic assay specifically designed for on-site diagnosis is the lateral flow immunochromatographic test strips. These test strips have some distinct advantages over other diagnostic methods, whereby the assay often does not require the aid of an external device, which greatly lowers the cost per test. In addition, the on-site diagnostic test can be easily performed by untrained personnel including farmers, and the results can be obtained in a few minutes. Lastly, the use of FMDV diagnostic assays for progressive control of the disease is also discussed critically.
Collapse
Affiliation(s)
- Chuan Loo Wong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
6
|
Bath C, Scott M, Sharma PM, Gurung RB, Phuentshok Y, Pefanis S, Colling A, Singanallur Balasubramanian N, Firestone SM, Ungvanijban S, Ratthanophart J, Allen J, Rawlin G, Fegan M, Rodoni B. Further development of a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of foot-and-mouth disease virus and validation in the field with use of an internal positive control. Transbound Emerg Dis 2020; 67:2494-2506. [PMID: 32311239 DOI: 10.1111/tbed.13589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hooved animals. Global outbreaks have highlighted the significant economic, trade, psychosocial and animal welfare impacts that can arise from the detection of disease in previously 'FMD-free' countries. Rapid and early diagnosis provides significant advantages in disease control and minimization of deleterious consequences. We describe the process of further development and validation of a reverse-transcription loop-mediated isothermal amplification foot-and-mouth disease virus (RT-LAMP-FMDV) test, using a published LAMP primer set, for use in the field. An internal positive control (IPC) was designed and introduced for use with the assay to mitigate any intrinsic interference from the unextracted field samples and avoid false negatives. Further modifications were included to improve the speed and operability of the test, for use by non-laboratory trained staff operating under field conditions, with shelf-stable reaction kits which require a minimum of liquid handling skills. Comparison of the assay performance with an established laboratory-based real-time reverse transcriptase PCR (rRT-PCR) test targeting the 3D region of FMD virus (Tetracore Inc) was investigated. LAMP has the potential to complement current laboratory diagnostics, such as rRT-PCR, as a preliminary tool in the investigation of FMD. We describe a strategic approach to validation of the test for use in the field using extracted RNA samples of various serotypes from Thailand and then finally unextracted field samples collected from FMD-suspected animals (primarily oral lesion swabs) from Bhutan and Australia. The statistical approach to validation was performed by Frequentist and Bayesian latent class methods, which both confirmed this new RT-LAMP-FMDV test as fit-for-purpose as a herd diagnostic tool with diagnostic specificity >99% and sensitivity 79% (95% Bayesian credible interval: 65, 90%) on unextracted field samples (oral swabs).
Collapse
Affiliation(s)
- Carolyn Bath
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio, Bundoora, Vic., Australia
| | - Megan Scott
- Department of Jobs, Precincts and Regions, Biosecurity and Agriculture Services, Epsom, Vic., Australia.,Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Vic., Australia
| | - Puspa Maya Sharma
- Department of Livestock, Ministry of Agriculture and Forests, National Centre for Animal Health, Thimphu, Bhutan
| | - Ratna B Gurung
- Department of Livestock, Ministry of Agriculture and Forests, National Centre for Animal Health, Thimphu, Bhutan
| | - Yoenten Phuentshok
- Department of Livestock, Ministry of Agriculture and Forests, National Centre for Animal Health, Thimphu, Bhutan
| | - Stephen Pefanis
- Department of Jobs, Precincts and Regions, Biosecurity and Agriculture Services, Colac, Vic., Australia
| | - Axel Colling
- Australian Animal Health Laboratory, CSIRO, Geelong, Vic., Australia
| | | | - Simon M Firestone
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Vic., Australia
| | - Sahawatchara Ungvanijban
- Department of Livestock Development, Regional Reference Laboratory for Foot and Mouth Disease in the South East Asia, Pakchong, Thailand
| | - Jadsada Ratthanophart
- Department of Livestock Development, National Institute of Animal Health, Bangkok, Thailand
| | - John Allen
- Australian Animal Health Laboratory, CSIRO, Geelong, Vic., Australia
| | - Grant Rawlin
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio, Bundoora, Vic., Australia
| | - Mark Fegan
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio, Bundoora, Vic., Australia
| | - Brendan Rodoni
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio, Bundoora, Vic., Australia
| |
Collapse
|
7
|
Ranjan R, Biswal JK, Subramaniam S, Dash BB, Singh KP, Arzt J, Rodriguez LL, Pattnaik B. Evidence of subclinical foot-and-mouth disease virus infection in young calves born from clinically recovered cow under natural condition. Trop Anim Health Prod 2018; 50:1167-1170. [PMID: 29388163 DOI: 10.1007/s11250-018-1518-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/17/2018] [Indexed: 11/30/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically important, transboundary viral disease of cloven-hoofed animals. It is known that an asymptomatic, persistent FMD virus (FMDV) infection may occur subsequent to acute or subclinical FMDV infection in adult ruminants. However, virus persistence in young calves has not been studied. In the current investigation, FMDV infection parameters were examined for calves born to FMD-clinically recovered cows (CRC), asymptomatic cows from infected herds (ASC) and cows from with no history of FMD (NHF). The study was conducted in natural condition after FMD outbreaks in two dairy herds in India. No calves described herein had any clinical signs of FMD. Six out of 12 calves born to CRC had detectable FMDV RNA in oesophageal-pharyngeal fluid consistent with asymptomatic FMDV infection. Three of the 12 calves of CRC group had seroreactivity against FMDV non-structural proteins. One calf had detectable FMDV RNA at two consecutive samplings at 2 months apart. However, infectious FMDV was not isolated from any calf in the study. None of the calves in the ASC or NHF groups had any evidence of FMDV infection. Overall, these data are consistent with earlier report on calves having been infected in utero. Further investigation of FMDV persistence in calves under controlled conditions may lead to greater understanding of the viral pathogenesis.
Collapse
Affiliation(s)
- Rajeev Ranjan
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, 263138, India.
| | - Jitendra K Biswal
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, 263138, India
| | - Saravanan Subramaniam
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, 263138, India
| | - Bana B Dash
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, 263138, India
| | - Karam P Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, USDA/ARS PIADC, New York, NY, 11944, USA
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, USDA/ARS PIADC, New York, NY, 11944, USA
| | - Bramhadev Pattnaik
- ICAR-Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, 263138, India
| |
Collapse
|
8
|
Howson ELA, Kurosaki Y, Yasuda J, Takahashi M, Goto H, Gray AR, Mioulet V, King DP, Fowler VL. Defining the relative performance of isothermal assays that can be used for rapid and sensitive detection of foot-and-mouth disease virus. J Virol Methods 2017; 249:102-110. [PMID: 28837842 PMCID: PMC5630204 DOI: 10.1016/j.jviromet.2017.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/18/2017] [Accepted: 08/16/2017] [Indexed: 11/22/2022]
Abstract
This study describes the first multiway comparison of portable isothermal assays for the detection of foot-and-mouth disease virus (FMDV), benchmarked against real-time reverse transcription RT-PCR (rRT-PCR). The selected isothermal chemistries included reverse transcription loop-mediated isothermal amplification (RT-LAMP) and reverse transcription recombinase polymerase amplification (RT-RPA). The analytical sensitivity of RT-LAMP was comparable to rRT-PCR (101 RNA copies), while RT-RPA was one log10 less sensitive (102 RNA copies). Diagnostic performance was evaluated using a panel of 35 samples from FMDV-positive cattle and eight samples from cattle infected with other vesicular viruses. Assay concordance for RT-LAMP and RT-RPA was 86-98% and 67-77%, respectively, when compared to rRT-PCR, with discordant samples consistently having high rRT-PCR cycle threshold values (no false-positives were detected for any assay). In addition, a hierarchy of sample preparation methods, from robotic extraction to simple dilution of samples, for epithelial suspensions, serum and oesophageal-pharyngeal (OP) fluid were evaluated. Results obtained for RT-LAMP confirmed that FMDV RNA can be detected in the absence of RNA extraction. However, simple sample preparation methods were less encouraging for RT-RPA, with accurate results only obtained when using RNA extraction. Although the evaluation of assay performance is specific to the conditions tested in this study, the compatibility of RT-LAMP chemistry with multiple sample types, both in the presence and absence of nucleic acid extraction, provides advantages over alternative isothermal chemistries and alternative pen-side diagnostics such as antigen-detection lateral-flow devices. These characteristics of RT-LAMP enable the assay to be performed over a large diagnostic detection window, providing a realistic means to rapidly confirm positive FMD cases close to the point of sampling.
Collapse
Affiliation(s)
- Emma L A Howson
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, Graham Kerr Building, University of Glasgow, G12 8QQ, UK.
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.
| | - Masayoshi Takahashi
- Toshiba Medical Systems Corporation, 1385, Shimoishigami, Otawara-shi, Tochigi, 324-8550, Japan.
| | - Hiroaki Goto
- Toshiba Medical Systems Corporation, 1385, Shimoishigami, Otawara-shi, Tochigi, 324-8550, Japan.
| | - Ashley R Gray
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | - Valerie Mioulet
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | - Donald P King
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | | |
Collapse
|
9
|
Development of a multiplex loop-mediated isothermal amplification method for the simultaneous detection of Salmonella spp. and Vibrio parahaemolyticus. Sci Rep 2017; 7:45601. [PMID: 28349967 PMCID: PMC5368564 DOI: 10.1038/srep45601] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/28/2017] [Indexed: 11/21/2022] Open
Abstract
Rapid detection of food-borne pathogens is important in the food industry, to monitor and prevent the spread of these pathogens through contaminated food products. We therefore established a multiplex real-time loop-mediated isothermal amplification (LAMP) assay to simultaneously detect and distinguish Salmonella spp. and Vibrio parahaemolyticus DNA in a single reaction. Two target sequences, one specific for Salmonella and the other specific for Vibrio parahaemolyticus, were amplified by specific LAMP primers in the same reaction tube. After amplification at 65 °C for 60 min, the amplified products were subjected to melting curve analysis and thus could be distinguished based on the different melting temperatures (Tm values) of the two specifically amplified products. The specificity of the multiplex LAMP assay was evaluated using 19 known bacterial strains, including one V. parahaemolyticus and seven Salmonella spp. strains. The multiplex LAMP showed 100% inclusivity and exclusivity, and a detection limit similar to that of multiplex PCR. In addition, we observed and corrected preferential amplification induced by what we call LAMP selection in the multiplex LAMP reaction. In conclusion, our assay was rapid, specific, and quantitative, making it a useful tool for the food industry.
Collapse
|
10
|
Ranjan R, Biswal JK, Subramaniam S, Singh KP, Stenfeldt C, Rodriguez LL, Pattnaik B, Arzt J. Foot-and-Mouth Disease Virus-Associated Abortion and Vertical Transmission following Acute Infection in Cattle under Natural Conditions. PLoS One 2016; 11:e0167163. [PMID: 27977708 PMCID: PMC5157973 DOI: 10.1371/journal.pone.0167163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically important viral disease of cloven-hoofed animals, including domestic and wild host species. During recent FMD outbreaks in India, spontaneous abortions were reported amongst FMD-affected and asymptomatic cows. The current study was an opportunistic investigation of these naturally occurring bovine abortions to assess causality of abortion and vertical transmission of FMDV from infected cows to fetuses. For this purpose, fetal tissue samples of eight abortuses (heart, liver, kidney, spleen, palatine tonsil, umbilical cord, soft palate, tongue, lungs, and submandibular lymph node) were collected and screened by various detection methods, including viral genome detection, virus isolation, and immunomicroscopy. Amongst these cases, gross pathological changes were observed in 3 abortuses. Gross pathological findings included blood-tinged peritoneal and pleural effusions and myocarditis. Hearts of infected calves had mild to moderate degeneration and necrosis of the myocardium with moderate infiltration by mixed inflammatory cells. Localization of FMDV antigen was demonstrated in lungs and soft palate by immunomicroscopy. FMDV serotype O viral genome was recovered from 7 of 8 cases. Infectious FMDV serotype O was rescued by chemical transfection of the total RNA extracted from three soft palate samples and was sequenced to confirm 100% identity of the VP1 (capsid) coding region with isolates collected from infected cattle during the acute phase of infection. Based upon these findings, it may be concluded that FMDV-associated abortion occurred among the infected pregnant cows included within this study and FMDV was subsequently transmitted vertically to fetuses. This is the first documentation of FMDV-associated abortions in cattle.
Collapse
Affiliation(s)
- Rajeev Ranjan
- ICAR- Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
- * E-mail: (JA); (RR)
| | - Jitendra K. Biswal
- ICAR- Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - Saravanan Subramaniam
- ICAR- Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | | | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Greenport, New York, United States of America
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, Tennessee, United States of America
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Greenport, New York, United States of America
| | - Bramhadev Pattnaik
- ICAR- Directorate of Foot and Mouth Disease, Mukteshwar, Nainital, Uttarakhand, India
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit, USDA-ARS, Plum Island Animal Disease Center, Greenport, New York, United States of America
- * E-mail: (JA); (RR)
| |
Collapse
|
11
|
Ambagala A, Fisher M, Goolia M, Nfon C, Furukawa-Stoffer T, Ortega Polo R, Lung O. Field-Deployable Reverse Transcription-Insulated Isothermal PCR (RT-iiPCR) Assay for Rapid and Sensitive Detection of Foot-and-Mouth Disease Virus. Transbound Emerg Dis 2016; 64:1610-1623. [PMID: 27589902 PMCID: PMC7169878 DOI: 10.1111/tbed.12554] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 12/23/2022]
Abstract
Foot‐and‐mouth disease (FMD) is a highly contagious viral disease of cloven‐hoofed animals, which can decimate the livestock industry and economy of countries previously free of this disease. Rapid detection of foot‐and‐mouth disease virus (FMDV) is critical to containing an FMD outbreak. Availability of a rapid, highly sensitive and specific, yet simple and field‐deployable assay would support local decision‐making during an FMDV outbreak. Here we report validation of a novel reverse transcription‐insulated isothermal PCR (RT‐iiPCR) assay that can be performed on a commercially available, compact and portable POCKIT™ analyser that automatically analyses data and displays ‘+’ or ‘−’ results. The FMDV RT‐iiPCR assay targets the 3D region of the FMDV genome and was capable of detecting 9 copies of in vitro‐transcribed RNA standard with 95% confidence. It accurately identified 63 FMDV strains belonging to all seven serotypes and showed no cross‐reactivity with viruses causing similar clinical diseases in cloven‐hoofed animals. The assay was able to identify FMDV RNA in multiple sample types including oral, nasal and lesion swabs, epithelial tissue suspensions, vesicular and oral fluid samples, even before the appearance of clinical signs. Clinical sensitivity of the assay was comparable or slightly higher than the laboratory‐based real‐time RT‐PCR assay in use. The assay was able to detect FMDV RNA in vesicular fluid samples without nucleic acid extraction. For RNA extraction from more complex sample types, a commercially available taco™ mini transportable magnetic bead‐based, automated extraction system was used. This assay provides a potentially useful field‐deployable diagnostic tool for rapid detection of FMDV in an outbreak in FMD‐free countries or for routine diagnostics in endemic countries with less structured laboratory systems.
Collapse
Affiliation(s)
- A Ambagala
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - M Fisher
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - M Goolia
- Canadian Food Inspection Agency, National Centre for Foreign Animal Diseases, Canadian Science Centre for Human and Animal Health, Winnipeg, MB, Canada
| | - C Nfon
- Canadian Food Inspection Agency, National Centre for Foreign Animal Diseases, Canadian Science Centre for Human and Animal Health, Winnipeg, MB, Canada
| | - T Furukawa-Stoffer
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - R Ortega Polo
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - O Lung
- Canadian Food Inspection Agency, National Centres for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| |
Collapse
|
12
|
Sharma GK, Mahajan S, Matura R, Subramaniam S, Ranjan R, Biswal J, Rout M, Mohapatra JK, Dash BB, Sanyal A, Pattnaik B. Diagnostic assays developed for the control of foot-and-mouth disease in India. World J Virol 2015; 4:295-302. [PMID: 26279990 PMCID: PMC4534820 DOI: 10.5501/wjv.v4.i3.295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/13/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of livestock, primarily affecting cattle, buffalo and pigs. FMD virus serotypes O, A and Asia1 are prevalent in India and systematic efforts are on to control and eventually eradicate the disease from the country. FMD epidemiology is complex due to factors like co-circulation, extinction, emergence and re-emergence of genotypes/lineages within the three serotypes, animal movement, diverse farm practices and large number of susceptible livestock in the country. Systematic vaccination, prompt diagnosis, strict biosecurity measures, and regular monitoring of vaccinal immunity and surveillance of virus circulation are indispensible features for the effective implementation of the control measures. Availability of suitable companion diagnostic tests is very important in this endeavour. In this review, the diagnostic assays developed and validated in India and their contribution in FMD control programme is presented.
Collapse
|