1
|
Tsui CK, Twells N, Durieux J, Doan E, Woo J, Khosrojerdi N, Brooks J, Kulepa A, Webster B, Mahal LK, Dillin A. CRISPR screens and lectin microarrays identify high mannose N-glycan regulators. Nat Commun 2024; 15:9970. [PMID: 39557836 PMCID: PMC11574202 DOI: 10.1038/s41467-024-53225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Glycans play critical roles in cellular signaling and function. Unlike proteins, glycan structures are not templated from genetic sequences but synthesized by the concerted activity of many genes, making them historically challenging to study. Here, we present a strategy that utilizes CRISPR screens and lectin microarrays to uncover and characterize regulators of glycosylation. We applied this approach to study the regulation of high mannose glycans - the starting structure of all asparagine(N)-linked-glycans. We used CRISPR screens to uncover the expanded network of genes controlling high mannose levels, followed by lectin microarrays to fully measure the complex effect of select regulators on glycosylation globally. Through this, we elucidated how two high mannose regulators - TM9SF3 and the CCC complex - control complex N-glycosylation via regulating Golgi morphology and function. Notably, this allows us to interrogate Golgi function in-depth and reveals that similar disruption to Golgi morphology can lead to drastically different glycosylation outcomes. Collectively, this work demonstrates a generalizable approach for systematically dissecting the regulatory network underlying glycosylation.
Collapse
Affiliation(s)
- C Kimberly Tsui
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Nicholas Twells
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Jenni Durieux
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Emma Doan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jacqueline Woo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noosha Khosrojerdi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Janiya Brooks
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ayodeji Kulepa
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Brant Webster
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Zhao SS, Qian Q, Chen XX, Lu Q, Xing G, Qiao S, Li R, Zhang G. Porcine reproductive and respiratory syndrome virus triggers Golgi apparatus fragmentation-mediated autophagy to facilitate viral self-replication. J Virol 2024; 98:e0184223. [PMID: 38179942 PMCID: PMC10878038 DOI: 10.1128/jvi.01842-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Macroautophagy/autophagy is a cellular degradation and recycling process that maintains the homeostasis of organisms. A growing number of studies have reported that autophagy participates in infection by a variety of viruses. Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe financial losses to the global swine industry. Although much research has shown that PRRSV triggers autophagy for its own benefits, the exact molecular mechanisms involved in PRRSV-triggered autophagy remain to be fully elucidated. In the current study, we demonstrated that PRRSV infection significantly induced Golgi apparatus (GA) fragmentation, which promoted autophagy to facilitate viral self-replication. Mechanistically, PRRSV nonstructural protein 2 was identified to interact with and degrade the Golgi reassembly and stacking protein 65 dependent on its papain-like cysteine protease 2 activity, resulting in GA fragmentation. Upon GA fragmentation, GA-resident Ras-like protein in brain 2 was disassociated from Golgi matrix protein 130 and subsequently bound to unc-51 like autophagy activating kinase 1 (ULK1), which enhanced phosphorylation of ULK1 and promoted autophagy. Taken together, all these results expand the knowledge of PRRSV-triggered autophagy as well as PRRSV pathogenesis to support novel potential avenues for prevention and control of the virus. More importantly, these results provide the detailed mechanism of GA fragmentation-mediated autophagy, deepening the understanding of autophagic processes.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in a serious swine disease affecting pig farming worldwide. Despite that numerous studies have shown that PRRSV triggers autophagy for its self-replication, how PRRSV induces autophagy is incompletely understood. Here, we identify that PRRSV Nsp2 degrades GRASP65 to induce GA fragmentation, which dissociates RAB2 from GM130 and activates RAB2-ULK1-mediated autophagy to enhance viral replication. This work expands our understanding of PRRSV-induced autophagy and PRRSV replication, which is beneficial for anti-viral drug development.
Collapse
Affiliation(s)
- Shuang-shuang Zhao
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Qisheng Qian
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xin-xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Longhu Modern Immunology Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Chua SCJH, Cui J, Engelberg D, Lim LHK. A Review and Meta-Analysis of Influenza Interactome Studies. Front Microbiol 2022; 13:869406. [PMID: 35531276 PMCID: PMC9069142 DOI: 10.3389/fmicb.2022.869406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Annually, the influenza virus causes 500,000 deaths worldwide. Influenza-associated mortality and morbidity is especially high among the elderly, children, and patients with chronic diseases. While there are antivirals available against influenza, such as neuraminidase inhibitors and adamantanes, there is growing resistance against these drugs. Thus, there is a need for novel antivirals for resistant influenza strains. Host-directed therapies are a potential strategy for influenza as host processes are conserved and are less prone mutations as compared to virus-directed therapies. A literature search was performed for papers that performed viral–host interaction screens and the Reactome pathway database was used for the bioinformatics analysis. A total of 15 studies were curated and 1717 common interactors were uncovered among all these studies. KEGG analysis, Enrichr analysis, STRING interaction analysis was performed on these interactors. Therefore, we have identified novel host pathways that can be targeted for host-directed therapy against influenza in our review.
Collapse
Affiliation(s)
- Sonja Courtney Jun Hui Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- CREATE-NUS-HUJ Cellular & Molecular Mechanisms of Inflammation Programme, National University of Singapore, Singapore, Singapore
| | - Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - David Engelberg
- CREATE-NUS-HUJ Cellular & Molecular Mechanisms of Inflammation Programme, National University of Singapore, Singapore, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lina Hsiu Kim Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- *Correspondence: Lina Hsiu Kim Lim,
| |
Collapse
|
4
|
Pila-Castellanos I, Molino D, McKellar J, Lines L, Da Graca J, Tauziet M, Chanteloup L, Mikaelian I, Meyniel-Schicklin L, Codogno P, Vonderscher J, Delevoye C, Moncorgé O, Meldrum E, Goujon C, Morel E, de Chassey B. Mitochondrial morphodynamics alteration induced by influenza virus infection as a new antiviral strategy. PLoS Pathog 2021; 17:e1009340. [PMID: 33596274 PMCID: PMC7920353 DOI: 10.1371/journal.ppat.1009340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/01/2021] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza virus infections are major public health threats due to their high rates of morbidity and mortality. Upon influenza virus entry, host cells experience modifications of endomembranes, including those used for virus trafficking and replication. Here we report that influenza virus infection modifies mitochondrial morphodynamics by promoting mitochondria elongation and altering endoplasmic reticulum-mitochondria tethering in host cells. Expression of the viral RNA recapitulates these modifications inside cells. Virus induced mitochondria hyper-elongation was promoted by fission associated protein DRP1 relocalization to the cytosol, enhancing a pro-fusion status. We show that altering mitochondrial hyper-fusion with Mito-C, a novel pro-fission compound, not only restores mitochondrial morphodynamics and endoplasmic reticulum-mitochondria contact sites but also dramatically reduces influenza replication. Finally, we demonstrate that the observed Mito-C antiviral property is directly connected with the innate immunity signaling RIG-I complex at mitochondria. Our data highlight the importance of a functional interchange between mitochondrial morphodynamics and innate immunity machineries in the context of influenza viral infection. Influenza virus infections cause significant diseases and socio-economic burden. The current therapeutic arsenal is restricted to drugs that essentially target two proteins of the virus. In this study, we investigated endomembrane modifications inside cells following influenza virus infection. We find remarkable elongation of mitochondria associated with a reduction in the number of contact sites between mitochondria and endoplasmic reticulum, platforms known to be critical for innate immunity regulation. We demonstrated that the sole expression of a fragment of the viral genome is sufficient to provoke these modifications and we identified how the main drivers of the mitochondria fusion/fission machinery behave to favor such an elongated state. We introduce potential application of Mito-C, a new drug that inhibits influenza virus replication by counteracting these membrane modifications. We finally demonstrated that the functional result of this action is a booster of the innate immune response of the cell. Thus, Mito-C has a broad spectrum potential to fight other RNA viruses, described or expected to induce similar membrane modifications (eg coronaviruses, flaviviruses, etc.).
Collapse
Affiliation(s)
- Irene Pila-Castellanos
- ENYO-Pharma, Lyon, France
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Diana Molino
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR 9004—CNRS, Université de Montpellier, Montpellier, France
| | | | - Juliane Da Graca
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Marine Tauziet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR 9004—CNRS, Université de Montpellier, Montpellier, France
| | | | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | | | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | | | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Olivier Moncorgé
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | | | - Caroline Goujon
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
- * E-mail: (EM); (BC)
| | | |
Collapse
|
5
|
Bello-Perez M, Sola I, Novoa B, Klionsky DJ, Falco A. Canonical and Noncanonical Autophagy as Potential Targets for COVID-19. Cells 2020; 9:E1619. [PMID: 32635598 PMCID: PMC7408018 DOI: 10.3390/cells9071619] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 pandemic necessitates a review of the molecular mechanisms underlying cellular infection by coronaviruses, in order to identify potential therapeutic targets against the associated new disease (COVID-19). Previous studies on its counterparts prove a complex and concomitant interaction between coronaviruses and autophagy. The precise manipulation of this pathway allows these viruses to exploit the autophagy molecular machinery while avoiding its protective apoptotic drift and cellular innate immune responses. In turn, the maneuverability margins of such hijacking appear to be so narrow that the modulation of the autophagy, regardless of whether using inducers or inhibitors (many of which are FDA-approved for the treatment of other diseases), is usually detrimental to viral replication, including SARS-CoV-2. Recent discoveries indicate that these interactions stretch into the still poorly explored noncanonical autophagy pathway, which might play a substantial role in coronavirus replication. Still, some potential therapeutic targets within this pathway, such as RAB9 and its interacting proteins, look promising considering current knowledge. Thus, the combinatory treatment of COVID-19 with drugs affecting both canonical and noncanonical autophagy pathways may be a turning point in the fight against this and other viral infections, which may also imply beneficial prospects of long-term protection.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain; (M.B.-P.); (I.S.)
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain; (M.B.-P.); (I.S.)
| | - Beatriz Novoa
- Institute of Marine Research (IIM), National Research Council (CSIC), 36208 Vigo, Spain;
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain
| |
Collapse
|
6
|
Martínez JL, Arias CF. Role of the Guanine Nucleotide Exchange Factor GBF1 in the Replication of RNA Viruses. Viruses 2020; 12:E682. [PMID: 32599855 PMCID: PMC7354614 DOI: 10.3390/v12060682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
The guanine nucleotide exchange factor GBF1 is a well-known factor that can activate different ADP-ribosylation factor (Arf) proteins during the regulation of different cellular vesicular transport processes. In the last decade, it has become increasingly evident that GBF1 can also regulate different steps of the replication cycle of RNA viruses belonging to different virus families. GBF1 has been shown not only to facilitate the intracellular traffic of different viral and cellular elements during infection, but also to modulate the replication of viral RNA, the formation and maturation of viral replication complexes, and the processing of viral proteins through mechanisms that do not depend on its canonical role in intracellular transport. Here, we review the various roles that GBF1 plays during the replication of different RNA viruses.
Collapse
Affiliation(s)
| | - Carlos F. Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 4510, Morelos, Mexico;
| |
Collapse
|
7
|
Nuñez IA, Ross TM. A review of H5Nx avian influenza viruses. Ther Adv Vaccines Immunother 2019; 7:2515135518821625. [PMID: 30834359 PMCID: PMC6391539 DOI: 10.1177/2515135518821625] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Drive, CVI Room 1504, Athens, GA 30602, USA
| |
Collapse
|
8
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
10
|
Zheng J, Perlman S. Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host. Curr Opin Virol 2018; 28:43-52. [PMID: 29172107 PMCID: PMC5835172 DOI: 10.1016/j.coviro.2017.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/02/2017] [Indexed: 12/25/2022]
Abstract
Respiratory viruses, especially influenza A viruses and coronaviruses such as MERS-CoV, represent continuing global threats to human health. Despite significant advances, much needs to be learned. Recent studies in virology and immunology have improved our understanding of the role of the immune system in protection and in the pathogenesis of these infections and of co-evolution of viruses and their hosts. These findings, together with sophisticated molecular structure analyses, omics tools and computer-based models, have helped delineate the interaction between respiratory viruses and the host immune system, which will facilitate the development of novel treatment strategies and vaccines with enhanced efficacy.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States
| | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
11
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|