1
|
Nazzal MK, Battina HL, Tewari NP, Mostardo SL, Nagaraj RU, Zhou D, Awosanya OD, Majety SK, Samson S, Blosser RJ, Dadwal UC, Mulcrone PL, Kacena MA. The effects of young and aged, male and female megakaryocyte conditioned media on angiogenic properties of endothelial cells. Aging (Albany NY) 2024; 16:13181-13200. [PMID: 39578050 PMCID: PMC11719103 DOI: 10.18632/aging.206077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/11/2024] [Indexed: 11/24/2024]
Abstract
With aging, the risk of fractures and compromised healing increases. Angiogenesis plays a significant role in bone healing and is impaired with aging. We have previously shown the impact of megakaryocytes (MKs) in regulating bone healing. Notably, MKs produce factors known to promote angiogenesis. We examined the effects of conditioned media (CM) generated from MKs derived from young (3-4-month-old) and aged (22-24-month-old), male and female C57BL/6J mice on bone marrow endothelial cell (BMEC) growth and function. Female MK CM, regardless of age, caused a >65% increase in BMEC proliferation and improved vessel formation by >115%. Likewise, young male MK CM increased vessel formation by 160%. Although aged male MK CM resulted in >150% increases in the formation of vascular nodes and meshes, 62% fewer vessels formed compared to young male MK CM treatment. Aged female MK CM improved migration by over 2500%. However, aged female and male MK CM caused less wound closure. MK CM treatments also significantly altered the expression of several genes including PDGFRβ, CXCR4, and CD36 relative to controls and between ages. Further testing of mechanisms responsible for age-associated differences may allow for novel strategies to improve MK-mediated angiogenesis and bone healing, particularly within the aging population.
Collapse
Affiliation(s)
- Murad K. Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Saveda K. Majety
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sue Samson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Patrick L. Mulcrone
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
He W, Jiang C, Zhou P, Hu X, Gu X, Zhang S. Role of tendon-derived stem cells in tendon and ligament repair: focus on tissue engineer. Front Bioeng Biotechnol 2024; 12:1357696. [PMID: 39175617 PMCID: PMC11338810 DOI: 10.3389/fbioe.2024.1357696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
This review offered a comprehensive analysis of tendon and ligament injuries, emphasizing the crucial role of tendon-derived stem cells (TDSCs) in tissue engineering as a potential solution for these challenging medical conditions. Tendon and ligament injuries, prevalent among athletes, the elderly, and laborers, often result in long-term disability and reduced quality of life due to the poor intrinsic healing capacity of these avascular structures. The formation of biomechanically inferior scar tissue and a high rate of reinjury underscore the need for innovative approaches to enhance and guide the regenerative process. This review delved into the complexities of tendon and ligament structure and function, types of injuries and their impacts, and the limitations of the natural repair process. It particularly focused on the role of TDSCs within the context of tissue engineering. TDSCs, with their ability to differentiate into tenocytes, are explored in various applications, including biocompatible scaffolds for cell tracking, co-culture systems to optimize tendon-bone healing, and graft healing techniques. The review also addressed the challenges of immunoreactivity post-transplantation, the importance of pre-treating TDSCs, and the potential of hydrogels and decellularized matrices in supporting tendon regeneration. It concluded by highlighting the essential roles of mechanical and molecular stimuli in TDSC differentiation and the current challenges in the field, paving the way for future research directions.
Collapse
Affiliation(s)
- Wei He
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Chao Jiang
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ping Zhou
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Xujun Hu
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - XiaoPeng Gu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
| | - SongOu Zhang
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
| |
Collapse
|
3
|
Moghaddam A, Bahrami M, Mirzadeh M, Khatami M, Simorgh S, Chimehrad M, Kruppke B, Bagher Z, Mehrabani D, Khonakdar HA. Recent trends in bone tissue engineering: a review of materials, methods, and structures. Biomed Mater 2024; 19:042007. [PMID: 38636500 DOI: 10.1088/1748-605x/ad407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Bone tissue engineering (BTE) provides the treatment possibility for segmental long bone defects that are currently an orthopedic dilemma. This review explains different strategies, from biological, material, and preparation points of view, such as using different stem cells, ceramics, and metals, and their corresponding properties for BTE applications. In addition, factors such as porosity, surface chemistry, hydrophilicity and degradation behavior that affect scaffold success are introduced. Besides, the most widely used production methods that result in porous materials are discussed. Gene delivery and secretome-based therapies are also introduced as a new generation of therapies. This review outlines the positive results and important limitations remaining in the clinical application of novel BTE materials and methods for segmental defects.
Collapse
Affiliation(s)
| | - Mehran Bahrami
- Department of Mechanical Engineering and Mechanics, Lehigh University, 27 Memorial Dr W, Bethlehem, PA 18015, United States of America
| | | | - Mehrdad Khatami
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Chimehrad
- Department of Mechanical & Aerospace Engineering, College of Engineering & Computer Science, University of Central Florida, Orlando, FL, United States of America
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Fars 71345-1744, Iran
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran 14965-115, Iran
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
4
|
Cady C, Nair K, Rodriguez HC, Rust B, Ghandour S, Potty A, Gupta A. Optimization of Polycaprolactone and Type I Collagen Scaffold for Tendon Tissue Regeneration. Cureus 2024; 16:e56930. [PMID: 38665704 PMCID: PMC11044072 DOI: 10.7759/cureus.56930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Collagen synthesis is vital for restoring musculoskeletal tissues, particularly in tendon and ligamentous structures. Tissue engineering utilizes scaffolds for cell adhesion and differentiation. Although synthetic scaffolds offer initial strength, their long-term stability is surpassed by biological scaffolds. Combining polycaprolactone (PCL) toughness with collagen in scaffold design, this study refines fabrication via electrospinning, aiming to deliver enduring biomimetic matrices for widespread applications in musculoskeletal repair. Methods Electrospinning employed four solutions with varied collagen and PCL concentrations, dissolved in chloroform, methanol, and hexafluoro-2-propanol. Solutions were combined to yield 60 mg/mL concentrations with different collagen/PCL ratios. Electrospinning at 12-14kV voltage produced scaffolds, followed by vacuum-drying. Collagen coating was applied to PCL and 15% collagen/PCL scaffolds using a 0.1% collagen solution. SEM characterized fiber morphology, tensile testing was conducted to determine the mechanical properties of the scaffold, and Fourier-transform infrared (FTIR) spectroscopy analyzed scaffold composition. Atomic force microscopy (AFM) analyzed the stiffness properties of individual fibers, and a finite element model was developed to predict the mechanical properties. Cell culture involved seeding human bone marrow mesenchymal stem cells onto scaffolds, which were assessed through Alamar Blue assay and confocal imaging. Results Various scaffolds (100% PCL, PCL-15% collagen, PCL-25% collagen, PCL-35% collagen) were fabricated to emulate the extracellular matrix, revealing collagen's impact on fiber diameter reduction with increasing concentration. Tensile testing highlighted collagen's initial enhancement of mechanical strength, followed by a decline beyond PCL-15% collagen. FTIR spectroscopy detected potential hydrogen bonding between collagen and PCL. A finite element model predicted scaffold response to external forces which was validated by the tensile test data. Cell viability and proliferation assays demonstrated successful plating on all scaffolds, with optimal proliferation observed in PCL-25% collagen. Confocal imaging confirmed stem cell integration into the three-dimensional material. Collagen coating preserved nanofiber morphology, with no significant changes in diameter. Coating of collagen significantly altered the tensile strength of the scaffolds at the macro scale. AFM highlighted stiffness differences between PCL and collagen-coated PCL mats at the single fiber scale. The coating process did not significantly enhance initial cell attachment but promoted increased proliferation on collagen-coated PCL scaffolds. Conclusion The study reveals collagen-induced mechanical and morphological alterations, influencing fiber alignment, diameter, and chemical composition while emphasizing scaffolds' vital role in providing a controlled niche for stem cell proliferation and differentiation. The optimization of each of these scaffold characteristics and subsequent finite element modeling can lead to highly repeatable and ideal scaffold properties for stem cell integration and proliferation.
Collapse
Affiliation(s)
- Craig Cady
- Biology, Bradley University, Peoria, USA
| | - Kalyani Nair
- Mechanical Engineering, Bradley University, Peoria, USA
| | | | - Brandon Rust
- Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | | | - Anish Potty
- Orthopedics, South Texas Orthopaedic Research Institute, Laredo, USA
| | - Ashim Gupta
- Regenerative Medicine, Future Biologics, Lawrenceville, USA
- Orthopedics and Regenerative Medicine, Regenerative Orthopedics, Noida, IND
- Regenerative Medicine, BioIntegrate, Lawrenceville, USA
- Orthopedics, South Texas Orthopaedic Research Institute, Laredo, USA
| |
Collapse
|
5
|
Chen M, Jiang Z, Zou X, You X, Cai Z, Huang J. Advancements in tissue engineering for articular cartilage regeneration. Heliyon 2024; 10:e25400. [PMID: 38352769 PMCID: PMC10862692 DOI: 10.1016/j.heliyon.2024.e25400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Articular cartilage injury is a prevalent clinical condition resulting from trauma, tumors, infection, osteoarthritis, and other factors. The intrinsic lack of blood vessels, nerves, and lymphatic vessels within cartilage tissue severely limits its self-regenerative capacity after injury. Current treatment options, such as conservative drug therapy and joint replacement, have inherent limitations. Achieving perfect regeneration and repair of articular cartilage remains an ongoing challenge in the field of regenerative medicine. Tissue engineering has emerged as a key focus in articular cartilage injury research, aiming to utilize cultured and expanded tissue cells combined with suitable scaffold materials to create viable, functional tissues. This review article encompasses the latest advancements in seed cells, scaffolds, and cytokines. Additionally, the role of stimulatory factors including cytokines and growth factors, genetic engineering techniques, biophysical stimulation, and bioreactor systems, as well as the role of scaffolding materials including natural scaffolds, synthetic scaffolds, and nanostructured scaffolds in the regeneration of cartilage tissues are discussed. Finally, we also outline the signaling pathways involved in cartilage regeneration. Our review provides valuable insights for scholars to address the complex problem of cartilage regeneration and repair.
Collapse
Affiliation(s)
- Maohua Chen
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiuyuan Zou
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaobo You
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jinming Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Al Maruf DSA, Xin H, Cheng K, Garcia AG, Mohseni-Dargah M, Ben-Sefer E, Tomaskovic-Crook E, Crook JM, Clark JR. Bioengineered cartilaginous grafts for repairing segmental mandibular defects. J Tissue Eng 2024; 15. [DOI: 10.1177/20417314241267017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ Engineering Laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
| | - Masoud Mohseni-Dargah
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Eitan Ben-Sefer
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Micah Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
7
|
Han J, Li X, Liang B, Ma S, Pu Y, Yu F, Lu J, Ma Y, MacHugh DE, Jiang L. Transcriptome profiling of differentiating adipose-derived stem cells across species reveals new genes regulating adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159378. [PMID: 37572997 DOI: 10.1016/j.bbalip.2023.159378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Adipose-derived stem cells (ADSCs) that are enriched in adipose tissue with multilineage differentiation potential have become an important tool in therapeutic research and tissue engineering. Certain breeds of sheep exhibit a unique fat tail trait such that tail tissue accounts for approximately 10 % of body weight and can provide an excellent source of ADSCs. Here, we describe isolation of primary ADSCs from ovine embryonic fat tail tissues that displayed high self-renewal capacity, multilineage differentiation and excellent adipogenic ability. Through transcriptome analysis covering ADSCs differentiating into adipocytes, 37 transcription factors were involved in early transcriptional events that initiate a regulatory cascade of adipogenesis; the entire adipogenic activity consists of a reduction in proliferation ability and upregulation of genes related to lipid generation and energy metabolism, as well as several genes associated with myogenesis. Furthermore, Comparative transcriptome analysis across species (sheep, human, and mouse) revealed enhanced basal metabolic ability in differentiating ovine ADSCs, which may relate to the excellent adipogenic capability of these cells. We also identified a small evolutionarily conserved gene set, consisting of 21 and 22 genes exhibiting increased and decreased expression, respectively. Almost half (20) of these genes have not previously been reported to regulate adipogenesis in mammals. In this study, we identified important regulators that trigger ovine adipocyte differentiation, main biological pathways involved in adipogenesis as well as the evolutionarily conserved genes governing adipogenic process across species. Our study provides a novel excellent biomaterial and novel genes regulating adipogenesis for cellular transplantation therapy and investigations of fat metabolism.
Collapse
Affiliation(s)
- Jiangang Han
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Xiaojie Li
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Benmeng Liang
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Sijia Ma
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Agricultural College, Ningxia University, Yinchuan, Ningxia, China
| | - Yabin Pu
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Fuqing Yu
- National Animal Husbandry Service, Beijing 100193, China
| | - Jian Lu
- National Animal Husbandry Service, Beijing 100193, China
| | - Yuehui Ma
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland.
| | - Lin Jiang
- Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
8
|
Agnes CJ, Karoichan A, Tabrizian M. The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2023. [PMID: 37310896 PMCID: PMC10354806 DOI: 10.1021/acsabm.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An increasing number of publications over the past ten years have focused on the development of chitosan-based cross-linked scaffolds to regenerate bone tissue. The design of biomaterials for bone tissue engineering applications relies heavily on the ideals set forth by a polytherapy approach called the "Diamond Concept". This methodology takes into consideration the mechanical environment, scaffold properties, osteogenic and angiogenic potential of cells, and benefits of osteoinductive mediator encapsulation. The following review presents a comprehensive summarization of recent trends in chitosan-based cross-linked scaffold development within the scope of the Diamond Concept, particularly for nonload-bearing bone repair. A standardized methodology for material characterization, along with assessment of in vitro and in vivo potential for bone regeneration, is presented based on approaches in the literature, and future directions of the field are discussed.
Collapse
Affiliation(s)
- Celine J Agnes
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
| | - Antoine Karoichan
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| |
Collapse
|
9
|
Tevlin R, desJardins-Park H, Huber J, DiIorio S, Longaker M, Wan D. Musculoskeletal tissue engineering: Adipose derived stromal cell implementation for the treatment of osteoarthritis. Biomaterials 2022; 286:121544. [DOI: 10.1016/j.biomaterials.2022.121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/02/2022]
|
10
|
The impact of different forms of exercise on endothelial progenitor cells in healthy populations. Eur J Appl Physiol 2022; 122:1589-1625. [PMID: 35305142 PMCID: PMC9197818 DOI: 10.1007/s00421-022-04921-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular healing and neovascularisation, while exercise is an effective means to mobilise EPCs into the circulation. OBJECTIVES to systematically examine the acute and chronic effects of different forms of exercise on circulating EPCs in healthy populations. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS thirty-one articles met the inclusion criteria including 747 participants aged 19 to 76 years. All included trials used flow cytometry for identification of circulating EPCs. Eight and five different EPC phenotypes were identified in the acute and chronic trials, respectively. In the acute trials, moderate intensity continuous (MICON), maximal, prolonged endurance, resistance and high intensity interval training (HIIT) exercise protocols were utilised. Prolonged endurance and resistance exercise had the most profound effect on circulating EPCs followed by maximal exercise. In the chronic trials, MICON exercise, HIIT, HIIT compared to MICON and MICON compared to exergame (exercise modality based on an interactive video game) were identified. MICON exercise had a positive effect on circulating EPCs in older sedentary individuals which was accompanied by improvements in endothelial function and arterial stiffness. Long-stage HIIT (4 min bouts) appears to be an effective means and superior than MICON exercise in mobilising circulating EPCs. In conclusion, both in acute and chronic trials the degree of exercise-induced EPC mobilisation depends upon the exercise regime applied. In future, more research is warranted to examine the dose-response relationship of different exercise forms on circulating EPCs using standardised methodology and EPC phenotype.
Collapse
|
11
|
Zimmermann CE, Mackens-Kiani L, Acil Y, Terheyden H. Characterization of porcine mesenchymal stromal cells and their proliferative and osteogenic potential in long-term culture. J Stem Cells Regen Med 2022; 17:49-55. [PMID: 35250201 DOI: 10.46582/jsrm.1702008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Background: Porcine mesenchymal stromal cells (pMSCs) are considered a valuable research model for bone tissue engineering, which requires adequate amounts of viable cells with sufficient potential for osteogenic differentiation. For isolation and expansion of these cells through long-term culture, appropriate culture conditions are needed. Objective: To study the effect of extended in vitro cultivation on pMSC proliferation and differentiation potential using different osteogenic and adipogenic induction media. Methods: pMSCs were isolated from the bone marrow of adult Göttingen minipigs, cultured, expanded to passage 20 (~160 days) and characterized by their expression of cell surface markers (wCD44, CD45, CD90, SWC9, fibronectin), alkaline phosphatase (ALP), and osteocalcin and their potential for osteogenic and adipogenic differentiation using different induction media. Results: pMSCs retained their capacity for proliferation and osteogenic differentiation, and the number of CD90-positive cells increased significantly over more than 60 population doublings. CD90 expression in uninduced cells correlated strongly with ALP expression following osteogenic induction. Medium enriched with calcium yielded a stronger osteogenic response. Conclusion: The selection of CD90-positive MSCs and adequate levels of calcium seem to enhance the osteogenic phenotype for bone tissue engineering.
Collapse
Affiliation(s)
- Corinna E Zimmermann
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany.,University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | - Yahya Acil
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| | - Hendrik Terheyden
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| |
Collapse
|
12
|
Potential of Bone-Marrow-Derived Mesenchymal Stem Cells for Maxillofacial and Periodontal Regeneration: A Narrative Review. Int J Dent 2021; 2021:4759492. [PMID: 34795761 PMCID: PMC8594991 DOI: 10.1155/2021/4759492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/19/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are one of the most widely studied postnatal stem cell populations and are considered to utilize more frequently in cell-based therapy and cancer. These types of stem cells can undergo multilineage differentiation including blood cells, cardiac cells, and osteogenic cells differentiation, thus providing an alternative source of mesenchymal stem cells (MSCs) for tissue engineering and personalized medicine. Despite the ability to reprogram human adult somatic cells to induced pluripotent stem cells (iPSCs) in culture which provided a great opportunity and opened the new door for establishing the in vitro disease modeling and generating an unlimited source for cell base therapy, using MSCs for regeneration purposes still have a great chance to cure diseases. In this review, we discuss the important issues in MSCs biology including the origin and functions of MSCs and their application for craniofacial and periodontal tissue regeneration, discuss the potential and clinical applications of this type of stem cells in differentiation to maxillofacial bone and cartilage in vitro, and address important future hopes and challenges in this field.
Collapse
|
13
|
Qi J, Yu T, Hu B, Wu H, Ouyang H. Current Biomaterial-Based Bone Tissue Engineering and Translational Medicine. Int J Mol Sci 2021; 22:10233. [PMID: 34638571 PMCID: PMC8508818 DOI: 10.3390/ijms221910233] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022] Open
Abstract
Bone defects cause significant socio-economic costs worldwide, while the clinical "gold standard" of bone repair, the autologous bone graft, has limitations including limited graft supply, secondary injury, chronic pain and infection. Therefore, to reduce surgical complexity and speed up bone healing, innovative therapies are needed. Bone tissue engineering (BTE), a new cross-disciplinary science arisen in the 21st century, creates artificial environments specially constructed to facilitate bone regeneration and growth. By combining stem cells, scaffolds and growth factors, BTE fabricates biological substitutes to restore the functions of injured bone. Although BTE has made many valuable achievements, there remain some unsolved challenges. In this review, the latest research and application of stem cells, scaffolds, and growth factors in BTE are summarized with the aim of providing references for the clinical application of BTE.
Collapse
Affiliation(s)
- Jingqi Qi
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tianqi Yu
- Department of Mechanical Engineering, Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining 314400, China;
| | - Bangyan Hu
- Section of Molecular and Cell Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
- Zhejiang University-University of Edinburgh Institute, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310003, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310003, China
| |
Collapse
|
14
|
Combination of optimized tissue engineering bone implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits. Cell Tissue Res 2021; 385:639-658. [PMID: 33966092 DOI: 10.1007/s00441-021-03458-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
In this study, effects of combining optimized tissue engineering bone (TEB) implantation with heel-strike like mechanical loading to repair segmental bone defect in New Zealand rabbits were investigated. Physiological characteristics of bone marrow mesenchymal stem cells (BMMSCs), compact bone cells (CBCs), and bone marrow and compact bone coculture cells (BMMSC-CBCs) were compared to select the optimal seed cells for optimized TEB construction. Rabbits with segmental bone defects were treated in different ways (cancellous bone scaffold for group A, cancellous bone scaffold and mechanical loading for group B, optimized TEB for group C, optimized TEB and mechanical loading for group D, n = 4), and the bone repair were compared. BMMSC-CBCs showed better proliferation capacity than CBCs (p < 0.01) and stronger osteogenic differentiation ability than BMMSCs (p < 0.05). Heel-strike like mechanical loading improved proliferation and osteogenic differentiation ability and expression levels of TGFβ1 as well as BMP2 of seed cells in vitro (p < 0.05). At week 12 post-operation, group D showed the best bone repair, followed by groups B and C, while group A finished last (p < 0.05). During week 4 to 12 post-operation, group D peaked in terms of expression levels of TGFβ1, BMP2, and OCN, followed by groups B and C, while group A finished last (p < 0.05). Thus, BMMSC-CBCs showed good proliferation and osteogenic differentiation ability, and they were thought to be better as seed cells than BMMSCs and CBCs. The optimized TEB implantation combined with heel-strike like mechanical loading had a synergistic effect on bone defect healing, and enhanced expression of TGFβ1 and BMP2 played an important role in this process.
Collapse
|
15
|
Franco GG, Minto BW, Dreibi RM, Costa Junior JS, Dias LGGG. Percutaneous application of allogeneic adipose-derived mesenchymal stem cell in dogs submitted to minimally invasive plate osteosynthesis of the tibia. Acta Cir Bras 2021; 36:e360206. [PMID: 33624723 PMCID: PMC7902052 DOI: 10.1590/acb360206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose To evaluate clinical outcome following minimally invasive plate
osteosynthesis (MIPO) associated with percutaneous transplantation of
allogeneic adipose-derived mesenchymal stem cells (AD-MSC) at the tibial
fracture site in dogs. Methods Thirty-six dogs presenting with nonarticular complete tibial fracture were
included in this study. All fractures were treated by the same MIPO
technique. The animals were divided in group 1 (n = 20) received a
percutaneous application of 3 × 106 AD-MSC at the fracture site
and group 2 (n = 16) did not receive any adjuvant treatment. Postoperative
radiographic examinations were made at 15, 30, 60, 90 and 120 days. Results Fifty-eight percent of the patients were classified as skeletally immature.
The median weight of the animals was 18.8 kg. The mean radiographic union
time differed statistically between the AD-MSC group (28.5 days) and the
control group (70.3 days). Sixty percent of dogs in group 1 and 56.25% of
the group 2 were considered immature. Conclusions The use of allogeneic AD-MSC cell therapy and MIPO is a safe, viable and
effective technique for promoting bone healing in nonarticular tibial
fractures in dogs.
Collapse
|
16
|
Fu R, Liu C, Yan Y, Li Q, Huang RL. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. J Tissue Eng 2021; 12:20417314211004211. [PMID: 33868628 PMCID: PMC8020769 DOI: 10.1177/20417314211004211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.
Collapse
Affiliation(s)
- Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Xu C, Liu H, He Y, Li Y, He X. Endothelial progenitor cells promote osteogenic differentiation in co-cultured with mesenchymal stem cells via the MAPK-dependent pathway. Stem Cell Res Ther 2020; 11:537. [PMID: 33308309 PMCID: PMC7731475 DOI: 10.1186/s13287-020-02056-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The role of bone tissue engineering is to regenerate tissue using biomaterials and stem cell-based approaches. Combination of two or more cell types is one of the strategies to promote bone formation. Endothelial progenitor cells (EPCs) may enhance the osteogenic properties of mesenchymal stem cells (MSCs) and promote bone healing; this study aimed to investigate the possible mechanisms of EPCs on promoting osteogenic differentiation of MSCs. METHODS MSCs and EPCs were isolated and co-cultured in Transwell chambers, the effects of EPCs on the regulation of MSC biological properties were investigated. Real-time PCR array, and western blotting were performed to explore possible signaling pathways involved in osteogenesis. The expression of osteogenesis markers and calcium nodule formation was quantified by qRT-PCR, western blotting, and Alizarin Red staining. RESULTS Results showed that MSCs exhibited greater alkaline phosphatase (ALP) activity and increased calcium mineral deposition significantly when co-cultured with EPCs. The mitogen-activated protein kinase (MAPK) signaling pathway was involved in this process. p38 gene expression and p38 protein phosphorylation levels showed significant upregulation in co-cultured MSCs. Silencing expression of p38 in co-cultured MSCs reduced osteogenic gene expression, protein synthesis, ALP activity, and calcium nodule formation. CONCLUSIONS These data suggest paracrine signaling from EPCs influences the biological function and promotes MSCs osteogenic differentiation. Activation of the p38MAPK pathway may be the key to enhancing MSCs osteogenic differentiation via indirect interactions with EPCs.
Collapse
Affiliation(s)
- Chu Xu
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China.,Department of General Dentistry, School of Stomatology, China Medical University, Shenyang, 110001, Liaoning, China
| | - Haijie Liu
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China
| | - Yuanjia He
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China
| | - Yuanqing Li
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China
| | - Xiaoning He
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
18
|
Tevlin R, Longaker MT, Wan DC. Skeletal Stem Cells-A Paradigm Shift in the Field of Craniofacial Bone Tissue Engineering. FRONTIERS IN DENTAL MEDICINE 2020; 1:596706. [PMID: 35664558 PMCID: PMC9161996 DOI: 10.3389/fdmed.2020.596706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Defects of the craniofacial skeleton arise as a direct result of trauma, diseases, oncological resection, or congenital anomalies. Current treatment options are limited, highlighting the importance for developing new strategies to restore form, function, and aesthetics of missing or damaged bone in the face and the cranium. For optimal reconstruction, the goal is to replace "like with like." With the inherent challenges of existing options, there is a clear need to develop alternative strategies to reconstruct the craniofacial skeleton. The success of mesenchymal stem cell-based approaches has been hampered by high heterogeneity of transplanted cell populations with inconsistent preclinical and clinical trial outcomes. Here, we discuss the novel characterization and isolation of mouse skeletal stem cell (SSC) populations and their response to injury, systemic disease, and how their re-activation in vivo can contribute to tissue regeneration. These studies led to the characterization of human SSCs which are able to self-renew, give rise to increasingly fate restricted progenitors, and differentiate into bone, cartilage, and bone marrow stroma, all on the clonal level in vivo without prior in vitro culture. SSCs hold great potential for implementation in craniofacial bone tissue engineering and regenerative medicine. As we begin to better understand the diversity and the nature of skeletal stem and progenitor cells, there is a tangible future whereby a subset of human adult SSCs can be readily purified from bone or activated in situ with broad potential applications in craniofacial tissue engineering.
Collapse
Affiliation(s)
- Ruth Tevlin
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
19
|
Novel Simple Strategy for Cartilage Tissue Engineering Using Stem Cells and Synthetic Polymer Scaffold. J Craniofac Surg 2019; 30:940-943. [PMID: 30865124 DOI: 10.1097/scs.0000000000005374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cartilage created by tissue engineering is a promising new development in facial reconstructive surgery. The purpose of this study was to evaluate the histological results of implantation of synthetic polymer scaffold with chondrocytes differentiated from adipose-derived mesenchymal stem cells. Adipose tissue obtained from Wistar albino rats was dissociated, incubated and placed in culture medium. After a sufficient level of stem cell proliferation, the differentiation phase was started. Cells were collected on the 7th and 21st day of culture for chondrogenic characterization. After the 21st day of the differentiation phase of chondrocytes, they were transferred onto poly(dl-lactide-epsilon-caprolactone) synthetic polymer and culture continued for 24 hours. The scaffold with chondrocytes was then implanted into a subcutaneous area of skin on the back of the neck of the rat. Six weeks after implantation, all rats were sacrificed and the implantation areas were analyzed. Chondrocytes derived from adipogenic mesenchymal stem cells were stained positively with collagen II, aggrecan and Sox-9 after the differentiation stages. Histological examination of the excised material showed that chondrocytes were present, and the scaffold had been completely absorbed. The results of this study indicate that the differentiation method from mesenchymal stem cells to chondrogenic lineage was straightforward and scaffold with cells was easily accessible. This technique may be a good option for cartilage tissue engineering.
Collapse
|
20
|
Hosseini FS, Soleimanifar F, Ardeshirylajimi A, Vakilian S, Mossahebi-Mohammadi M, Enderami SE, Khojasteh A, Zare Karizi S. In vitro osteogenic differentiation of stem cells with different sources on composite scaffold containing natural bioceramic and polycaprolactone. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:300-307. [PMID: 30688102 DOI: 10.1080/21691401.2018.1553785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Stem cells can be obtained from a variety of sources. To compare the effect of cell source on the osteogenic differentiation potential, buccal fat pad-derived mesenchymal stem cells (BFP-MSCs), bone marrow-derived MSCs (BM-MSCs) and unrestricted somatic stem cells (USSCs) with different accessibility in time and region, were cultured on bioceramic (Bio-Oss®) coated electrospun polycaprolactone (PCL) scaffold (PCL-Bio). After scaffold characterization, stem cells proliferation and osteogenic differentiation were investigated by MTT and Alizarin red staining, alkaline phosphatase activity, calcium content and gene expression assays. Proliferation rate of the stem cells was not significantly different with each other, only USSCs showed significantly lower proliferation rate while cultured on PCL-Bio; although, PCL-Bio showed better proliferation support in comparison with tissue culture plate and PCL. Mineralization of the BM-MSCs was significantly higher than others, while BFP-MSCs were close to it. Highest ALP activity was detected in BFP-MSCs cultured on PCL-Bio. USSCs demonstrated higher gene expression level in three genes, although differences were not huge compared to others. According to the results and due to the availability, facilitated preparation procedure and less patients suffering, BFP-MSCs have a better choice than BM-MSCs and USSCs for use in bone tissue engineering.
Collapse
Affiliation(s)
| | - Fatemeh Soleimanifar
- b Dietary Supplements and Probiotics Research Centre, Alborz University of Medical Sciences , Karaj , Iran
| | - Abdolreza Ardeshirylajimi
- c Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,d Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Saeid Vakilian
- e Laboratory for Stem Cell Research & Regenerative Medicine, Chair of Oman's Medicinal Plants & Marine Natural Products , University of Nizwa , Nizwa , Oman
| | | | | | - Arash Khojasteh
- d Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | | |
Collapse
|
21
|
Tu C, Xiao Y, Ma Y, Wu H, Song M. The legacy effects of electromagnetic fields on bone marrow mesenchymal stem cell self-renewal and multiple differentiation potential. Stem Cell Res Ther 2018; 9:215. [PMID: 30092831 PMCID: PMC6085613 DOI: 10.1186/s13287-018-0955-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023] Open
Abstract
Background The effects of electromagnetic fields (EMF) on bone nonunion have been reported for many years. Many studies and randomized controlled trials have demonstrated that EMF exhibited benefits in curing delayed union and nonunion of long bone fractures. Most of them focused on the immediate effects, while the legacy effects of EMF remain poorly investigated. Methods In this study, rat bone marrow mesenchymal stem cells (BMSCs) were treated with EMF, and after a period of time the BMSC proliferation and differentiation were detected. Additionally, BMSC sheets with or without EMF treatment were transplanted into the rat tibia fracture nonunion models. The bone formation was evaluated after 2, 4, and 6 weeks. Results Our results showed that the proliferation capacity of BMSCs was heightened after EMF pretreatment. Over a period of time of EMF pretreatment, the capacities of osteogenic and chondrogenic differentiation were enhanced, while adipogenic differentiation was weakened. BMSC sheets pretreated with EMF could better promote the healing of tibia fracture in rats, compared to BMSC sheets alone. Furthermore, significantly higher values of radiographic grading scores were observed in the EMF group. Conclusions EMF has lasting effects on the proliferation and differentiation of BMSCs, and together with cell sheet technology can provide a new method for the treatment of fracture nonunion.
Collapse
Affiliation(s)
- Chang Tu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yifan Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yongzhuang Ma
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Mingyu Song
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Tani A, Chellini F, Giannelli M, Nosi D, Zecchi-Orlandini S, Sassoli C. Red (635 nm), Near-Infrared (808 nm) and Violet-Blue (405 nm) Photobiomodulation Potentiality on Human Osteoblasts and Mesenchymal Stromal Cells: A Morphological and Molecular In Vitro Study. Int J Mol Sci 2018; 19:ijms19071946. [PMID: 29970828 PMCID: PMC6073131 DOI: 10.3390/ijms19071946] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/15/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Photobiomodulation (PBM) has been used for bone regenerative purposes in different fields of medicine and dentistry, but contradictory results demand a skeptical look for its potential benefits. This in vitro study compared PBM potentiality by red (635 ± 5 nm) or near-infrared (NIR, 808 ± 10 nm) diode lasers and violet-blue (405 ± 5 nm) light-emitting diode operating in a continuous wave with a 0.4 J/cm2 energy density, on human osteoblast and mesenchymal stromal cell (hMSC) viability, proliferation, adhesion and osteogenic differentiation. PBM treatments did not alter viability (PI/Syto16 and MTS assays). Confocal immunofluorescence and RT-PCR analyses indicated that red PBM (i) on both cell types increased vinculin-rich clusters, osteogenic markers expression (Runx-2, alkaline phosphatase, osteopontin) and mineralized bone-like nodule structure deposition and (ii) on hMSCs induced stress fiber formation and upregulated the expression of proliferation marker Ki67. Interestingly, osteoblast responses to red light were mediated by Akt signaling activation, which seems to positively modulate reactive oxygen species levels. Violet-blue light-irradiated cells behaved essentially as untreated ones and NIR irradiated ones displayed modifications of cytoskeleton assembly, Runx-2 expression and mineralization pattern. Although within the limitations of an in vitro experimentation, this study may suggest PBM with 635 nm laser as potential effective option for promoting/improving bone regeneration.
Collapse
Affiliation(s)
- Alessia Tani
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, via dell' Olivuzzo 162, 50143 Florence, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Sandra Zecchi-Orlandini
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine-Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
23
|
Xue M, Zhao R, Lin H, Jackson C. Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Adv Drug Deliv Rev 2018; 129:219-241. [PMID: 29567398 DOI: 10.1016/j.addr.2018.03.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
While wound therapy remains a clinical challenge in current medical practice, much effort has focused on developing biological therapeutic approaches. This paper presents a comprehensive review of delivery systems for current biologicals for the treatment of chronic wounds and severe burns. The biologicals discussed here include proteins such as growth factors and gene modifying molecules, which may be delivered to wounds free, encapsulated, or released from living systems (cells, skin grafts or skin equivalents) or biomaterials. Advances in biomaterial science and technologies have enabled the synthesis of delivery systems such as scaffolds, hydrogels and nanoparticles, designed to not only allow spatially and temporally controlled release of biologicals, but to also emulate the natural extracellular matrix microenvironment. These technologies represent an attractive field for regenerative wound therapy, by offering more personalised and effective treatments.
Collapse
|
24
|
Biology and Potential Use of Chicken Bone Marrow-derived Cells. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
25
|
Shear stress: An essential driver of endothelial progenitor cells. J Mol Cell Cardiol 2018; 118:46-69. [PMID: 29549046 DOI: 10.1016/j.yjmcc.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
The blood flow through vessels produces a tangential, or shear, stress sensed by their innermost layer (i.e., endothelium) and representing a major hemodynamic force. In humans, endothelial repair and blood vessel formation are mainly performed by circulating endothelial progenitor cells (EPCs) characterized by a considerable expression of vascular endothelial growth factor receptor 2 (VEGFR2), CD34, and CD133, pronounced tube formation activity in vitro, and strong reendothelialization or neovascularization capacity in vivo. EPCs have been proposed as a promising agent to induce reendothelialization of injured arteries, neovascularization of ischemic tissues, and endothelialization or vascularization of bioartificial constructs. A number of preconditioning approaches have been suggested to improve the regenerative potential of EPCs, including the use of biophysical stimuli such as shear stress. However, in spite of well-defined influence of shear stress on mature endothelial cells (ECs), articles summarizing how it affects EPCs are lacking. Here we discuss the impact of shear stress on homing, paracrine effects, and differentiation of EPCs. Unidirectional laminar shear stress significantly promotes homing of circulating EPCs to endothelial injury sites, induces anti-thrombotic and anti-atherosclerotic phenotype of EPCs, increases their capability to form capillary-like tubes in vitro, and enhances differentiation of EPCs into mature ECs in a dose-dependent manner. These effects are mediated by VEGFR2, Tie2, Notch, and β1/3 integrin signaling and can be abrogated by means of complementary siRNA/shRNA or selective pharmacological inhibitors of the respective proteins. Although the testing of sheared EPCs for vascular tissue engineering or regenerative medicine applications is still an unaccomplished task, favorable effects of unidirectional laminar shear stress on EPCs suggest its usefulness for their preconditioning.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This review summarizes research on the physiological changes that occur with aging and the resulting effects on fracture healing. RECENT FINDINGS Aging affects the inflammatory response during fracture healing through senescence of the immune response and increased systemic pro-inflammatory status. Important cells of the inflammatory response, macrophages, T cells, mesenchymal stem cells, have demonstrated intrinsic age-related changes that could impact fracture healing. Additionally, vascularization and angiogenesis are impaired in fracture healing of the elderly. Finally, osteochondral cells and their progenitors demonstrate decreased activity and quantity within the callus. Age-related changes affect many of the biologic processes involved in fracture healing. However, the contributions of such changes do not fully explain the poorer healing outcomes and increased morbidity reported in elderly patients. Future research should address this gap in understanding in order to provide improved and more directed treatment options for the elderly population.
Collapse
Affiliation(s)
- Dan Clark
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Ave., San Francisco, CA, 94143, USA
- Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital and Trauma Center, 2550 23rd St, Building 9, San Francisco, CA, 94110, USA
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of California at San Francisco, 513 Parnassus Ave., Rm. S-619A, San Francisco, CA, 94143, USA
| | - Mary Nakamura
- Department of Medicine, University of California at San Francisco, San Francisco, CA, 94143-0451, USA
- Department of Pathology, VA Medical Center, University of California San Francisco & Pathology Service, San Francisco, CA, 94121, USA
| | - Ted Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Ave., San Francisco, CA, 94143, USA
- Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital and Trauma Center, 2550 23rd St, Building 9, San Francisco, CA, 94110, USA
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Ave., San Francisco, CA, 94143, USA.
- Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital and Trauma Center, 2550 23rd St, Building 9, San Francisco, CA, 94110, USA.
| |
Collapse
|
27
|
Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. J Funct Biomater 2017; 8:jfb8040049. [PMID: 29156629 PMCID: PMC5748556 DOI: 10.3390/jfb8040049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023] Open
Abstract
Engineering craniofacial bone tissues is challenging due to their complex structures. Current standard autografts and allografts have many drawbacks for craniofacial bone tissue reconstruction; including donor site morbidity and the ability to reinstate the aesthetic characteristics of the host tissue. To overcome these problems; tissue engineering and regenerative medicine strategies have been developed as a potential way to reconstruct damaged bone tissue. Different types of new biomaterials; including natural polymers; synthetic polymers and bioceramics; have emerged to treat these damaged craniofacial bone tissues in the form of injectable and non-injectable scaffolds; which are examined in this review. Injectable scaffolds can be considered a better approach to craniofacial tissue engineering as they can be inserted with minimally invasive surgery; thus protecting the aesthetic characteristics. In this review; we also focus on recent research innovations with different types of stem-cell sources harvested from oral tissue and growth factors used to develop craniofacial bone tissue-engineering strategies.
Collapse
|
28
|
Nwabo Kamdje AH, Kamga PT, Simo RT, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Goel RK, Amvene JM, Krampera M. Mesenchymal stromal cells' role in tumor microenvironment: involvement of signaling pathways. Cancer Biol Med 2017; 14:129-141. [PMID: 28607804 PMCID: PMC5444925 DOI: 10.20892/j.issn.2095-3941.2016.0033] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are adult multipotent stem cells residing as pericytes in various tissues and organs where they can differentiate into specialized cells to replace dying cells and damaged tissues. These cells are commonly found at injury sites and in tumors that are known to behave like " wounds that do not heal." In this article, we discuss the mechanisms of MSCs in migrating, homing, and repairing injured tissues. We also review a number of reports showing that tumor microenvironment triggers plasticity mechanisms in MSCs to induce malignant neoplastic tissue formation, maintenance, and chemoresistance, as well as tumor growth. The antitumor properties and therapeutic potential of MSCs are also discussed.
Collapse
Affiliation(s)
| | - Paul Takam Kamga
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | | | - Jean Marc Muller
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Giulio Bassi
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Erique Lukong
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Raghuveera Kumar Goel
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Jeremie Mbo Amvene
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Mauro Krampera
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| |
Collapse
|
29
|
Kuznetsova D, Ageykin A, Koroleva A, Deiwick A, Shpichka A, Solovieva A, Kostjuk S, Meleshina A, Rodimova S, Akovanceva A, Butnaru D, Frolova A, Zagaynova E, Chichkov B, Bagratashvili V, Timashev P. Surface micromorphology of cross-linked tetrafunctional polylactide scaffolds inducing vessel growth and bone formation. Biofabrication 2017; 9:025009. [PMID: 28300041 DOI: 10.1088/1758-5090/aa6725] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the presented study, we have developed a synthetic strategy allowing a gradual variation of a polylactide arms' length, which later influences the micromorphology of the scaffold surface, formed by a two-photon polymerization technique. It has been demonstrated that the highest number of cells is present on the scaffolds with the roughest surface made of the polylactide with longer arms (PLA760), and osteogenic differentiation of mesenchymal stem cells is most pronounced on such scaffolds. According to the results of biological testing, the PLA760 scaffolds were implanted into a created cranial defect in a mouse for an in vivo assessment of the bone tissue formation. The in vivo experiments have shown that, by week 10, deposition of calcium phosphate particles occurs in the scaffold at the defect site, as well as, the formation of a new bone and ingrowth of blood vessels from the surrounding tissues. These results demonstrate that the cross-linked microstructured tetrafunctional polylactide scaffolds are promising microstructures for bone regeneration in tissue engineering.
Collapse
Affiliation(s)
- D Kuznetsova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Nizhny Novgorod, 603005, Russia. Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shen L, Zhang P, Zhang S, Xie L, Yao L, Lang W, Lian J, Qin W, Zhang M, Ji L. C-X-C motif chemokine ligand 8 promotes endothelial cell homing via the Akt-signal transducer and activator of transcription pathway to accelerate healing of ischemic and hypoxic skin ulcers. Exp Ther Med 2017; 13:3021-3031. [PMID: 28587375 DOI: 10.3892/etm.2017.4305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
C-X-C motif chemokine ligand 8 (CXCL-8) promotes cell homing and angiogenesis. However, under hypoxic conditions, the role of CXCL-8 in the homing of human umbilical vein endothelial cells (HUVECs), and its effect on the healing of skin ulcers caused by ischemia and hypoxia remain unknown. In the current study, assays measuring cell proliferation, in vitro angiogenesis and cell migration were performed to evaluate alterations in the proliferation, angiogenic capacity and chemotaxis of HUVECs treated with CXCL-8 protein and/or an Akt inhibitor (AZD5363 group) under hypoxic conditions. Changes in the levels of Akt, signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor (VEGF), malondialdehyde (MDA) and total-superoxide dismutase (total-SOD) were also detected by western blotting and ELISA. In addition, in vivo experiments were performed using a skin ulcer model in mice. Ischemic and hypoxic skin ulcers were created on the thighs of C57BL/6J mice, and the effects of CXCL-8 and HUVEC transplantation on the healing capacity of skin ulcers was determined by injecting mice with HUVECs and/or CXCL-8 recombinant protein (CXCL-8, HUVEC and HUVEC + CXCL-8 groups). Vascular endothelial cell homing, changes in vascular density and the expression of VEGF, SOD, EGF and MDA within the ulcer tissue were subsequently measured. In vitro experiments demonstrated that HUVEC proliferation, migration and tube forming capacity were significantly increased by CXCL-8 under hypoxic conditions. Additionally, levels of VEGF, MDA and SOD were significantly higher in the CXCL-8 group, though were significantly decreased by the Akt and STAT3 inhibitors. In vivo experiments demonstrated that the expression of VEGF, total-SOD and EGF proteins were higher in the skin ulcer tissue of mice treated with CXCL-8 + HUVEC, relative to mice treated with HUVECs alone. Furthermore, vascular endothelial cell homing and vascular density were significantly increased in the CXCL-8 + HUVEC group, indicating that combined use of HUVECs and CXCL-8 may promote the healing of ischemic skin ulcers. The present results demonstrate that CXCL-8 may stimulate vascular endothelial cells to secrete VEGF, SOD and other cytokines via the Akt-STAT3 pathway, which in turn serves a key regulatory role in the recruitment of vascular endothelial cells, reduction of hypoxia-related injury and promotion of tissue repair following hypoxic/ischemic injury.
Collapse
Affiliation(s)
- Lei Shen
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Peng Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shanqiang Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liping Xie
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lijie Yao
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Weiya Lang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Jie Lian
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wei Qin
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Meng Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liang Ji
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
31
|
Du X, Huang F, Zhang S, Yao Y, Chen Y, Chen Y, Huang H, Bai B. Carboxymethylcellulose with phenolic hydroxyl microcapsules enclosinggene-modified BMSCs for controlled BMP-2 release in vitro. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1710-1720. [PMID: 28129696 DOI: 10.1080/21691401.2017.1282499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiufan Du
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Fangli Huang
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Shujiang Zhang
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Yongchang Yao
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Yi Chen
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Yushu Chen
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Hongxuan Huang
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Bo Bai
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| |
Collapse
|
32
|
Hong GH, Kwon HS, Lee KY, Ha EH, Moon KA, Kim SW, Oh W, Kim TB, Moon HB, Cho YS. hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Exp Mol Med 2017; 49:e288. [PMID: 28127050 PMCID: PMC5291839 DOI: 10.1038/emm.2016.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Although chronic eosinophilic inflammation is a common feature in patients with asthma, some patients have neutrophil-dominant inflammation, which is known to be associated with severe asthma.Human mesenchymal stem cells (hMSCs) have shown promise in treating various refractory immunological diseases. Thus, hMSCs may represent an alternative therapeutic option for asthma patients with neutrophil-dominant inflammation, in whom current treatments are ineffective. BALB/c mice exposed to ovalbumin and polyinosinic:polycytidylic acid (Poly I:C) to induce neutrophilic airway inflammation were systemically treated with hMSCs to examine whether the hMSCs can modulate neutrophilic airway inflammation. In addition, cytokine production was evaluated in co-cultures of hMSCs with either anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) obtained from asthmatic patients or cells of the human bronchial epithelial cell line BEAS-2B to assess the response to hMSC treatment. The total number of immune cells in bronchoalveolar lavage fluid (BALF) showed a dramatic decrease in hMSC-treated asthmatic mice, and, in particular, neutrophilic infiltration was significantly attenuated. This phenomenon was accompanied by reduced CXCL15 production in the BALF. BEAS-2B cells co-cultured with hMSCs showed reduced secretion of IL-8. Moreover, decreased secretion of IL-4, IL-13 and IFN-γ was observed when human PBMCs were cultured with hMSCs, whereas IL-10 production was greatly enhanced. Our data imply that hMSCs may have a role in reducing neutrophilic airway inflammation by downregulating neutrophil chemokine production and modulating T-cell responses.
Collapse
Affiliation(s)
- Gyong Hwa Hong
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyoung Young Lee
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Hee Ha
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Keun-Ai Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, ASAN Medical Center, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co. Ltd, Gyeonggi-do, Korea
| | - Tae-Bum Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Bom Moon
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|