1
|
Baas L, van der Graaf R, Meijer K. Can hemophilia be cured? It depends on the definition. Res Pract Thromb Haemost 2024; 8:102559. [PMID: 39391560 PMCID: PMC11466600 DOI: 10.1016/j.rpth.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
Over the years, the palette of treatment options for hemophilia has grown extensively, leading to an increased life expectancy and quality of life for people living with hemophilia. Nonetheless, it is frequently emphasized that none of the current treatment modalities provides a "cure." It is therefore hoped that innovative treatments such as gene therapy may bridge this void. However, the precise definition of a "cure" for hemophilia remains unclear. In this review, we show how the concept of cure is currently used in the field of hemophilia. We then relate the discussion on cure to debates surrounding the classification of hemophilia and philosophical debates on the concepts of health and disease.
Collapse
Affiliation(s)
- Lieke Baas
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rieke van der Graaf
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Karina Meijer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Ohkubo YZ, Madsen JJ. Uncovering Membrane-Bound Models of Coagulation Factors by Combined Experimental and Computational Approaches. Thromb Haemost 2021; 121:1122-1137. [PMID: 34214998 PMCID: PMC8432591 DOI: 10.1055/s-0040-1722187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the life sciences, including hemostasis and thrombosis, methods of structural biology have become indispensable tools for shedding light on underlying mechanisms that govern complex biological processes. Advancements of the relatively young field of computational biology have matured to a point where it is increasingly recognized as trustworthy and useful, in part due to their high space–time resolution that is unparalleled by most experimental techniques to date. In concert with biochemical and biophysical approaches, computational studies have therefore proven time and again in recent years to be key assets in building or suggesting structural models for membrane-bound forms of coagulation factors and their supramolecular complexes on membrane surfaces where they are activated. Such endeavors and the proposed models arising from them are of fundamental importance in describing and understanding the molecular basis of hemostasis under both health and disease conditions. We summarize the body of work done in this important area of research to drive forward both experimental and computational studies toward new discoveries and potential future therapeutic strategies.
Collapse
Affiliation(s)
- Y Zenmei Ohkubo
- Department of Bioinformatics, School of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
| | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
3
|
Shah AA, Khan YD. Identification of 4-carboxyglutamate residue sites based on position based statistical feature and multiple classification. Sci Rep 2020; 10:16913. [PMID: 33037248 PMCID: PMC7547663 DOI: 10.1038/s41598-020-73107-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/20/2020] [Indexed: 11/08/2022] Open
Abstract
Glutamic acid is an alpha-amino acid used by all living beings in protein biosynthesis. One of the important glutamic acid modifications is post-translationally modified 4-carboxyglutamate. It has a significant role in blood coagulation. 4-carboxyglumates are required for the binding of calcium ions. On the contrary, this modification can also cause different diseases such as bone resorption, osteoporosis, papilloma, and plaque atherosclerosis. Considering its importance, it is necessary to predict the occurrence of glutamic acid carboxylation in amino acid stretches. As there is no computational based prediction model available to identify 4-carboxyglutamate modification, this study is, therefore, designed to predict 4-carboxyglutamate sites with a less computational cost. A machine learning model is devised with a Multilayered Perceptron (MLP) classifier using Chou's 5-step rule. It may help in learning statistical moments and based on this learning, the prediction is to be made accurately either it is 4-carboxyglutamate residue site or detected residue site having no 4-carboxyglutamate. Prediction accuracy of the proposed model is 94% using an independent set test, while obtained prediction accuracy is 99% by self-consistency tests.
Collapse
Affiliation(s)
- Asghar Ali Shah
- Department of Computer Sciences, Bahria University Lahore Campus, Lahore, 25000, Pakistan.
| | | |
Collapse
|
4
|
Gao W, Xu Y, Liu H, Gao M, Cao Q, Wang Y, Cui L, Huang R, Shen Y, Li S, Yang H, Chen Y, Li C, Yu H, Li W, Shen G. Characterization of missense mutations in the signal peptide and propeptide of FIX in hemophilia B by a cell-based assay. Blood Adv 2020; 4:3659-3667. [PMID: 32766856 PMCID: PMC7422117 DOI: 10.1182/bloodadvances.2020002520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Many mutations in the signal peptide and propeptide of factor IX (FIX) cause hemophilia B. A FIX variants database reports 28 unique missense mutations in these regions that lead to FIX deficiency, but the underlying mechanism is known only for the mutations on R43 that interfere with propeptide cleavage. It remains unclear how other mutations result in FIX deficiency and why patients carrying the same mutation have different bleeding tendencies. Here, we modify a cell-based reporter assay to characterize the missense mutations in the signal peptide and propeptide of FIX. The results show that the level of secreted conformation-specific reporter (SCSR), which has a functional γ-carboxyglutamate (Gla) domain of FIX, decreases significantly in most mutations. The decreased SCSR level is consistent with FIX deficiency in hemophilia B patients. Moreover, we find that the decrease in the SCSR level is caused by several distinct mechanisms, including interfering with cotranslational translocation into the endoplasmic reticulum, protein secretion, γ-carboxylation of the Gla domain, and cleavage of the signal peptide or propeptide. Importantly, our results also show that the SCSR levels of most signal peptide and propeptide mutations increase with vitamin K concentration, suggesting that the heterogeneity of bleeding tendencies may be related to vitamin K levels in the body. Thus, oral administration of vitamin K may alleviate the severity of bleeding tendencies in patients with missense mutations in the FIX signal peptide and propeptide regions.
Collapse
Affiliation(s)
- Wenwen Gao
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Yaqi Xu
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Hongli Liu
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Meng Gao
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Qing Cao
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Yiyi Wang
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Longteng Cui
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Rong Huang
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Yan Shen
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Sanqiang Li
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Haiping Yang
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
- First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yixiang Chen
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| | - Chaokun Li
- Sino-UK Joint Laboratory for Brain Function and Injury, School of Basic Medical Sciences, and
| | - Haichuan Yu
- Department of Biochemistry and Molecular Biology, School of Medical Laboratory, Xinxiang Medical University, Xinxiang, People's Republic of China; and
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Guomin Shen
- Department of Medical Genetics, Institute of Hemostasis and Thrombosis, School of Basic Medical Sciences, and
| |
Collapse
|
5
|
Liras A, Romeu L. Dental management of patients with haemophilia in the era of recombinant treatments: increased efficacy and decreased clinical risk. BMJ Case Rep 2019; 12:e227974. [PMID: 30962210 PMCID: PMC6453434 DOI: 10.1136/bcr-2018-227974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 01/19/2023] Open
Abstract
Haemophilia is a hereditary X-linked recessive disorder caused by a deficiency of either clotting factor VIII (haemophilia A) or IX (haemophilia B). Conventional treatment is currently based on the use of either plasma derived or recombinant coagulation factors. This paper reports on the case of a patient with severe haemophilia who presented with mesial decay and interproximal tartar build-up, for which extraction and scaling to remove tartar deposits were indicated. Following extraction, the usual haemostasis techniques were applied, and postoperative prophylactic antihaemophilic treatment was indicated for 2 or 3 days. The patient presented with moderate bleeding for a few minutes immediately after the procedure. Administration of factor VIII before surgery as well as the patient's favourable pharmacokinetic response allowed for an optimal result. This treatment has afforded patients with haemophilia a better quality of life, and safe and efficient access to invasive surgical procedures.
Collapse
Affiliation(s)
| | - Luis Romeu
- Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Wagner AM, Gran MP, Peppas NA. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm Sin B 2018; 8:147-164. [PMID: 29719776 PMCID: PMC5925450 DOI: 10.1016/j.apsb.2018.01.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic proteins and peptides have revolutionized treatment for a number of diseases, and the expected increase in macromolecule-based therapies brings a new set of challenges for the pharmaceutics field. Due to their poor stability, large molecular weight, and poor transport properties, therapeutic proteins and peptides are predominantly limited to parenteral administration. The short serum half-lives typically require frequent injections to maintain an effective dose, and patient compliance is a growing issue as therapeutic protein treatments become more widely available. A number of studies have underscored the relationship of subcutaneous injections with patient non-adherence, estimating that over half of insulin-dependent adults intentionally skip injections. The development of oral formulations has the potential to address some issues associated with non-adherence including the interference with daily activities, embarrassment, and injection pain. Oral delivery can also help to eliminate the adverse effects and scar tissue buildup associated with repeated injections. However, there are several major challenges associated with oral delivery of proteins and peptides, such as the instability in the gastrointestinal (GI) tract, low permeability, and a narrow absorption window in the intestine. This review provides a detailed overview of the oral delivery route and associated challenges. Recent advances in formulation and drug delivery technologies to enhance bioavailability are discussed, including the co-administration of compounds to alter conditions in the GI tract, the modification of the macromolecule physicochemical properties, and the use of improved targeted and controlled release carriers.
Collapse
Affiliation(s)
- Angela M. Wagner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Margaret P. Gran
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
- Corresponding author at: McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA. Tel.: +1 512 471 6644; fax: +1 512 471 8227.
| |
Collapse
|