1
|
Kim E, Khan MS, Shin J, Huang S, Ferrari A, Han D, An E, Kenniston TW, Cassaniti I, Baldanti F, Jeong D, Gambotto A. Long-term Immunity of a Microneedle Array Patch of SARS-CoV-2 S1 Protein Subunit Vaccine Irradiated by Gamma Rays in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620289. [PMID: 39484497 PMCID: PMC11527120 DOI: 10.1101/2024.10.25.620289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
COVID-19 vaccines effectively prevent symptomatic infection and severe disease, including hospitalization and death. However, unequal vaccine distribution during the pandemic, especially in low- and middle-income countries, has led to the emergence of vaccine-resistant strains. This underscores the need for alternative, safe, and thermostable vaccine platforms, such as dissolved microneedle array patches (MAP) delivering a subunit vaccine, which eliminate the need for cold chain and trained healthcare personnel. This study demonstrates that the SARS-CoV-2 S1 monomer with RS09, a TLR-4 agonist peptide, serves as an optimal protein subunit immunogen. This combination stimulates a stronger S1-specific immune response, resulting in binding to the membrane-bound spike on the cell surface and ACE2-binding inhibition, compared to the monomer S1 alone or trimer S1, regardless of RS09. MAP delivery of the rS1RS09 subunit vaccine elicited higher and longer-lasting immunity compared to conventional intramuscular injection. S1-specific IgG levels remained significantly elevated for up to 70 weeks post-administration. Additionally, different doses of 5, 15, and 45 μ g of MAP vaccines induced robust and sustained Th2-prevalent immune responses, suggesting a dose-sparing effect and inducing significantly high neutralizing antibodies against the Wuhan, Delta, and Omicron variants at 15 and 45 μ g dose. Moreover, gamma irradiation as a terminal sterilization method did not significantly affect immunogenicity, with irradiated vaccines maintaining comparable efficacy to non-irradiated ones. The stability of MAP vaccines was evaluated after long-term storage at room temperature and refrigeration for 19 months, showing minimal protein degradation. Further, after an additional one-month of storage at elevated temperature (42°C), rS1RS09 in both non-irradiated and irradiated MAP degraded less than 3%, while the liquid subunit vaccine degraded over 23%. Overall, these results indicate that gamma irradiation sterilized MAP-rS1RS09 vaccines maintain stability during extended storage without refrigeration, supporting their potential for mass production and widespread use in global vaccination efforts.
Collapse
|
2
|
Umar QUA, Khan MI, Ahmad Z, Akhtar MF, Sohail MF, Madni A, Erum A, Ayesha B, Ain QU, Mushtaq A. Dissolving Microneedles Patch: A Promising Approach for Advancing Transdermal Delivery of Antischizophrenic Drug. J Pharm Sci 2024; 113:3078-3087. [PMID: 39154735 DOI: 10.1016/j.xphs.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE Microneedles (MNs) are minimally invasive transdermal drug delivery systems capable of penetrating the stratum corneum to overcome the barrier properties. The primary objective of this research was to prepare dissolving microneedle patches (DMNP) loaded with quetiapine (QTP). METHODS DMNP were fabricated employing the solvent casting technique, utilizing various polymer feed ratios including polyvinyl alcohol (PVA), polyvinylpyrrolidone K30 (PVP-K30), and polylactide-co-glycolide (PLGA) polymers. The loaded DMNP with QTP underwent a comprehensive characterization process encompassing assessments for compatibility, thickness, insertion potential, morphology, thermal behavior, X-ray diffraction, ex-vivo permeation, skin irritation, and histopathological changes. RESULTS FTIR studies confirmed the compatibility of QTP with the microneedle patch composites. The thickness of the drug-loaded DMNP ranged from 0.67 mm to 0.97 mm. These microneedles exhibited an impressive penetration depth of 480 μm, with over 80% of the needles maintaining their original shape after piercing Parafilm-M. SEM analysis of the optimized DMNP-2 revealed the formation of sharp-tipped and uniformly surfaced needles, measuring 570 μm in length. Remarkably, the microneedles did not elicit any signs of irritation upon application of the prepared DMNP. The DMNP-2 showcased an impressive cumulative ex-vivo permeation of QTP, reaching 17.82 µg/cm2/hr. Additionally, histopathological assessment of vital organs in rabbits attested to the safety profile of the formulated microneedle patches. CONCLUSIONS In conclusion, the developed microneedle patch represents a promising strategy for enhancing the transdermal delivery of QTP. This innovative approach has the potential to increase patient compliance, offering a more efficient and patient-friendly method of administering QTP.
Collapse
Affiliation(s)
- Qurat-Ul-Ain Umar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan.
| | - Zulcaif Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | | | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Alia Erum
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Badarqatul Ayesha
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Qurat Ul Ain
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Lahore, Pakistan
| | - Aamir Mushtaq
- Department of Pharmaceutical Sciences, Government College University Lahore, Pakistan
| |
Collapse
|
3
|
Lv JY, Ingle RG, Wu H, Liu C, Fang WJ. Histidine as a versatile excipient in the protein-based biopharmaceutical formulations. Int J Pharm 2024; 662:124472. [PMID: 39013532 DOI: 10.1016/j.ijpharm.2024.124472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Adequate stabilization is essential for marketed protein-based biopharmaceutical formulations to withstand the various stresses that can be exerted during the pre- and post-manufacturing processes. Therefore, a suitable choice of excipient is a significant step in the manufacturing of such delicate products. Histidine, an essential amino acid, has been extensively used in protein-based biopharmaceutical formulations. The physicochemical properties of histidine are unique among amino acids and could afford multifaceted benefits to protein-based biopharmaceutical formulations. With a pKa of approximately 6.0 at the side chain, histidine has been primarily used as a buffering agent, especially for pH 5.5-6.5. Additionally, histidine exhibited several affirmative properties similar to those of carbohydrates (e.g., sucrose and trehalose) and could therefore be considered to be an alternative approach to established protein-based formulation strategies. The current review describes the general physicochemical properties of histidine, lists all commercial histidine-containing protein-based biopharmaceutical products, and discusses a brief outline of the existing research focused on the versatile applications of histidine, which can act as a buffering agent, stabilizer, cryo-/lyo-protectant, antioxidant, viscosity reducer, and solubilizing agent. The interaction between histidine and proteins in protein-based biopharmaceutical formulations, such as the Donnan effect during diafiltration of monoclonal antibody solutions and the degradation of polysorbates in histidine buffer, has also been discussed. As the first review of histidine in protein biopharmaceuticals, it helps to deepen our understanding of the opportunities and challenges associated with histidine as an excipient for protein-based biopharmaceutical formulations.
Collapse
Affiliation(s)
- Jia-Yi Lv
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taizhou Institute of Zhejiang University, Taizhou, Zhejiang 317000, China; School of Pharmaceutical Sciences, Xiamen University, 4221 Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rahul G Ingle
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education & Research (Deemed to University), Sawangi, Wardha, India
| | - Hao Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Cuihua Liu
- Bio-Thera Solutions, Ltd, Guangzhou, Guangdong 510530, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taizhou Institute of Zhejiang University, Taizhou, Zhejiang 317000, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
4
|
Ando D, Miyatsuji M, Sakoda H, Yamamoto E, Miyazaki T, Koide T, Sato Y, Izutsu KI. Mechanical Characterization of Dissolving Microneedles: Factors Affecting Physical Strength of Needles. Pharmaceutics 2024; 16:200. [PMID: 38399254 PMCID: PMC10893124 DOI: 10.3390/pharmaceutics16020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Dissolving microneedles (MNs) are novel transdermal drug delivery systems that can be painlessly self-administered. This study investigated the effects of experimental conditions on the mechanical characterization of dissolving MNs for quality evaluation. Micromolding was used to fabricate polyvinyl alcohol (PVA)-based dissolving MN patches with eight different cone-shaped geometries. Axial force mechanical characterization test conditions, in terms of compression speed and the number of compression needles per test, significantly affected the needle fracture force of dissolving MNs. Characterization using selected test conditions clearly showed differences in the needle fracture force of dissolving MNs prepared under various conditions. PVA-based MNs were divided into two groups that showed buckling and unbuckling deformation, which occurred at aspect ratios (needle height/base diameter) of 2.8 and 1.8, respectively. The needle fracture force of PVA-based MNs was negatively correlated with an increase in the needle's aspect ratio. Higher residual water or higher loading of lidocaine hydrochloride significantly decreased the needle fracture force. Therefore, setting appropriate methods and parameters for characterizing the mechanical properties of dissolving MNs should contribute to the development and supply of appropriate products.
Collapse
Affiliation(s)
- Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Megumi Miyatsuji
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Hideyuki Sakoda
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Eiichi Yamamoto
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Tamaki Miyazaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
- Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8501, Tochigi, Japan
| |
Collapse
|
5
|
Wan W, Li Y, Wang J, Jin Z, Xin W, Kang L, Wang J, Li X, Cao Y, Yang H, Wang J, Gao S. PLGA Nanoparticle-Based Dissolving Microneedle Vaccine of Clostridium perfringens ε Toxin. Toxins (Basel) 2023; 15:461. [PMID: 37505730 PMCID: PMC10467084 DOI: 10.3390/toxins15070461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Epsilon toxin (ETX) is an exotoxin produced by type B and D Clostridium perfringens that causes enterotoxemia or necrotic enteritis in animals such as goats, sheep, and cattle. Vaccination is a key method in preventing such diseases. In this study, we developed a new type of dissolving microneedle patch (dMN) with a nanoparticle adjuvant for enhanced immune response to deliver the rETXY196E-C protein vaccine. We chose FDA-approved poly(lactic-co-glycolic acid) (PLGA) to prepare nanospheres as the vaccine adjuvant and introduced dimethyldioctadecylammonium bromide (DDAB) to make the surface of PLGA nanoparticles (PLGA NPs) positively charged for antigen adsorption. PLGA NPs with a diameter of 100~200 nm, a surface ZETA potential of approximately +40 mV, and good safety were successfully prepared and could effectively adsorb rETXY196E-C protein. Using non-toxic and antibacterial fish gelatin as the microneedle (MN) matrix, we prepared a PLGA-DDAB dMN vaccine with good mechanical properties that successfully penetrated the skin. After immunization of subcutaneous (SC) and dMN, antibody titers of the PLGA and Al adjuvant groups were similar in both two immune ways. However, in vivo neutralization experiments showed that the dMN vaccines had a better protective effect. When challenged with 100 × LD50 GST-ETX, the survival rate of the MN group was 100%, while that of the SC Al group was 80%. However, a 100% protective effect was achieved in both immunization methods using PLGA NPs. In vitro neutralization experiments showed that the serum antibodies from the dMN and SC PLGA NPs groups both protect naive mice from 10 × LD50 GST-ETX attack after being diluted 20 times and could also protect MDCK cells from 20 × CT50 GST-ETX attack. In conclusion, the PLGA-DDAB dMN vaccine we prepared has good mechanical properties, immunogenicity, and protection, and can effectively prevent ETX poisoning. This provides a better way of delivering protein vaccines.
Collapse
Affiliation(s)
- Wei Wan
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Jing Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Zhiying Jin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Junhong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Xiaoyang Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yakun Cao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Hao Yang
- Beijing Noninvasion Biomedical Technology Co., Ltd., Beijing 101111, China;
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing 100071, China; (W.W.); (Y.L.); (J.W.); (Z.J.); (W.X.); (L.K.); (X.L.); (Y.C.)
| |
Collapse
|
6
|
Fathi-Karkan S, Heidarzadeh M, Narmi MT, Mardi N, Amini H, Saghati S, Abrbekoh FN, Saghebasl S, Rahbarghazi R, Khoshfetrat AB. Exosome-loaded microneedle patches: Promising factor delivery route. Int J Biol Macromol 2023:125232. [PMID: 37302628 DOI: 10.1016/j.ijbiomac.2023.125232] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/20/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
During the past decades, the advent of different microneedle patch (MNPs) systems paves the way for the targeted and efficient delivery of several growth factors into the injured sites. MNPs consist of several micro-sized (25-1500 μm) needle rows for painless delivery of incorporated therapeutics and increase of regenerative outcomes. Recent data have indicated the multifunctional potential of varied MNP types for clinical applications. Advances in the application of materials and fabrication processes enable researchers and clinicians to apply several MNP types for different purposes such as inflammatory conditions, ischemic disease, metabolic disorders, vaccination, etc. Exosomes (Exos) are one of the most interesting biological bioshuttles that participate in cell-to-cell paracrine interaction with the transfer of signaling biomolecules. These nano-sized particles, ranging from 50 to 150 nm, can exploit several mechanisms to enter the target cells and deliver their cargo into the cytosol. In recent years, both intact and engineered Exos have been increasingly used to accelerate the healing process and restore the function of injured organs. Considering the numerous benefits provided by MNPs, it is logical to hypothesize that the development of MNPs loaded with Exos provides an efficient therapeutic platform for the alleviation of several pathologies. In this review article, the authors collected recent advances in the application of MNP-loaded Exos for therapeutic purposes.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Morteza Heidarzadeh
- Koç University Research Center for Translational Medicine (KUTTAM), Rumeli Feneri, 34450 Sariyer, Istanbul, Turkey
| | | | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Saghebasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
7
|
McNamee M, Wong S, Guy O, Sharma S. Microneedle technology for potential SARS-CoV-2 vaccine delivery. Expert Opin Drug Deliv 2023:1-16. [PMID: 37128730 DOI: 10.1080/17425247.2023.2209718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Microneedle fabrication was conceptualised in the 1970s as devices for painless transdermal drug delivery. The last two decades have seen considerable research and financial investment in this area with SARS-CoV-2 and other vaccines catalysing their application to in vivo intradermal vaccine delivery. Microneedle arrays have been fabricated in different shapes, geometries, formats, and out of different materials. AREAS COVERED The recent pandemic has offered microneedle platforms the opportunity to be employed as a vehicle for SARS-CoV-2 vaccine administration. The various modes of vaccination delivery and the potential of microneedle arrays-based vaccines will be presented, with a specific focus placed on recent SARS-CoV-2 research. The advantages of microneedle-based vaccine administration, in addition to the major hurdles to their en masse implementation, will be examined. EXPERT OPINION Considering the widely acknowledged disadvantages of current vaccine delivery, such as anxiety, pain, and the requirement for professional administration, a large shift in this research sphere is imminent. The SARS-CoV-2 pandemic has catalysed the development of alternate vaccination platforms, working to avoid the requirement for mass vaccination centres. As microneedle vaccine patches are transitioning through clinical study phases, research will be required to ready this technology for a more mass production environment.
Collapse
Affiliation(s)
- Megan McNamee
- School of Engineering and Applied Sciences, Faculty of Science and Engineering , Fabian Way, Bay Campus, Swansea University, Swansea SA1 8EN, UK
| | - Shuyi Wong
- School of Engineering and Applied Sciences, Faculty of Science and Engineering , Fabian Way, Bay Campus, Swansea University, Swansea SA1 8EN, UK
| | - Owen Guy
- School of Engineering and Applied Sciences, Faculty of Science and Engineering , Fabian Way, Bay Campus, Swansea University, Swansea SA1 8EN, UK
| | - Sanjiv Sharma
- School of Engineering and Applied Sciences, Faculty of Science and Engineering , Fabian Way, Bay Campus, Swansea University, Swansea SA1 8EN, UK
| |
Collapse
|
8
|
Jiang L, Huang H, Shi X, Wu J, Ye J, Xu Q, Fang S, Wu C, Luo R, Lu C, Liu D. Biocontrol Microneedle Patch: A Promising Agent for Protecting Citrus Fruits from Postharvest Infection. Pharmaceutics 2023; 15:1219. [PMID: 37111704 PMCID: PMC10142349 DOI: 10.3390/pharmaceutics15041219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
With increasing human awareness of food safety, the replacement of highly toxic pesticides with biocompatible antimicrobials has become a trend. This study proposes a biocontrol microneedle (BMN) to expand the application of the food-grade preservative epsilon-poly-L-lysine (ε-PL) in fruit preservatives by utilizing a dissolving microneedle system. The macromolecular polymer ε-PL not only possesses broad-spectrum antimicrobial activity but also exhibits good mechanical properties. With the addition of a small amount of polyvinyl alcohol, the mechanical strength of the ε-PL-based microneedle patch could be further improved to achieve an enhanced failure force of needles at 1.6 N/needle and induce an approximately 96% insertion rate in citrus fruit pericarps. An ex vivo insertion test revealed that the microneedle tips could be effectively inserted into the citrus fruit pericarp, rapidly dissolve within 3 min, and produce inconspicuous needle holes. Moreover, the high drug loading capacity of BMN was observed to reach approximately 1890 μg/patch, which is essential for enhancing the concentration-dependent antifungal activity of ε-PL. The drug distribution study has confirmed the feasibility of mediating the local diffusion of EPL in the pericarp through BMN. Therefore, BMN has great potential to reduce the incidence of invasive fungal infections in local areas of citrus fruit pericarp.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Huan Huang
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Xingyu Shi
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Jian Wu
- Shantou Central Hospital, Shantou 515041, China
| | - Juexian Ye
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| | - Qian Xu
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Shaobin Fang
- The Second Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511436, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
9
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Kumar P, Bird C, Holland D, Joshi SB, Volkin DB. Current and next-generation formulation strategies for inactivated polio vaccines to lower costs, increase coverage, and facilitate polio eradication. Hum Vaccin Immunother 2022; 18:2154100. [PMID: 36576132 PMCID: PMC9891683 DOI: 10.1080/21645515.2022.2154100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
Implementation of inactivated polio vaccines (IPV) containing Sabin strains (sIPV) will further enable global polio eradication efforts by improving vaccine safety during use and containment during manufacturing. Moreover, sIPV-containing vaccines will lower costs and expand production capacity to facilitate more widespread use in low- and middle-income countries (LMICs). This review focuses on the role of vaccine formulation in these efforts including traditional Salk IPV vaccines and new sIPV-containing dosage forms. The physicochemical properties and stability profiles of poliovirus antigens are described. Formulation approaches to lower costs include developing multidose and combination vaccine formats as well as improving storage stability. Formulation strategies for dose-sparing and enhanced mucosal immunity include employing adjuvants (e.g. aluminum-salt and newer adjuvants) and/or novel delivery systems (e.g. ID administration with microneedle patches). The potential for applying these low-cost formulation development strategies to other vaccines to further improve vaccine access and coverage in LMICs is also discussed.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Christopher Bird
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - David Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
11
|
Özcan Bülbül E, Husseın HA, Yeğen G, Okur ME, Üstündağ Okur N, Aksu NB. Preparation and in vitro-in vivo evaluation of QbD based acemetacin loaded transdermal patch formulations for rheumatic diseases. Pharm Dev Technol 2022; 27:1016-1026. [PMID: 36583670 DOI: 10.1080/10837450.2022.2145308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This research aimed to develop patches for transdermal delivery of acemetacin, which can be used to treat rheumatic diseasesand to determine their potential use. Patches were successfully created by solvent casting method using hydroxypropyl methylcellulose, propylene glycol, polyethylene glycol 400, tween 80, and dimethyl sulfoxide. Prepared patches were found using the Design of Experiments (DoE) method within the Quality by Design (QbD) approach. F1-ACM with a thickness of 0.1 ± 0.0 cm, a weight of 43.33 ± 6.29 mg, pH of 4.99 ± 0.24, moisture content of 18.33 ± 2.98%, a tensile strength of 9.196 ± 0.441 Mpa, elongation at break of 28.722 ± 0.803% and drug content of 100% was chosen as ideal formulation. 89.7% of ACM from F1-ACM was released in 5 min. F1-ACM significantly (p < 0.05) increased the response latency to the thermal stimulus at 90th (3.071 ± 0.517) and 120th (3.87 ± 0.332) min in the hot plate test. In the tail-flick experiment, F1-ACM significantly (p < 0.05) increased the reaction delay against heat stimuli at 90th (3.016 ± 0.695), 120th (2.884 ± 0.851), and 180th (2.893 ± 0.932) min. F1-ACM patch significantly (p < 0.001) inhibited paw edema formation at 1, 2, 3, 4, and 5 h after induction of inflammation as compared to the control group. Therefore, this formulation can be employed more efficiently for rheumatic disease.
Collapse
Affiliation(s)
- Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Hasan Ali Husseın
- Department of Pharmaceutical Technology, School of Pharmacy, Altınbas University, Istanbul, Turkey
| | - Gizem Yeğen
- Department of Pharmaceutical Technology, School of Pharmacy, Altınbas University, Istanbul, Turkey
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Neşe Buket Aksu
- Department of Pharmaceutical Technology, School of Pharmacy, Altınbas University, Istanbul, Turkey
| |
Collapse
|
12
|
Liu S, Yang G, Li M, Sun F, Li Y, Wang X, Gao Y, Yang P. Transcutaneous immunization via dissolving microneedles protects mice from lethal influenza H7N9 virus challenge. Vaccine 2022; 40:6767-6775. [PMID: 36243592 DOI: 10.1016/j.vaccine.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
Avian influenza H7N9 virus has first emerged in 2013 and since then has spread in China in five seasonal waves. In humans, influenza H7N9 virus infection is associated with a high fatality rate; thus, an effective vaccine for this virus is needed. In the present study, we evaluated the usefulness of dissolving microneedles (MNs) loaded with influenza H7N9 vaccine in terms of the dissolution time, insertion capacity, insertion depth, and structural integrity of H7N9 virus in vitro. Our in vitro results showed MNs dissolved within 6 mins. The depth of skin penetration was 270 µm. After coating with a matrix material solution, the H7N9 proteins were agglomerated. We detected the H7N9 delivery time and humoral immune response in vivo. In a mouse model, the antigen retention time was longer for MNs than for intramuscular (IM) injection. The humoral response showed that similar to IM administration, MN administration increased the levels of functional and systematic antibodies and protection against the live influenza A/Anhui/01/2013 virus (Ah01/H7N9). The protection level was determined by the analysis of pathological sections of infected lungs. MN and IM administration yielded results superior to those in the control group. Taken together, these findings demonstrate that the use of dissolving MNs to deliver influenza H7N9 vaccines is a promising immunization approach.
Collapse
Affiliation(s)
- Siqi Liu
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China; Department of Rheumatology and Clinical Immunology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB Groningen, NL, the Netherlands
| | - Guozhong Yang
- Key Laboratory of Photo Chemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Minghui Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Fang Sun
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Yufeng Li
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China
| | - Xiliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yunhua Gao
- Key Laboratory of Photo Chemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Penghui Yang
- The First Medical Center of Chinese PLA General Hospital, Beijing 100835, China.
| |
Collapse
|
13
|
Application of microneedle-based vaccines in biosecurity. JOURNAL OF BIOSAFETY AND BIOSECURITY 2022. [DOI: 10.1016/j.jobb.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Hassan J, Haigh C, Ahmed T, Uddin MJ, Das DB. Potential of Microneedle Systems for COVID-19 Vaccination: Current Trends and Challenges. Pharmaceutics 2022; 14:1066. [PMID: 35631652 PMCID: PMC9144974 DOI: 10.3390/pharmaceutics14051066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
To prevent the coronavirus disease 2019 (COVID-19) pandemic and aid restoration to prepandemic normality, global mass vaccination is urgently needed. Inducing herd immunity through mass vaccination has proven to be a highly effective strategy for preventing the spread of many infectious diseases, which protects the most vulnerable population groups that are unable to develop immunity, such as people with immunodeficiencies or weakened immune systems due to underlying medical or debilitating conditions. In achieving global outreach, the maintenance of the vaccine potency, transportation, and needle waste generation become major issues. Moreover, needle phobia and vaccine hesitancy act as hurdles to successful mass vaccination. The use of dissolvable microneedles for COVID-19 vaccination could act as a major paradigm shift in attaining the desired goal to vaccinate billions in the shortest time possible. In addressing these points, we discuss the potential of the use of dissolvable microneedles for COVID-19 vaccination based on the current literature.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Charlotte Haigh
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| | - Tanvir Ahmed
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Md Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| |
Collapse
|
15
|
Yim SG, Hwang YH, An S, Seong KY, Kim SY, Kim S, Lee H, Lee KO, Kim MY, Kim D, Kim YJ, Yang SY. Low-Temperature Multiple Micro-Dispensing on Microneedles for Accurate Transcutaneous Smallpox Vaccination. Vaccines (Basel) 2022; 10:vaccines10040561. [PMID: 35455310 PMCID: PMC9024753 DOI: 10.3390/vaccines10040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/10/2022] Open
Abstract
Smallpox is an acute contagious disease caused by the variola virus. According to WHO guidelines, the smallpox vaccine is administrated by scarification into the epidermis using a bifurcated needle moistened with a vaccine solution. However, this invasive vaccination method involving multiple skin punctures requires a special technique to inoculate, as well as a cold chain for storage and distribution of vaccine solutions containing a live virus. Here, we report a transcutaneous smallpox vaccination using a live vaccinia-coated microneedle (MN) patch prepared by a low-temperature multiple nanoliter-level dispensing system, enabling accurate transdermal delivery of live vaccines and maintenance of bioactivity. The live vaccinia in hyaluronic acid (HA) solutions was selectively coated on the solid MN tips, and the coating amount of the vaccine was precisely controlled through a programmed multiple dispensing process with high accuracy under low temperature conditions (2–8 °C) for smallpox vaccination. Inoculation of mice (BALB/C mouse) with the MN patch coated with the second-generation smallpox vaccine increased the neutralizing antibody titer and T cell immune response. Interestingly, the live vaccine-coated MN patch maintained viral titers at −20 °C for 4 weeks and elevated temperature (37 °C) for 1 week, highlighting improved storage stability of the live virus formulated into coated MN patches. This coated MN platform using contact dispensing technique provides a simple and effective method for smallpox vaccination.
Collapse
Affiliation(s)
- Sang-Gu Yim
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (S.-G.Y.); (S.A.); (K.-Y.S.); (H.L.)
| | - Yun-Ho Hwang
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea; (Y.-H.H.); (S.Y.K.); (M.-Y.K.); (D.K.)
| | - Seonyeong An
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (S.-G.Y.); (S.A.); (K.-Y.S.); (H.L.)
| | - Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (S.-G.Y.); (S.A.); (K.-Y.S.); (H.L.)
| | - Seo-Yeon Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea; (Y.-H.H.); (S.Y.K.); (M.-Y.K.); (D.K.)
| | - Semin Kim
- SNVIA Co., Ltd., Hyowon Industry-Cooperation Building, Busan 46241, Korea; (S.K.); (K.-O.L.)
| | - Hyeseon Lee
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (S.-G.Y.); (S.A.); (K.-Y.S.); (H.L.)
| | - Kang-Oh Lee
- SNVIA Co., Ltd., Hyowon Industry-Cooperation Building, Busan 46241, Korea; (S.K.); (K.-O.L.)
| | - Mi-Young Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea; (Y.-H.H.); (S.Y.K.); (M.-Y.K.); (D.K.)
| | - Dokeun Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea; (Y.-H.H.); (S.Y.K.); (M.-Y.K.); (D.K.)
| | - You-Jin Kim
- Division of Infectious Disease Vaccine Research, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea; (Y.-H.H.); (S.Y.K.); (M.-Y.K.); (D.K.)
- Correspondence: (Y.-J.K.); (S.-Y.Y.)
| | - Seung-Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea; (S.-G.Y.); (S.A.); (K.-Y.S.); (H.L.)
- Correspondence: (Y.-J.K.); (S.-Y.Y.)
| |
Collapse
|
16
|
Kumar R, Srivastava V, Baindara P, Ahmad A. Thermostable vaccines: an innovative concept in vaccine development. Expert Rev Vaccines 2022; 21:811-824. [PMID: 35285366 DOI: 10.1080/14760584.2022.2053678] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Vaccines represent one of the most common and safer ways of combating infectious diseases. Loss of potency owing to thermal denaturation or degradation of almost all the commercially available vaccines necessitates their storage, transportation, and final dissemination under refrigerated or deep-freeze conditions. However, maintenance of a continuous cold chain at every step raises the cost of vaccines significantly. A large number of life-saving vaccines are discarded before their application owing to exposure to sub-optimum temperatures. Therefore, there is a pressing need for the development of a thermostable vaccine with a long shelf life at ambient temperature. AREAS COVERED A literature search was performed to compile a list of different vaccines, along with their storage and handling conditions. Similarly, a separate list was prepared for different coronavirus vaccines which are in use against coronavirus disease 2019. A literature survey was also performed to look at different approaches undertaken globally to address the issue of the cold-chain problem. We emphasised the importance of yeast cells in the development of thermostable vaccines. In the end, we discussed why thermostable vaccines are required, not only in resource-poor settings in Asian and African countries but also for resource-rich settings in Europe and North America. EXPERT OPINION : Temperature change can severely impact the stability of various life-saving vaccines. Therefore, there is a pressing need for the development of thermostable vaccines with a long shelf life at ambient temperature.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Obstetrics, Gynecology and Reproductive Science, University of California San Francisco, San Francisco 94143, California, USA
| | - Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Wits Medical School, Johannesburg 2193, South Africa
| | - Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia 65201, Missouri, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Wits Medical School, Johannesburg 2193, South Africa.,Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|
17
|
Microneedle patch as a new platform to effectively deliver inactivated polio vaccine and inactivated rotavirus vaccine. NPJ Vaccines 2022; 7:26. [PMID: 35228554 PMCID: PMC8885742 DOI: 10.1038/s41541-022-00443-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
We recently reported a lack of interference between inactivated rotavirus vaccine (IRV) and inactivated poliovirus vaccine (IPV) and their potential dose sparing when the two vaccines were administered intramuscularly either in combination or standalone in rats and guinea pigs. In the present study, we optimized the formulations of both vaccines and investigated the feasibility of manufacturing a combined IRV-IPV dissolving microneedle patch (dMNP), assessing its compatibility and immunogenicity in rats. Our results showed that IRV delivered by dMNP alone or in combination with IPV induced similar levels of RV-specific IgG and neutralizing antibody. Likewise, IPV delivered by dMNP alone or in combination with IRV induced comparable levels of neutralizing antibody of poliovirus types 1, 2, and 3. We further demonstrated high stability of IRV-dMNP at 5, 25, and 40 °C and IPV-dMNP at 5 and 25 °C, and found that three doses of IRV or IPV when co-administered at a quarter dose was as potent as a full target dose in inducing neutralizing antibodies against corresponding rotavirus or poliovirus. We conclude that IRV-IPV dMNP did not interfere with each other in triggering an immunologic response and were highly immunogenic in rats. Our findings support the further development of this innovative approach to deliver a novel combination vaccine against rotavirus and poliovirus in children throughout the world.
Collapse
|
18
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
19
|
Developing a Stabilizing Formulation of a Live Chimeric Dengue Virus Vaccine Dry Coated on a High-Density Microarray Patch. Vaccines (Basel) 2021; 9:vaccines9111301. [PMID: 34835234 PMCID: PMC8625757 DOI: 10.3390/vaccines9111301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative delivery systems such as the high-density microarray patch (HD-MAP) are being widely explored due to the variety of benefits they offer over traditional vaccine delivery methods. As vaccines are dry coated onto the HD-MAP, there is a need to ensure the stability of the vaccine in a solid state upon dry down. Other challenges faced are the structural stability during storage as a dried vaccine and during reconstitution upon application into the skin. Using a novel live chimeric virus vaccine candidate, BinJ/DENV2-prME, we explored a panel of pharmaceutical excipients to mitigate vaccine loss during the drying and storage process. This screening identified human serum albumin (HSA) as the lead stabilizing excipient. When bDENV2-coated HD-MAPs were stored at 4 °C for a month, we found complete retention of vaccine potency as assessed by the generation of potent virus-neutralizing antibody responses in mice. We also demonstrated that HD-MAP wear time did not influence vaccine deposition into the skin or the corresponding immunological outcomes. The final candidate formulation with HSA maintained ~100% percentage recovery after 6 months of storage at 4 °C.
Collapse
|
20
|
Li S, Xia D, Prausnitz MR. Efficient Drug Delivery into Skin Using a Biphasic Dissolvable Microneedle Patch with Water-Insoluble Backing. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2103359. [PMID: 34744551 PMCID: PMC8570388 DOI: 10.1002/adfm.202103359] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Dissolvable microneedle patches (MNPs) enable simplified delivery of therapeutics via the skin. However, most dissolvable MNPs do not deliver their full drug loading to the skin because only some of the drug is localized in the microneedles (MNs), and the rest remains adhered to the patch backing after removal from the skin. In this work, biphasic dissolvable MNPs are developed by mounting water-soluble MNs on a water-insoluble backing layer. These MNPs enable the drug to be contained in the MNs without migrating into the patch backing due to the inability of the drugs to partition into the hydrophobic backing materials during MNP fabrication. In addition, the insoluble backing is poorly wetted upon MN dissolution in the skin, which significantly reduces drug residue on the MNP backing surface after application. These effects enable a drug delivery efficiency of >90% from the MNPs into the skin 5 min after application. This study shows that the biphasic dissolvable MNPs can facilitate efficient drug delivery to the skin, which can improve the accuracy of drug dosing and reduce drug wastage.
Collapse
Affiliation(s)
- Song Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Dengning Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Polymeric microneedles for transdermal delivery of nanoparticles: Frontiers of formulation, sterility and stability aspects. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Bozorgi A, Fahimnia B. Micro array patch (MAP) for the delivery of thermostable vaccines in Australia: A cost/benefit analysis. Vaccine 2021; 39:6166-6173. [PMID: 34489130 DOI: 10.1016/j.vaccine.2021.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND It is anticipated that transforming the vaccine supply chain from syringe-and-needle to thermostable vaccines enabled by Micro Array Patch (MAP) will result in reduced supply chain costs as well as reduced wastes (environmental impact) and improved safety. This paper provides a thorough cost comparison of the conventional syringe-and-needle vaccine supply chain versus the MAP vaccine supply chain for influenza vaccine delivery in Australia. OBJECTIVE To determine the potential cost implications and general benefits of replacing syringe-and-needle flu vaccine with MAP-enabled thermostable flu vaccine in Australia. METHODS We first provide a snapshot of the existing flu vaccine supply chain in Australia including its limitations and opportunities for improvement. Data/information is collected through interviewing the key stakeholders across vaccine supply chain including vaccine manufacturers, logistics providers, clinics, hospitals, and pharmacies. A cost/benefit analysis of the anticipated supply chain of the MAP-enabled vaccine will reveal the opportunities and challenges of supply chain transformation for flu vaccine delivery in Australia. FINDINGS Our high-level practice-informed cost/benefit analysis identifies cold chain removal as an important source of cost saving, but administrative cost savings appear to be even more significant (e.g., time saving for nurses and those involved in cold chain management). Our analysis also identifies the key benefits and limitations of vaccine supply chain transformation in Australia. CONCLUSION We conclude that the benefits of moving from syringe-and-needle vaccines to thermostable MAP-delivered vaccines are beyond transportation and storage cost saving. Potential benefits through cost saving, waste reduction, and service level improvement are discussed along with various safety and wellbeing consequences as well as directions for future research in this area.
Collapse
Affiliation(s)
- Ali Bozorgi
- Institute of Transport and Logistics Studies, The University of Sydney Business School, Sydney, Australia.
| | - Behnam Fahimnia
- Institute of Transport and Logistics Studies, The University of Sydney Business School, Sydney, Australia.
| |
Collapse
|
23
|
Bozorgi A, Fahimnia B. Transforming the vaccine supply chain in Australia: Opportunities and challenges. Vaccine 2021; 39:6157-6165. [PMID: 34489129 DOI: 10.1016/j.vaccine.2021.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Analyzing potential benefits of thermostable vaccines delivered through Micro Array Patch (MAP) has received great attention in low and middle-income countries. The experience may or may not be the same in developed countries where the infrastructure is more developed. It is anticipated that transforming the vaccine supply chain from syringe-and-needle to thermostable MAP-delivered vaccines will result in reduced supply chain costs - including manufacturing/supply, logistics/distribution, and administration costs - as well as reduced wastes and improved safety. This paper provides an end-to-end supply chain analysis comparing the key aspects (cost, safety and environmental aspects) of the conventional syringe-and-needle vaccine supply chain with those of the MAP vaccine supply chain for influenza vaccine delivery in Australia. Directions for future research in this area will be provided. OBJECTIVE To determine the potential supply chain impacts of replacing syringe-and-needle flu vaccine with MAP-enabled thermostable flu vaccine in Australia. METHODS We analyze the current flu vaccine supply chain in Australia to identify practical limitations and opportunities for improvement. Data/information is collected through interviewing the key stakeholders across vaccine supply chain including vaccine manufacturers, logistics providers, clinics, hospitals, and pharmacies. FINDINGS A detailed practice-informed analysis is completed on the key operations of the flu vaccine supply chain. Barriers and limitations of the conventional flu vaccine are discussed, along with potential improvements that can be achieved through the implementation of MAP-enabled flu vaccine delivery. We discuss how technology-driven innovations can help advance vaccine supply chains, improve vaccine visibility, reduce wastes, and enable informed decision-making. CONCLUSION We find that the benefits of moving from syringe-and-needle vaccines to thermostable MAP-delivered vaccines are beyond transportation and storage cost saving. Potential benefits through cost saving, waste reduction, and service level improvement are discussed along with various safety and wellbeing consequences followed by directions for future research in this area.
Collapse
Affiliation(s)
- Ali Bozorgi
- Institute of Transport and Logistics Studies, The University of Sydney Business School, Sydney, Australia.
| | - Behnam Fahimnia
- Institute of Transport and Logistics Studies, The University of Sydney Business School, Sydney, Australia.
| |
Collapse
|
24
|
Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. Proc Natl Acad Sci U S A 2021; 118:2102595118. [PMID: 34551974 PMCID: PMC8488660 DOI: 10.1073/pnas.2102595118] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 01/08/2023] Open
Abstract
Vaccination is an essential public health measure for infectious disease prevention. The exposure of the immune system to vaccine formulations with the appropriate kinetics is critical for inducing protective immunity. In this work, faceted microneedle arrays were designed and fabricated utilizing a three-dimensional (3D)-printing technique called continuous liquid interface production (CLIP). The faceted microneedle design resulted in increased surface area as compared with the smooth square pyramidal design, ultimately leading to enhanced surface coating of model vaccine components (ovalbumin and CpG). Utilizing fluorescent tags and live-animal imaging, we evaluated in vivo cargo retention and bioavailability in mice as a function of route of delivery. Compared with subcutaneous bolus injection of the soluble components, microneedle transdermal delivery not only resulted in enhanced cargo retention in the skin but also improved immune cell activation in the draining lymph nodes. Furthermore, the microneedle vaccine induced a potent humoral immune response, with higher total IgG (Immunoglobulin G) and a more balanced IgG1/IgG2a repertoire and achieved dose sparing. Furthermore, it elicited T cell responses as characterized by functional cytotoxic CD8+ T cells and CD4+ T cells secreting Th1 (T helper type 1)-cytokines. Taken together, CLIP 3D-printed microneedles coated with vaccine components provide a useful platform for a noninvasive, self-applicable vaccination.
Collapse
|
25
|
Ando D, Miyazaki T, Yamamoto E, Koide T, Izutsu KI. Chemical imaging analysis of active pharmaceutical ingredient in dissolving microneedle arrays by Raman spectroscopy. Drug Deliv Transl Res 2021; 12:426-434. [PMID: 34431066 DOI: 10.1007/s13346-021-01052-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to develop a quality evaluation method for dissolving microneedle arrays (DMNAs) and determine the spatial distribution pattern of drugs in DMNAs. Raman spectroscopy mapping was used to visualize the drug distribution in DMNAs and drug-loaded polymer films as a model. Powder X-ray diffraction (PXRD) and high-pressure liquid chromatography were also performed to characterize DMNAs. Drug-loaded polymer films and DMNAs were prepared by drying the aqueous solutions spread on the plates or casting. PXRD analysis suggested the crystallization of diclofenac sodium (DCF) in several forms depending on its amount in the sodium hyaluronate (HA)-based films. The Raman spectra of HA and DCF showed characteristic and non-overlapping peaks at 1376 and 1579 cm-1 Raman shifts, respectively. The intensity of the characteristic peak of DCF in the DCF-loaded films increased linearly with the increasing drug content in the range of 4.8 to 16.7% (DCF, w/w). Raman imaging analysis revealed a homogenous dispersion of small DCF crystals in these films. Raman imaging indicates the distribution of DCF on the surface of the DMNA needle. This work highlights the benefit of using Raman spectroscopy mapping to reveal the spatial distribution of drugs in DMNAs.
Collapse
Affiliation(s)
- Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Tamaki Miyazaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Eiichi Yamamoto
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
26
|
Sully RE, Moore CJ, Garelick H, Loizidou E, Podoleanu AG, Gubala V. Nanomedicines and microneedles: a guide to their analysis and application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3326-3347. [PMID: 34313266 DOI: 10.1039/d1ay00954k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fast-advancing progress in the research of nanomedicine and microneedle applications in the past two decades has suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. They include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body's defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven't answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from the lab bench to a viable product difficult. Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of nanomaterials with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself, but crucially we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix.
Collapse
Affiliation(s)
- Rachel E Sully
- Medway School of Pharmacy, Universities of Greenwich and Kent, Anson Building, Central Avenue, Chatham, ME4 4TB, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Yadav PR, Munni MN, Campbell L, Mostofa G, Dobson L, Shittu M, Pattanayek SK, Uddin MJ, Das DB. Translation of Polymeric Microneedles for Treatment of Human Diseases: Recent Trends, Progress, and Challenges. Pharmaceutics 2021; 13:1132. [PMID: 34452093 PMCID: PMC8401662 DOI: 10.3390/pharmaceutics13081132] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
The ongoing search for biodegradable and biocompatible microneedles (MNs) that are strong enough to penetrate skin barriers, easy to prepare, and can be translated for clinical use continues. As such, this review paper is focused upon discussing the key points (e.g., choice polymeric MNs) for the translation of MNs from laboratory to clinical practice. The review reveals that polymers are most appropriately used for dissolvable and swellable MNs due to their wide range of tunable properties and that natural polymers are an ideal material choice as they structurally mimic native cellular environments. It has also been concluded that natural and synthetic polymer combinations are useful as polymers usually lack mechanical strength, stability, or other desired properties for the fabrication and insertion of MNs. This review evaluates fabrication methods and materials choice, disease and health conditions, clinical challenges, and the future of MNs in public healthcare services, focusing on literature from the last decade.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India;
| | | | - Lauryn Campbell
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Golam Mostofa
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
| | - Lewis Dobson
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | - Morayo Shittu
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| | | | - Md. Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (M.N.M.); (G.M.)
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK; (P.R.Y.); (L.C.); (L.D.); (M.S.)
| |
Collapse
|
28
|
Chumakov K, Ehrenfeld E, Agol VI, Wimmer E. Polio eradication at the crossroads. LANCET GLOBAL HEALTH 2021; 9:e1172-e1175. [PMID: 34118192 DOI: 10.1016/s2214-109x(21)00205-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022]
Abstract
The Global Polio Eradication Initiative, launched in 1988 with anticipated completion by 2000, has yet to reach its ultimate goal. The recent surge of polio cases urgently calls for a reassessment of the programme's current strategy and a new design for the way forward. We propose that the sustainable protection of the world population against paralytic polio cannot be achieved simply by stopping the circulation of poliovirus but must also include maintaining high rates of population immunity indefinitely, which can be created and maintained by implementing global immunisation programmes with improved poliovirus vaccines that create comprehensive immunity without spawning new virulent viruses. The proposed new strategic goal of eradicating the disease rather than the virus would lead to a sustainable eradication of poliomyelitis while simultaneously promoting immunisation against other vaccine-preventable diseases.
Collapse
Affiliation(s)
- Konstantin Chumakov
- Office of Vaccines Research and Review, Food and Drug Administration, Global Virus Network Center of Excellence, Silver Spring, MD, USA.
| | - Ellie Ehrenfeld
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Vadim I Agol
- MP Chumakov Center for Research and Development of Immunobiological Products, Moscow, Russia; AN Belozersky Institute of Physical-Chemical Biology, MV Lomonosov Moscow State University, Moscow, Russia
| | - Eckard Wimmer
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
29
|
O’Shea J, Prausnitz MR, Rouphael N. Dissolvable Microneedle Patches to Enable Increased Access to Vaccines against SARS-CoV-2 and Future Pandemic Outbreaks. Vaccines (Basel) 2021; 9:320. [PMID: 33915696 PMCID: PMC8066809 DOI: 10.3390/vaccines9040320] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/02/2023] Open
Abstract
Vaccines are an essential component of pandemic preparedness but can be limited due to challenges in production and logistical implementation. While vaccine candidates were rapidly developed against severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), immunization campaigns remain an obstacle to achieving herd immunity. Dissolvable microneedle patches are advantageous for many possible reasons: improved immunogenicity; dose-sparing effects; expected low manufacturing cost; elimination of sharps; reduction of vaccine wastage; no need for reconstitution; simplified supply chain, with reduction of cold chain supply through increased thermostability; ease of use, reducing the need for healthcare providers; and greater acceptability compared to traditional hypodermic injections. When applied to coronavirus disease 2019 (COVID-19) and future pandemic outbreaks, microneedle patches have great potential to improve vaccination globally and save many lives.
Collapse
Affiliation(s)
- Jesse O’Shea
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 500 Irvin Court, Suite 200, Decatur, Atlanta, GA 30030, USA;
| | - Mark R. Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 500 Irvin Court, Suite 200, Decatur, Atlanta, GA 30030, USA;
| |
Collapse
|
30
|
Sadeghi I, Byrne J, Shakur R, Langer R. Engineered drug delivery devices to address Global Health challenges. J Control Release 2021; 331:503-514. [PMID: 33516755 PMCID: PMC7842133 DOI: 10.1016/j.jconrel.2021.01.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
There is a dire need for innovative solutions to address global health needs. Polymeric systems have been shown to provide substantial benefit to all sectors of healthcare, especially for their ability to extend and control drug delivery. Herein, we review polymeric drug delivery devices for vaccines, tuberculosis, and contraception.
Collapse
Affiliation(s)
- Ilin Sadeghi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - James Byrne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Harvard Radiation Oncology Program, Boston, MA 02114, USA
| | - Rameen Shakur
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
GhavamiNejad A, Lu B, Samarikhalaj M, Liu JF, Mirzaie S, Pereira S, Zhou L, Giacca A, Wu XY. Transdermal delivery of a somatostatin receptor type 2 antagonist using microneedle patch technology for hypoglycemia prevention. Drug Deliv Transl Res 2021; 12:792-804. [PMID: 33683625 DOI: 10.1007/s13346-021-00944-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/19/2022]
Abstract
Hypoglycemia is a serious and potentially fatal complication experienced by people with insulin-dependent diabetes. The complication is usually caused by insulin overdose, skipping meals, and/or excessive physical activities. In type 1 diabetes (T1D), on top of impaired pancreatic α-cells, excessive levels of somatostatin from δ-cells further inhibit glucagon secretion to counteract overdosed insulin. Herein, we aimed to develop a microneedle (MN) patch for transdermal delivery of a peptide (PRL-2903) that antagonizes somatostatin receptor type 2 (SSTR2) in α-cells. First, we investigated the efficacy of subcutaneously administered PRL-2903 and identified the optimal dose (i.e., the minimum effective dose) and treatment scheduling (i.e., the best administration time for hypoglycemia prevention) in a T1D rat model. We then designed an MN patch using a hyaluronic acid (HA)-based polymer. The possible effect of the polymer on stabilizing the native structure of PRL-2903 was studied by molecular dynamics (MD) simulations. The results showed that the HA-based polymer could stabilize the PRL-2903 structure by restricting water molecules, promoting intra-molecular H-bonding, and constraining torsional angles of important bonds. In vivo studies with an overdose insulin challenge revealed that the PRL-2903-loaded MN patch effectively increased the plasma glucagon level, restored the counter-regulation of blood glucose concentration, and prevented hypoglycemia. The proposed MN patch is the first demonstration of a transdermal microneedle patch designed to deliver an SSTR2 antagonist for the prevention of hypoglycemia. This counter-regulatory peptide delivery system may be applied alongside with insulin delivery systems to provide a more effective and safer treatment for people with insulin-dependent diabetes.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Melisa Samarikhalaj
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Sandra Pereira
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Liwei Zhou
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
32
|
Korkmaz E, Balmert SC, Carey CD, Erdos G, Falo LD. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin Drug Deliv 2021; 18:151-167. [PMID: 32924651 PMCID: PMC9355143 DOI: 10.1080/17425247.2021.1823964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Infectious pathogens are global disrupters. Progress in biomedical science and technology has expanded the public health arsenal against infectious diseases. Specifically, vaccination has reduced the burden of infectious pathogens. Engineering systemic immunity by harnessing the cutaneous immune network has been particularly attractive since the skin is an easily accessible immune-responsive organ. Recent advances in skin-targeted drug delivery strategies have enabled safe, patient-friendly, and controlled deployment of vaccines to cutaneous microenvironments for inducing long-lived pathogen-specific immunity to mitigate infectious diseases, including COVID-19. AREAS COVERED This review briefly discusses the basics of cutaneous immunomodulation and provides a concise overview of emerging skin-targeted drug delivery systems that enable safe, minimally invasive, and effective intracutaneous administration of vaccines for engineering systemic immune responses to combat infectious diseases. EXPERT OPINION In-situ engineering of the cutaneous microenvironment using emerging skin-targeted vaccine delivery systems offers remarkable potential to develop diverse immunization strategies against pathogens. Mechanistic studies with standard correlates of vaccine efficacy will be important to compare innovative intracutaneous drug delivery strategies to each other and to existing clinical approaches. Cost-benefit analyses will be necessary for developing effective commercialization strategies. Significant involvement of industry and/or government will be imperative for successfully bringing novel skin-targeted vaccine delivery methods to market for their widespread use.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Richardson LC, Moss WJ. Measles and rubella microarray array patches to increase vaccination coverage and achieve measles and rubella elimination in Africa. Pan Afr Med J 2020; 35:3. [PMID: 32373254 PMCID: PMC7196331 DOI: 10.11604/pamj.supp.2020.35.1.19753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/20/2019] [Indexed: 01/17/2023] Open
Abstract
The African Region is committed to measles elimination by 2020 but coverage with the first dose of measles-containing vaccine was only 70% in 2017. Several obstacles to achieving high coverage with measles and rubella vaccines exist, some of which could be overcome with new vaccine delivery technologies. Microarray array patches (MAPs) are single-dose devices used for transcutaneous administration of molecules, including inactivated or attenuated vaccines, that penetrate the outer stratum corneum of the skin, delivering antigens to the epidermis or dermis. MAPs to deliver measles and rubella vaccines have the potential to be a transformative technology to achieve elimination goals in the African Region. MAPs for measles and rubella vaccination have been shown to be safe, immunogenic and thermostable in preclinical studies but results of clinical studies in humans have not yet been published. This review summarizes the current state of knowledge of measles and rubella MAPs, their potential advantages for immunization programs in the African Region, and some of the challenges that must be overcome before measles and rubella MAPs are available for widespread use.
Collapse
Affiliation(s)
| | - William John Moss
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Asfour MH. Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques. Drug Deliv Transl Res 2020; 11:1-23. [PMID: 32337668 DOI: 10.1007/s13346-020-00746-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteins and peptides have a great potential as therapeutic agents; they have higher efficiency and lower toxicity, compared to chemical drugs. However, their oral bioavailability is very low; also, the transdermal peptide delivery faces absorption limitations. Accordingly, most of proteins and peptides are administered by parenteral route, but there are many problems associated with this route such as patient discomfort, especially for pediatric use. Thus, it is a great challenge to develop drug delivery systems for administration of proteins and peptides by routes other than parenteral one. This review provides an overview on recent advances adopted for protein and peptide drug delivery, focusing on oral and transdermal routes. This is followed by an emphasis on two recent approaches adopted as delivery systems for protein and peptide drugs, namely aquasomes and microneedles. Aquasomes are nanoparticles fabricated from ceramics developed to enhance proteins and peptides stability, providing an adequate residence time in circulation. It consists of ceramic core coated with poly hydroxyl oligomer, on which protein and peptide drug can be adsorbed. Aquasomes preparation, characterization, and application in protein and peptide drug delivery are discussed. Microneedles are promising transdermal approach; it involves creation of micron-sized pores in the skin for enhancing the drug delivery across the skin, as their length ranged between 150 and 1500 μm. Types of microneedles with different drug delivery mechanisms, characterization, and application in protein and peptide drug delivery are discussed. Graphical abstract.
Collapse
Affiliation(s)
- Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
35
|
Swathi HP, Anusha Matadh V, Paul Guin J, Narasimha Murthy S, Kanni P, Varshney L, Suresh S, Shivakumar HN. Effect of gamma sterilization on the properties of microneedle array transdermal patch system. Drug Dev Ind Pharm 2020; 46:606-620. [DOI: 10.1080/03639045.2020.1742144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | | | | | - Sathyanarayana Narasimha Murthy
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
- The University of Mississippi, School of Pharmacy, University, MS, USA
| | - Paranjothy Kanni
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | | | - Sarasija Suresh
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
| | - Hagalavadi Nanjappa Shivakumar
- Institute for Drug Delivery and Biomedical Research, Bengaluru, India
- Department of Pharmaceutics, K.L.E. College of Pharmacy, Bengaluru, India
| |
Collapse
|
36
|
Jamaledin R, Di Natale C, Onesto V, Taraghdari ZB, Zare EN, Makvandi P, Vecchione R, Netti PA. Progress in Microneedle-Mediated Protein Delivery. J Clin Med 2020; 9:E542. [PMID: 32079212 PMCID: PMC7073601 DOI: 10.3390/jcm9020542] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for patient-compliance therapies in recent years has led to the development of transdermal drug delivery, which possesses several advantages compared with conventional methods. Delivering protein through the skin by transdermal patches is extremely difficult due to the presence of the stratum corneum which restricts the application to lipophilic drugs with relatively low molecular weight. To overcome these limitations, microneedle (MN) patches, consisting of micro/miniature-sized needles, are a promising tool to perforate the stratum corneum and to release drugs and proteins into the dermis following a non-invasive route. This review investigates the fabrication methods, protein delivery, and translational considerations for the industrial scaling-up of polymeric MNs for dermal protein delivery.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Zahra Baghban Taraghdari
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | | | - Pooyan Makvandi
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
- Institute for polymers, Composites and biomaterials (IPCB), National research council (CNR), 80125 Naples, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, P.O. Box: 61537-53843, Ahvaz, Iran
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| |
Collapse
|
37
|
Stinson JA, Palmer CR, Miller DP, Li AB, Lightner K, Jost H, Weldon WC, Oberste MS, Kluge JA, Kosuda KM. Thin silk fibroin films as a dried format for temperature stabilization of inactivated polio vaccine. Vaccine 2020; 38:1652-1660. [PMID: 31959422 PMCID: PMC7176408 DOI: 10.1016/j.vaccine.2019.12.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 02/01/2023]
Abstract
Current inactivated polio vaccine (IPV) products are sensitive to both freezing and elevated temperatures and therefore must be shipped and stored between 2 °C and 8 °C, a requirement that imposes financial and logistical challenges for global distribution. As such, there is a critical need for a robust, thermally stable IPV to support global polio eradication and post-eradication immunization needs. Here, we present the development of air-dried thin films for temperature stabilization of IPV using the biomaterial silk fibroin. Thin-film product compositions were optimized for physical properties as well as poliovirus D-antigen recovery and were tested under accelerated and real-time stability storage conditions. Silk fibroin IPV films maintained 70% D-antigen potency after storage for nearly three years at room temperature, and greater than 50% potency for IPV-2 and IPV-3 serotypes at 45 °C for one year. The immunogenicity of silk fibroin IPV films after 2-week storage at 45 °C was assessed in Wistar rats and the stressed films generated equivalent neutralizing antibody responses to commercial vaccine for IPV-1 and IPV-2. However, the absence of IPV-3 responses warrants further investigation into the specificity of ELISA for intact IPV-3 D-antigen. By demonstrating immunogenicity post-storage, we offer the air-dried silk film format as a means to increase IPV vaccine access through innovative delivery systems such as microneedles.
Collapse
Affiliation(s)
- Jordan A Stinson
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Carter R Palmer
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - David P Miller
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Adrian B Li
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Kandice Lightner
- IHRC, 2 Ravinia Drive, Suite 1200, Atlanta, GA 30346, USA, contracted to CDC
| | - Heather Jost
- Centers for Disease Control and Prevention (CDC), Division of Viral Diseases, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA 30329, USA
| | - William C Weldon
- Centers for Disease Control and Prevention (CDC), Division of Viral Diseases, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA 30329, USA
| | - M Steven Oberste
- Centers for Disease Control and Prevention (CDC), Division of Viral Diseases, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA 30329, USA
| | - Jonathan A Kluge
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA
| | - Kathryn M Kosuda
- Vaxess Technologies, Inc., 790 Memorial Drive, Suite 200, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Development of Yersinia pestis F1 antigen-loaded liposome vaccine against plague using microneedles as a delivery system. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Abstract
Recent studies on vaccine delivery systems are exploring the possibility of replacing liquid vaccines with solid dose vaccines due to the many advantages that solid dose vaccines can offer. These include the prospect of a needle-free vaccine delivery system leading to better patient compliance, cold chain storage, less-trained vaccinators and fewer chances for needle stick injury hazards. Some studies also indicate that vaccines in a solid dosage form can result in a higher level of immunogenicity compared to the liquid form, thus providing a dose-sparing effect. This review outlines the different approaches in solid vaccine delivery using various routes of administration including, oral, pulmonary, intranasal, buccal, sublingual, and transdermal routes. The various techniques and their current advancements will provide a knowledge base for future work to be carried out in this arena.
Collapse
|
40
|
Yan L, Alba M, Tabassum N, Voelcker NH. Micro‐ and Nanosystems for Advanced Transdermal Delivery. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li Yan
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
| | - Nazia Tabassum
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- The University of Central Punjab Johar Town Lahore 54000 Pakistan
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Clayton Victoria 3168 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility Clayton Victoria 3168 Australia
| |
Collapse
|
41
|
Rodgers AM, Cordeiro AS, Donnelly RF. Technology update: dissolvable microneedle patches for vaccine delivery. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2019; 12:379-398. [PMID: 31572025 PMCID: PMC6756839 DOI: 10.2147/mder.s198220] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Despite vaccination representing one of the greatest advances of modern preventative medicine, there remain significant challenges in vaccine distribution, delivery and compliance. Dissolvable microarray patches or dissolving microneedles (DMN) have been proposed as an innovative vaccine delivery platform that could potentially revolutionize vaccine delivery and circumvent many of the challenges faced with current vaccine strategies. DMN, due to their ease of use, lack of elicitation of pain response, self-disabling nature and ease of transport and distribution, offer an attractive delivery option for vaccines. Additionally, as DMN inherently targets the uppermost skin layers, they facilitate improved vaccine efficacy, due to direct targeting of skin antigen-presenting cells. A plethora of publications have demonstrated the efficacy of DMN vaccination for a range of vaccines, with influenza receiving particular attention. However, before the viable adoption of DMN for vaccination purposes in a clinical setting, a number of fundamental questions must be addressed. Accordingly, this review begins by introducing some of the key barriers faced by current vaccination approaches and how DMN can overcome these challenges. We introduce some of the recent advances in the field of DMN technology, highlighting the potential impact DMN could have, particularly in countries of the developing world. We conclude by reflecting on some of the key questions that remain unanswered and which warrant further investigation before DMNs can be utilized in clinical settings.
Collapse
Affiliation(s)
- Aoife M Rodgers
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Ana Sara Cordeiro
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen’s University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
42
|
Donadei A, Kraan H, Ophorst O, Flynn O, O'Mahony C, Soema PC, Moore AC. Skin delivery of trivalent Sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. J Control Release 2019; 311-312:96-103. [PMID: 31484041 DOI: 10.1016/j.jconrel.2019.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/30/2022]
Abstract
The cessation of the oral poliovirus vaccine (OPV) and the inclusion of inactivated poliovirus (IPV) into all routine immunization programmes, strengthens the need for new IPV options. Several novel delivery technologies are being assessed that permit simple yet efficacious and potentially dose-sparing administration of IPV. Current disadvantages of conventional liquid IPV include the dependence on cold chain and the need for injection, resulting in high costs, production of hazardous sharps waste and requiring sufficiently trained personnel. In the current study, a dissolvable microneedle (DMN) patch for skin administration that incorporates trivalent inactivated Sabin poliovirus vaccine (sIPV) was developed. Microneedles were physically stable in the ambient environment for at least 30 min and efficiently penetrated skin. Polio-specific IgG antibodies that were able to neutralize the virus were induced in rats upon administration using trivalent sIPV-containing microneedle patches. These sIPV-patch-induced neutralizing antibody responses were comparable to higher vaccine doses delivered intramuscularly for type 1 and type 3 poliovirus serotypes. Moreover, applying the patches to the flank elicited a significantly higher antibody response compared to their administration to the ear. This study progresses the development of a skin patch-based technology that would simplify vaccine administration of Sabin IPV and thereby overcome logistic issues currently constraining poliovirus eradication campaigns.
Collapse
Affiliation(s)
- Agnese Donadei
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| | - Heleen Kraan
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Olga Ophorst
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Olivia Flynn
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Anne C Moore
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
43
|
Dardano P, Battisti M, Rea I, Serpico L, Terracciano M, Cammarano A, Nicolais L, Stefano L. Polymeric Microneedle Arrays: Versatile Tools for an Innovative Approach to Drug Administration. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Principia Dardano
- Institute for Microelectronics and Microsystems Via P. Castellino 111 80131 Napoli Italy
| | | | - Ilaria Rea
- Institute for Microelectronics and Microsystems Via P. Castellino 111 80131 Napoli Italy
| | - Luigia Serpico
- University of Naples “Federico II”Department of Chemistry Via Cinthia 80126 Napoli Italy
| | | | | | | | - Luca Stefano
- Institute for Microelectronics and Microsystems Via P. Castellino 111 80131 Napoli Italy
| |
Collapse
|