1
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Song L, Jia K, Yang F, Wang J. Advanced Nanomedicine Approaches for Myocardial Infarction Treatment. Int J Nanomedicine 2024; 19:6399-6425. [PMID: 38952676 PMCID: PMC11215519 DOI: 10.2147/ijn.s467219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Myocardial infarction, usually caused by the rupture of atherosclerotic plaque, leads to irreversible ischemic cardiomyocyte death within hours followed by impaired cardiac performance or even heart failure. Current interventional reperfusion strategies for myocardial infarction still face high mortality with the development of heart failure. Nanomaterial-based therapy has made great progress in reducing infarct size and promoting cardiac repair after MI, although most studies are preclinical trials. This review focuses primarily on recent progress (2016-now) in the development of various nanomedicines in the treatment of myocardial infarction. We summarize these applications with the strategy of mechanism including anti-cardiomyocyte death strategy, activation of neovascularization, antioxidants strategy, immunomodulation, anti-cardiac remodeling, and cardiac repair.
Collapse
Affiliation(s)
- Lin Song
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Kangwei Jia
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fuqing Yang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
3
|
Pereira M, Pinto J, Arteaga B, Guerra A, Jorge RN, Monteiro FJ, Salgado CL. A Comprehensive Look at In Vitro Angiogenesis Image Analysis Software. Int J Mol Sci 2023; 24:17625. [PMID: 38139453 PMCID: PMC10743557 DOI: 10.3390/ijms242417625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
One of the complex challenges faced presently by tissue engineering (TE) is the development of vascularized constructs that accurately mimic the extracellular matrix (ECM) of native tissue in which they are inserted to promote vessel growth and, consequently, wound healing and tissue regeneration. TE technique is characterized by several stages, starting from the choice of cell culture and the more appropriate scaffold material that can adequately support and supply them with the necessary biological cues for microvessel development. The next step is to analyze the attained microvasculature, which is reliant on the available labeling and microscopy techniques to visualize the network, as well as metrics employed to characterize it. These are usually attained with the use of software, which has been cited in several works, although no clear standard procedure has been observed to promote the reproduction of the cell response analysis. The present review analyzes not only the various steps previously described in terms of the current standards for evaluation, but also surveys some of the available metrics and software used to quantify networks, along with the detection of analysis limitations and future improvements that could lead to considerable progress for angiogenesis evaluation and application in TE research.
Collapse
Affiliation(s)
- Mariana Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jéssica Pinto
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Belén Arteaga
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Av. de la Investigación 11, 18016 Granada, Spain
| | - Ana Guerra
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal; (A.G.); (R.N.J.)
| | - Renato Natal Jorge
- INEGI—Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, 4200-465 Porto, Portugal; (A.G.); (R.N.J.)
- LAETA—Laboratório Associado de Energia, Transportes e Aeronáutica, Universidade do Porto, 4200-165 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, 4200-165 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, 4200-165 Porto, Portugal
- PCCC—Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
| | - Christiane Laranjo Salgado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.P.); (J.P.); (B.A.); (F.J.M.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
4
|
Chen X, Zhu L, Wang X, Xiao J. Insight into Heart-Tailored Architectures of Hydrogel to Restore Cardiac Functions after Myocardial Infarction. Mol Pharm 2023; 20:57-81. [PMID: 36413809 DOI: 10.1021/acs.molpharmaceut.2c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With permanent heart muscle injury or death, myocardial infarction (MI) is complicated by inflammatory, proliferation and remodeling phases from both the early ischemic period and subsequent infarct expansion. Though in situ re-establishment of blood flow to the infarct zone and delays of the ventricular remodeling process are current treatment options of MI, they fail to address massive loss of viable cardiomyocytes while transplanting stem cells to regenerate heart is hindered by their poor retention in the infarct bed. Equipped with heart-specific mimicry and extracellular matrix (ECM)-like functionality on the network structure, hydrogels leveraging tissue-matching biomechanics and biocompatibility can mechanically constrain the infarct and act as localized transport of bioactive ingredients to refresh the dysfunctional heart under the constant cyclic stress. Given diverse characteristics of hydrogel including conductivity, anisotropy, adhesiveness, biodegradability, self-healing and mechanical properties driving local cardiac repair, we aim to investigate and conclude the dynamic balance between ordered architectures of hydrogels and the post-MI pathological milieu. Additionally, our review summarizes advantages of heart-tailored architectures of hydrogels in cardiac repair following MI. Finally, we propose challenges and prospects in clinical translation of hydrogels to draw theoretical guidance on cardiac repair and regeneration after MI.
Collapse
Affiliation(s)
- Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou 310053, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Skoulas D, Fattah S, Wang D, Cryan S, Heise A. Systematic study of enzymatic degradation and plasmid DNA complexation of mucus penetrating star‐shaped lysine/sarcosine polypept(o)ides with different block arrangements. Macromol Biosci 2022; 22:e2200175. [DOI: 10.1002/mabi.202200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Dimitrios Skoulas
- D. Skoulas, A. Heise Department of Chemistry RCSI University of Medicine and Health Science 123 St. Stephens Green Dublin D02YN77 Ireland
| | - Sarinj Fattah
- S. Fattah, S.‐A. Cryan School of Pharmacy and Biomolecular Sciences RCSI University of Medicine and Health Sciences Dublin D02YN77 Ireland
- Trinity Centre for Biomedical Engineering, TCD Dublin 2 Ireland
| | - Dandan Wang
- Dandan Wang School of Pharmacy and Biomolecular Sciences RCSI University of Medicine and Health Sciences Dublin D02YN77 Ireland
- Department of Pharmaceutics College of Pharmaceutical Sciences Soochow University Suzhou 215123 People's Republic of China
| | - Sally‐Ann Cryan
- S. Fattah, S.‐A. Cryan School of Pharmacy and Biomolecular Sciences RCSI University of Medicine and Health Sciences Dublin D02YN77 Ireland
- Trinity Centre for Biomedical Engineering, TCD Dublin 2 Ireland
- A. Heise, S.‐A. Cryan Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), AMBER The SFI Advanced Materials and Bioengineering Research Centre Dublin 2 Ireland
| | - Andreas Heise
- D. Skoulas, A. Heise Department of Chemistry RCSI University of Medicine and Health Science 123 St. Stephens Green Dublin D02YN77 Ireland
- A. Heise, S.‐A. Cryan Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), AMBER The SFI Advanced Materials and Bioengineering Research Centre Dublin 2 Ireland
| |
Collapse
|
6
|
Manners N, Priya V, Mehata AK, Rawat M, Mohan S, Makeen HA, Albratty M, Albarrati A, Meraya AM, Muthu MS. Theranostic Nanomedicines for the Treatment of Cardiovascular and Related Diseases: Current Strategies and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040441. [PMID: 35455438 PMCID: PMC9029632 DOI: 10.3390/ph15040441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular and related diseases (CVRDs) are among the most prevalent chronic diseases in the 21st century, with a high mortality rate. This review summarizes the various nanomedicines for diagnostic and therapeutic applications in CVRDs, including nanomedicine for angina pectoris, myocarditis, myocardial infarction, pericardial disorder, thrombosis, atherosclerosis, hyperlipidemia, hypertension, pulmonary arterial hypertension and stroke. Theranostic nanomedicines can prolong systemic circulation, escape from the host defense system, and deliver theranostic agents to the targeted site for imaging and therapy at a cellular and molecular level. Presently, discrete non-invasive and non-surgical theranostic methodologies are such an advancement modality capable of targeted diagnosis and therapy and have better efficacy with fewer side effects than conventional medicine. Additionally, we have presented the recent updates on nanomedicine in clinical trials, targeted nanomedicine and its translational challenges for CVRDs. Theranostic nanomedicine acts as a bridge towards CVRDs amelioration and its management.
Collapse
Affiliation(s)
- Natasha Manners
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
| | - Manoj Rawat
- Novartis Healthcare Private Limited, Hyderabad 500078, India;
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia;
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Madaswamy S. Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (N.M.); (V.P.); (A.K.M.)
- Correspondence: ; Tel.: +91-923-519-5928; Fax: +91-542-236-8428
| |
Collapse
|
7
|
Shi HT, Huang ZH, Xu TZ, Sun AJ, Ge JB. New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials. EBioMedicine 2022; 78:103968. [PMID: 35367772 PMCID: PMC8983382 DOI: 10.1016/j.ebiom.2022.103968] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction is lethal to patients because of insufficient blood perfusion to vital organs. Several attempts have been made to improve its prognosis, among which nanomaterial research offers an opportunity to address this problem at the molecular level and has the potential to improve disease prevention, diagnosis, and treatment significantly. Up to now, nanomaterial-based technology has played a crucial role in broad novel diagnostic and therapeutic strategies for cardiac repair. This review summarizes various nanomaterial applications in myocardial infarction from multiple aspects, including high precision detection, pro-angiogenesis, regulating immune homeostasis, and miRNA and stem cell delivery vehicles. We also propose promising research hotspots that have not been reported much yet, such as conjugating pro-angiogenetic elements with nanoparticles to construct drug carriers, developing nanodrugs targeting other immune cells except for macrophages in the infarcted myocardium or the remote region. Though most of those strategies are preclinical and lack clinical trials, there is tremendous potential for their further applications in the future.
Collapse
Affiliation(s)
- Hong-Tao Shi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Zi-Hang Huang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Tian-Zhao Xu
- School of Life Science, Shanghai University, Shanghai, China
| | - Ai-Jun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China.
| | - Jun-Bo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Gonciar D, Mocan T, Agoston-Coldea L. Nanoparticles Targeting the Molecular Pathways of Heart Remodeling and Regeneration. Pharmaceutics 2022; 14:pharmaceutics14040711. [PMID: 35456545 PMCID: PMC9028351 DOI: 10.3390/pharmaceutics14040711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
Cardiovascular diseases are the main cause of death worldwide, a trend that will continue to grow over the next decade. The heart consists of a complex cellular network based mainly on cardiomyocytes, but also on endothelial cells, smooth muscle cells, fibroblasts, and pericytes, which closely communicate through paracrine factors and direct contact. These interactions serve as valuable targets in understanding the phenomenon of heart remodeling and regeneration. The advances in nanomedicine in the controlled delivery of active pharmacological agents are remarkable and may provide substantial contribution to the treatment of heart diseases. This review aims to summarize the main mechanisms involved in cardiac remodeling and regeneration and how they have been applied in nanomedicine.
Collapse
Affiliation(s)
- Diana Gonciar
- 2nd Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania; (D.G.); (L.A.-C.)
| | - Teodora Mocan
- Physiology Department, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
- Correspondence:
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania; (D.G.); (L.A.-C.)
| |
Collapse
|
9
|
Chabria Y, Duffy GP, Lowery AJ, Dwyer RM. Hydrogels: 3D Drug Delivery Systems for Nanoparticles and Extracellular Vesicles. Biomedicines 2021; 9:1694. [PMID: 34829923 PMCID: PMC8615452 DOI: 10.3390/biomedicines9111694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/16/2022] Open
Abstract
Synthetic and naturally occurring nano-sized particles present versatile vehicles for the delivery of therapy in a range of clinical settings. Their small size and modifiable physicochemical properties support refinement of targeting capabilities, immune response, and therapeutic cargo, but rapid clearance from the body and limited efficacy remain a major challenge. This highlights the need for a local sustained delivery system for nanoparticles (NPs) and extracellular vesicles (EVs) at the target site that will ensure prolonged exposure, maximum efficacy and dose, and minimal toxicity. Biocompatible hydrogels loaded with therapeutic NPs/EVs hold immense promise as cell-free sustained and targeted delivery systems in a range of disease settings. These bioscaffolds ensure retention of the nano-sized particles at the target site and can also act as controlled release systems for therapeutics over a prolonged period of time. The encapsulation of stimuli sensitive components into hydrogels supports the release of the content on-demand. In this review, we highlight the prospect of the sustained and prolonged delivery of these nano-sized therapeutic entities from hydrogels for broad applications spanning tissue regeneration and cancer treatment. Further understanding of the parameters controlling the release rate of these particles and efficient transfer of cargo to target cells will be fundamental to success.
Collapse
Affiliation(s)
- Yashna Chabria
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, H91 V4AY Galway, Ireland; (Y.C.); (A.J.L.)
- CÚRAM, The SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| | - Garry P. Duffy
- CÚRAM, The SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY Galway, Ireland;
- Anatomy & Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Aoife J Lowery
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, H91 V4AY Galway, Ireland; (Y.C.); (A.J.L.)
| | - Róisín M. Dwyer
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, H91 V4AY Galway, Ireland; (Y.C.); (A.J.L.)
- CÚRAM, The SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| |
Collapse
|
10
|
Tinajero-Díaz E, Kimmins SD, García-Carvajal ZY, Martínez de Ilarduya A. Polypeptide-based materials prepared by ring-opening polymerisation of anionic-based α-amino acid N-carboxyanhydrides: A platform for delivery of bioactive-compounds. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater Sci Eng 2021; 7:4102-4127. [PMID: 34137581 PMCID: PMC8919265 DOI: 10.1021/acsbiomaterials.0c01784] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- M. Isabel Rial-Hermida
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Ana Rey-Rico
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, 08028 Barcelona, Spain
- CIBER
en Bioingeniería, Biomateriales y
Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Natalia Carballo-Pedrares
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Eimear M. Byrne
- Wellcome-Wolfson
Institute For Experimental Medicine, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - João F. Mano
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Translational Studies on the Potential of a VEGF Nanoparticle-Loaded Hyaluronic Acid Hydrogel. Pharmaceutics 2021; 13:pharmaceutics13060779. [PMID: 34067451 PMCID: PMC8224549 DOI: 10.3390/pharmaceutics13060779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure has a five-year mortality rate approaching 50%. Inducing angiogenesis following a myocardial infarction is hypothesized to reduce cardiomyocyte death and tissue damage, thereby preventing heart failure. Herein, a novel nano-in-gel delivery system for vascular endothelial growth factor (VEGF), composed of star-shaped polyglutamic acid-VEGF nanoparticles in a tyramine-modified hyaluronic acid hydrogel (nano-VEGF-HA-TA), is investigated. The ability of the nano-VEGF-HA-TA system to induce angiogenesis is assessed in vivo using a chick chorioallantoic membrane model (CAM). The formulation is then integrated with a custom-made, clinically relevant catheter suitable for minimally invasive endocardial delivery and the effect of injection on hydrogel properties is examined. Nano-VEGF-HA-TA is biocompatible on a CAM assay and significantly improves blood vessel branching (p < 0.05) and number (p < 0.05) compared to a HA-TA hydrogel without VEGF. Nano-VEGF-HA-TA is successfully injected through a 1.2 m catheter, without blocking or breaking the catheter and releases VEGF for 42 days following injection in vitro. The released VEGF retains its bioactivity, significantly improving total tubule length on a Matrigel® assay and human umbilical vein endothelial cell migration on a Transwell® migration assay. This VEGF-nano in a HA-TA hydrogel delivery system is successfully integrated with an appropriate device for clinical use, demonstrates promising angiogenic properties in vivo and is suitable for further clinical translation.
Collapse
|
13
|
Li XP, Qu KY, Zhou B, Zhang F, Wang YY, Abodunrin OD, Zhu Z, Huang NP. Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues. Colloids Surf B Biointerfaces 2021; 205:111844. [PMID: 34015732 DOI: 10.1016/j.colsurfb.2021.111844] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
The development of diversified biomaterials in tissue engineering has been promoted by growing research into carbon-based nanomaterials. Usually, ideal scaffold materials should possess properties similar to the extracellular matrix of natural myocardial tissue. In this study, dopamine-reduced graphene oxide (GO), was prepared and doped into gelatin methacrylate (GelMA) hydrogels, resulting in novel conductive and mechanical properties for controlling cell growth. Cardiomyocytes (CMs) cultured on PDA-rGO-incorporated hydrogels (GelMA-PDA-rGO) had greater cytocompatibility than those cultured on GelMA hydrogels, as evidenced by higher cell survival rates and up-regulation of cardiac-relevant proteins. Finally, electrical stimulation was applied to facilitate the maturation of CMs which was seeded on different hydrogels. The findings revealed that electrical stimulation of conductive hybrid hydrogel scaffolds improved the orientational order parameter of sarcomeres (OOP). In addition, propagation of intercellular pacing signals, which improves the expression of gap junction proteins was noticed, likewise calcium handling capacity was present in conductive hybrid hydrogels compared to those in pure GelMA group. This study has shown that the combination of GelMA-PDA-rGO based conductive hydrogels and electrical stimulation possessed synergistic effects for engineering a more functional and mature myocardium layer as well as further application in drug screening and disease modeling in vitro.
Collapse
Affiliation(s)
- Xiao-Pei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Kai-Yun Qu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Bin Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Feng Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yin-Ying Wang
- Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Oluwatosin David Abodunrin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
14
|
Kim EM, Jeong HJ. Liposomes: Biomedical Applications. Chonnam Med J 2021; 57:27-35. [PMID: 33537216 PMCID: PMC7840352 DOI: 10.4068/cmj.2021.57.1.27] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Liposomes, with their flexible physicochemical and biophysical properties, continue to be studied as an important potential a critical drug delivery system. Liposomes have overcome the challenges of conventional free drug therapy by encapsulating therapeutic agents, thereby improving in vivo biodistribution and reducing systemic toxicity. New imaging modalities and interpretation techniques, as well as new techniques for targetable system formulation technique, and tumor environmental information, have affected the search for a means of overcoming the difficulties of conventional liposome formulation. In this review, we briefly discuss how liposomal formulation has been applied across the biomedical field, particularly as a therapy, and the role it may play in the future, when paired with new developments in diagnosis and theranostics. The biological challenges that still remain and the translational obstacles are discussed.
Collapse
Affiliation(s)
- Eun-Mi Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
15
|
Yang Q, Fang J, Lei Z, Sluijter JPG, Schiffelers R. Repairing the heart: State-of the art delivery strategies for biological therapeutics. Adv Drug Deliv Rev 2020; 160:1-18. [PMID: 33039498 DOI: 10.1016/j.addr.2020.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/23/2022]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide. It is caused by an acute imbalance between oxygen supply and demand in the myocardium, usually caused by an obstruction in the coronary arteries. The conventional therapy is based on the application of (a combination of) anti-thrombotics, reperfusion strategies to open the occluded artery, stents and bypass surgery. However, numerous patients cannot fully recover after these interventions. In this context, new therapeutic methods are explored. Three decades ago, the first biologicals were tested to improve cardiac regeneration. Angiogenic proteins gained popularity as potential therapeutics. This is not straightforward as proteins are delicate molecules that in order to have a reasonably long time of activity need to be stabilized and released in a controlled fashion requiring advanced delivery systems. To ensure long-term expression, DNA vectors-encoding for therapeutic proteins have been developed. Here, the nuclear membrane proved to be a formidable barrier for efficient expression. Moreover, the development of delivery systems that can ensure entry in the target cell, and also correct intracellular trafficking towards the nucleus are essential. The recent introduction of mRNA as a therapeutic entity has provided an attractive intermediate: prolonged but transient expression from a cytoplasmic site of action. However, protection of the sensitive mRNA and correct delivery within the cell remains a challenge. This review focuses on the application of synthetic delivery systems that target the myocardium to stimulate cardiac repair using proteins, DNA or RNA.
Collapse
Affiliation(s)
- Qiangbing Yang
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Juntao Fang
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Zhiyong Lei
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands; Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart & Lungs, Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Utrecht, Circulatory Health Laboratory, Utrecht University, Utrecht, the Netherlands
| | - Raymond Schiffelers
- Division LAB, CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
16
|
O’Dwyer J, Cullen M, Fattah S, Murphy R, Stefanovic S, Kovarova L, Pravda M, Velebny V, Heise A, Duffy GP, Cryan SA. Development of a Sustained Release Nano-In-Gel Delivery System for the Chemotactic and Angiogenic Growth Factor Stromal-Derived Factor 1α. Pharmaceutics 2020; 12:E513. [PMID: 32512712 PMCID: PMC7355599 DOI: 10.3390/pharmaceutics12060513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023] Open
Abstract
Stromal-Derived Factor 1α (SDF) is an angiogenic, chemotactic protein with significant potential for applications in a range of clinical areas, including wound healing, myocardial infarction and orthopaedic regenerative approaches. The 26-min in vivo half-life of SDF, however, has limited its clinical translation to date. In this study, we investigate the use of star-shaped or linear poly(glutamic acid) (PGA) polypeptides to produce PGA-SDF nanoparticles, which can be incorporated into a tyramine-modified hyaluronic acid hydrogel (HA-TA) to facilitate sustained localised delivery of SDF. The physicochemical properties and biocompatibility of the PGA-SDF nanoparticle formulations were extensively characterised prior to incorporation into a HA-TA hydrogel. The biological activity of the SDF released from the nano-in-gel system was determined on Matrigel®, scratch and Transwell® migration assays. Both star-shaped and linear PGA facilitated SDF nanoparticle formation with particle sizes from 255-305 nm and almost complete SDF complexation. Star-PGA-SDF demonstrated superior biocompatibility and was incorporated into a HA-TA gel, which facilitated sustained SDF release for up to 35 days in vitro. Released SDF significantly improved gap closure on a scratch assay, produced a 2.8-fold increase in HUVEC Transwell® migration and a 1.5-fold increase in total tubule length on a Matrigel® assay at 12 h compared to untreated cells. Overall, we present a novel platform system for the sustained delivery of bioactive SDF from a nano-in-gel system which could be adapted for a range of biomedical applications.
Collapse
Affiliation(s)
- Joanne O’Dwyer
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland;
| | - Megan Cullen
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
| | - Sarinj Fattah
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
| | - Robert Murphy
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland;
| | - Smiljana Stefanovic
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland;
| | - Lenka Kovarova
- R & D Department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic; (L.K.); (M.P.); (V.V.)
- Faculty of Chemistry, Institute of Physical Chemistry, Brno University of Technology, Purkynova 464/118, 612 00 Brno, Czech Republic
| | - Martin Pravda
- R & D Department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic; (L.K.); (M.P.); (V.V.)
| | - Vladimir Velebny
- R & D Department, Contipro, Dolni Dobrouc 401, 561 02 Dolni Dobrouc, Czech Republic; (L.K.); (M.P.); (V.V.)
| | - Andreas Heise
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland;
- The SFI Centre for Advanced Materials and Bioengineering Research (AMBER), National University of Ireland Galway (NUIG), Royal College of Surgeons in Ireland (RCSI) & Trinity College Dublin (TCD), Dublin, Ireland
| | - Garry P. Duffy
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland;
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
- The SFI Centre for Advanced Materials and Bioengineering Research (AMBER), National University of Ireland Galway (NUIG), Royal College of Surgeons in Ireland (RCSI) & Trinity College Dublin (TCD), Dublin, Ireland
- Anatomy, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Sally Ann Cryan
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland; (J.O.); (M.C.); (S.F.); (S.S.)
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin 2, Ireland;
- SFI Research Centre for Medical Devices (CURAM), National University of Ireland Galway (NUIG) & Royal College of Surgeons in Ireland (RCSI), Galway and Dublin, Ireland;
- The SFI Centre for Advanced Materials and Bioengineering Research (AMBER), National University of Ireland Galway (NUIG), Royal College of Surgeons in Ireland (RCSI) & Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
17
|
Skoulas D, Stuettgen V, Gaul R, Cryan SA, Brayden DJ, Heise A. Amphiphilic Star Polypept(o)ides as Nanomeric Vectors in Mucosal Drug Delivery. Biomacromolecules 2020; 21:2455-2462. [PMID: 32343127 DOI: 10.1021/acs.biomac.0c00381] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mucosal delivery across the gastrointestinal (GI) tract, airways, and buccal epithelia is an attractive mode of therapeutic administration, but the challenge is to overcome the mucus and epithelial barriers. Here, we present degradable star polypept(o)ides capable of permeating both barriers as a promising biomaterial platform for mucosal delivery. Star polypept(o)ides were obtained by the initiation of benzyl-l-glutamate N-carboxyanhydride (NCA) from an 8-arm poly(propyleneimine) (PPI) dendrimer, with subsequent chain extension with sarcosine NCA. The hydrophobic poly(benzyl-l-glutamate) (PBLG) block length was maintained at 20 monomers, while the length of the hydrophilic poly(sarcosine) (PSar) block ranged from 20-640 monomers to produce star polypept(o)ides with increasing hydrophilic: hydrophobic ratios. Transmission electron microscopy (TEM) images revealed elongated particles of ∼120 nm length, while dynamic light scattering (DLS) provided evidence of a decrease in the size of polymer aggregates in water with increasing poly(sarcosine) block length, with the smallest size obtained for the star PBLG20-b-PSar640. Fluorescein isothiocyanate (FITC)-conjugated PBLG20-b-PSar640 permeated artificial mucus and isolated rat mucus, as well as rat intestinal jejunal tissue mounted in Franz diffusion chambers. An apparent permeability coefficient (Papp) of 15.4 ± 3.1 ×10-6 cm/s for FITC-PBLG20-b-PSar640 was calculated from the transepithelial flux obtained with the apical-side addition of 7.5 mg polypept(o)ide to jejunal tissue over 2 h. This Papp could not be accounted for by flux of unconjugated FITC. Resistance to trypsin demonstrated the stability of FITC-labeled polypept(o)ide over 2 h, but enzymatic degradation at the mucus-epithelial interface or during flux could not be ruled out as contributing to the Papp. The absence of any histological damage to the jejunal tissue during the 2 h exposure suggests that the flux was not associated with overt toxicity.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin D02, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland
| | - Vivien Stuettgen
- School of Veterinary Medicine and Conway Institute, University College Dublin, Veterinary Science Centre, Belfield, Dublin D04, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland
| | - Rachel Gaul
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin D02, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin D02, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland.,AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin D02, Ireland
| | - David J Brayden
- School of Veterinary Medicine and Conway Institute, University College Dublin, Veterinary Science Centre, Belfield, Dublin D04, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland
| | - Andreas Heise
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin D02, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland.,AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin D02, Ireland
| |
Collapse
|