1
|
Armand AA, Ale-Ebrahim M, Barikrow N, Bahrami N, Rouhollah F. Investigating the indirect therapeutic effect of hAMSCs utilizing a novel scaffold (PGS-co-PCL/PGC/PPy/Gelatin) in myocardial ischemia-reperfusion-induced renal failure in male Wistar rats. Tissue Cell 2024; 89:102428. [PMID: 38878657 DOI: 10.1016/j.tice.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Myocardial ischemia-reperfusion (MI/R) occurs due to temporary or permanent interruptions in the coronary and circulatory system, indirectly affecting kidney function through reduced cardiac output for metabolic needs. In this study, the aim was to explore the indirect effects of using human amniotic membrane mesenchymal stem cells (hAMSCs) with the PGS-co-PCL/PGC/PPy/Gelatin scaffold in male rats with renal failure induced by miocardial ischemia-reperfusion. METHODS MI/R injury was induced in 48 male Wistar rats through left anterior descending artery ligation, divided into four groups (n=12); control group, cell group, scaffold group, and celss+scaffold group. Evaluations were conducted at two and thirty days post MI/R injury, encompassing echocardiography, biochemical, inflammatory markers analysis, and histological assessment. RESULTS Echocardiographic findings exhibited notable enhancement in ejection fraction, fractional shortening, and stroke volume of treated groups compared to controls after 30 days (P< 0.05). Serum creatinine (P< 0.001) and urea (P< 0.05) levels significantly decreased in the scaffold+cells group) compared to the control group. The treated cells+ scaffold group displayed improved kidney structure, evidenced by larger glomeruli and reduced Bowman's space compared to the control group (P< 0.01). Immunohistochemical analysis indicated reduced TNF-α protein in the scaffold+ cells group (P< 0.05) in contrast to the control group (P< 0.05). Inflammatory factors IL-6, TNF-α, and AKT gene expression in renal tissues were improved in scaffold+ cells-treated animals. CONCLUSION Our research proposes the combination of hAMSCs and the PGS-co-PCL/PGC/PPy/Gelatin scaffold in MI/R injured rats appears to enhance renal function and reduce kidney inflammation by improving cardiac output.
Collapse
Affiliation(s)
- Amir Akbari Armand
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Nooshin Barikrow
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Bahrami
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Gong G, Wan W, Zhang X, Chen X, Yin J. Management of ROS and Regulatory Cell Death in Myocardial Ischemia-Reperfusion Injury. Mol Biotechnol 2024:10.1007/s12033-024-01173-y. [PMID: 38852121 DOI: 10.1007/s12033-024-01173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 06/10/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is fatal to patients, leading to cardiomyocyte death and myocardial remodeling. Reactive oxygen species (ROS) and oxidative stress play important roles in MIRI. There is a complex crosstalk between ROS and regulatory cell deaths (RCD) in cardiomyocytes, such as apoptosis, pyroptosis, autophagy, and ferroptosis. ROS is a double-edged sword. A reasonable level of ROS maintains the normal physiological activity of myocardial cells. However, during myocardial ischemia-reperfusion, excessive ROS generation accelerates myocardial damage through a variety of biological pathways. ROS regulates cardiomyocyte RCD through various molecular mechanisms. Targeting the removal of excess ROS has been considered an effective way to reverse myocardial damage. Many studies have applied antioxidant drugs or new advanced materials to reduce ROS levels to alleviate MIRI. Although the road from laboratory to clinic has been difficult, many scholars still persevere. This article reviews the molecular mechanisms of ROS inhibition to regulate cardiomyocyte RCD, with a view to providing new insights into prevention and treatment strategies for MIRI.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xinghu Zhang
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 211002, China
| | - Xiangxuan Chen
- Department of Cardiology, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
| | - Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Jiangsu Medical Vocational College, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical Medical College of Nanjing Medical University Kangda College, Nanjing, 211100, China.
| |
Collapse
|
3
|
Mu X, Yu H, Li H, Feng L, Ta N, Ling L, Bai L, A R, Borjigidai A, Pan Y, Fu M. Metabolomics analysis reveals the effects of Salvia Miltiorrhiza Bunge extract on ameliorating acute myocardial ischemia in rats induced by isoproterenol. Heliyon 2024; 10:e30488. [PMID: 38737264 PMCID: PMC11088323 DOI: 10.1016/j.heliyon.2024.e30488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/14/2024] Open
Abstract
Salvia miltiorrhiza Bunge (SM) is a widespread herbal therapy for myocardial ischemia (MI). Nevertheless, the therapeutic signaling networks of SM extract on MI is yet unknown. Emerging evidences suggested that alterations in cardiac metabolite influences host metabolism and accelerates MI progression. Herein, we employed an isoproterenol (ISO)-induced acute myocardial ischemia (AMI) rat model to confirm the pharmacological effects of SM extract (0.8, 0.9, 1.8 g/kg/day) via assessment of the histopathological alterations that occur within the heart tissue and associated cytokines; we also examined the underlying SM extract-mediated signaling networks using untargeted metabolomics. The results indicated that 25 compounds with a relative content higher than 1 % in SM aqueous extract were identified using LC-MS/MS analysis, which included salvianolic acid B, lithospermic acid, salvianolic acid A, and caffeic acid as main components. An in vivo experiment showed that pretreatment with SM extract attenuated ISO-induced myocardial injury, shown as decreased myocardial ischemic size, transformed electrocardiographic, histopathological, and serum biochemical aberrations, reduced levels of proinflammatory cytokines, inhibited oxidative stress (OS), and reversed the trepidations of the cardiac tissue metabolic profiles. Metabolomics analysis shows that the levels of 24 differential metabolites (DMs) approached the same value as controls after SM extract therapy, which were primarily involved in histidine; alanine, aspartate, and glutamate; glycerophospholipid; and glycine, serine, and threonine metabolisms through metabolic pathway analysis. Correlation analysis demonstrated that the levels of modulatory effects of SM extract on the inflammation and OS were related to alterations in endogenous metabolites. Overall, SM extract demonstrated significant cardioprotective effects in an ISO-induced AMI rat model, alleviating myocardial injury, inflammation and oxidative stress, with metabolomics analysis indicating potential therapeutic pathways for myocardial ischemia.
Collapse
Affiliation(s)
- Xiyele Mu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Hongzhen Yu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Huifang Li
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Lan Feng
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Na Ta
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Ling Ling
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Li Bai
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Rure A
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Almaz Borjigidai
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Yipeng Pan
- Department of Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China
| | - Minghai Fu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
4
|
Hu Z, Luo Y, Ni R, Hu Y, Yang F, Du T, Zhu Y. Biological importance of human amniotic membrane in tissue engineering and regenerative medicine. Mater Today Bio 2023; 22:100790. [PMID: 37711653 PMCID: PMC10498009 DOI: 10.1016/j.mtbio.2023.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
The human amniotic membrane (hAM) is the innermost layer of the placenta. Its distinctive structure and the biological and physical characteristics make it a highly biocompatible material in a variety of regenerative medicine applications. It also acts as a supply of bioactive factors and cells, which indicate the advantages over other tissues. In this review, we firstly discussed the biological properties of hAM-derived cells in vivo or in vitro, along with their stemness of markers, pointing out a promising source of stem cells for regenerative medicine. Then, we systematically summarized current knowledge on the collection, preparation, preservation, and decellularization of hAM, as well as their characteristics helping to improve the understanding of applications in tissue engineering. Finally, we highlighted the recent advances in which hAM has undergone additional modifications to achieve an adequate perspective of regenerative medicine applications. More investigations are required in utilizing appropriate modifications to enhance the therapeutic effectiveness of hAM in the future.
Collapse
Affiliation(s)
- Zeming Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
5
|
Zhu Q, Huang Y, Zhu X, Peng L, Wang H, Gao S, Yang Z, Zhang J, Liu X. Mannose-coated superparamagnetic iron oxide nanozyme for preventing postoperative cognitive dysfunction. Mater Today Bio 2023; 19:100568. [PMID: 36846307 PMCID: PMC9945786 DOI: 10.1016/j.mtbio.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is associated with increased postoperative morbidity and mortality in patients. Excessive production of reactive oxygen species (ROS) and the consequent inflammatory response in the postoperative brain play crucial roles in the development of POCD. However, effective ways to prevent POCD have yet to be developed. Moreover, effective penetration of the blood-brain barrier (BBB) and maintaining viability in vivo are major challenges for preventing POCD using traditional ROS scavengers. Herein, mannose-coated superparamagnetic iron oxide nanoparticles (mSPIONs) were synthesized by co-precipitation method. The BBB penetration of mSPIONs was verified through fluorescent imaging and ICP-MS quantification. The ROS scavenging and anti-inflammatory of mSPIONs were evaluated in H2O2-treated J774A.1 cells and in tibial fracture mice model. The novel object recognition (NOR) and trace-fear conditioning (TFC) were used to test the cognitive function of postoperative mice. The average diameter of mSPIONs was approximately 11 nm. mSPIONs significantly reduced ROS levels in H2O2-treated cells and in hippocampus of surgical mice. mSPIONs administration reduced the levels of IL-1β and TNF-α in the hippocampus and inhibited surgery-upregulated HIF1-α/NF-κB signaling pathway. Moreover, mSPIONs significantly improved the cognitive function of postoperative mice. This study provides a new approach for preventing POCD using a nanozyme.
Collapse
Affiliation(s)
- Qianyun Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Yuting Huang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Xiaoling Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Lijun Peng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Huan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, PR China
| | - Zhilai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| |
Collapse
|
6
|
Abu-El-Rub E, Khasawneh RR, Almahasneh F. Prodigious therapeutic effects of combining mesenchymal stem cells with magnetic nanoparticles. World J Stem Cells 2022; 14:513-526. [PMID: 36157526 PMCID: PMC9350622 DOI: 10.4252/wjsc.v14.i7.513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have gained wide-ranging reputation in the medical research community due to their promising regenerative abilities. MSCs can be isolated from various resources mostly bone marrow, Adipose tissues and Umbilical cord. Huge advances have been achieved in comprehending the possible mechanisms underlying the therapeutic functions of MSCs. Despite the proven role of MSCs in repairing and healing of many disease modalities, many hurdles hinder the transferring of these cells in the clinical settings. Among the most reported problems encountering MSCs therapy in vivo are loss of tracking signal post-transplantation, insufficient migration, homing and engraftment post-infusion, and undesirable differentiation at the site of injury. Magnetic nano particles (MNPs) have been used widely for various biomedical applications. MNPs have a metallic core stabilized by an outer coating material and their ma gnetic properties can be modulated by an external magnetic field. These magnetic properties of MNPs were found to enhance the quality of diagnostic imaging procedures and can be used to create a carrying system for targeted delivery of therapeutic substances mainly drug, genes and stem cells. Several studies highlighted the advantageous outcomes of combining MSCs with MNPs in potentiating their tracking, monitoring, homing, engraftment and differentiation. In this review, we will discuss the role of MNPs in promoting the therapeutic profile of MSCs which may improve the success rate of MSCs transplantation and solve many challenges that delay their clinical applicability.
Collapse
Affiliation(s)
- Ejlal Abu-El-Rub
- Department of Physiology and Pathophysiology, Yarmouk University, Irbid 21163, Jordan
| | - Ramada R Khasawneh
- Department of Anatomy and Histology, Yarmouk University, Irbid 21163, Jordan.
| | - Fatimah Almahasneh
- Department of Physiology and Pathophysiology, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
7
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
8
|
Yang J, Li H, Zhang C, Zhou Y. Indoxyl sulfate reduces Ito,f by activating ROS/MAPK and NF-κB signaling pathways. JCI Insight 2022; 7:145475. [PMID: 35132967 PMCID: PMC8855797 DOI: 10.1172/jci.insight.145475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
There is a high prevalence of ventricular arrhythmias related to sudden cardiac death in patients with chronic kidney disease (CKD). To explored the possible mechanism of CKD-related ventricular arrhythmias, a CKD rat model was created, and indoxyl sulfate (IS) was further used in vivo and in vitro. This project used the following methods: patch clamp, electrocardiogram, and some molecular biology experimental techniques. IS was found to be significantly elevated in the serum of CKD rats. Interestingly, the expression levels of the fast transient outward potassium current-related (Ito,f-related) proteins (Kv4.2, Kv4.3, and KChIP2) in the heart of CKD rats and rats treated with IS decreased. IS dose-dependently reduced Ito,f density, accompanied by the decreases in Kv4.2, Kv4.3, and KChIP2 proteins in vitro. IS also prolonged the action potential duration and QT interval, and paroxysmal ventricular tachycardia could be induced by IS. In-depth studies have shown that ROS/p38MAPK, ROS-p44/42 MAPK, and NF-κB signaling pathways play key roles in the reduction of Ito,f density and Ito,f-related proteins caused by IS. These data suggest that IS reduces Ito,f-related proteins and Ito,f density by activating ROS/MAPK and NF-κB signaling pathways, and the action potential duration and QT interval are subsequently prolonged, which contributes to increasing the susceptibility to arrhythmia in CKD.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chi Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yafeng Zhou
- Department of Cardiology, Dushu Public Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Abstract
Mesenchymal stem cells (MSCs) exhibit regenerative and reparative properties. However, most MSC-related studies remain to be translated for regular clinical usage, partly due to challenges in pre-transplantation cell labelling and post-transplantation cell tracking. Amidst this, there are growing concerns over the toxicity of commonly used gadolinium-based contrast agents that mediate in-vivo cell detection via MRI. This urges to search for equally effective but less toxic alternatives that would facilitate and enhance MSC detection post-administration and provide therapeutic benefits in-vivo. MSCs labelled with iron oxide nanoparticles (IONPs) have shown promising results in-vitro and in-vivo. Thus, it would be useful to revisit these studies before inventing new labelling approaches. Aiming to inform regenerative medicine and augment clinical applications of IONP-labelled MSCs, this review collates and critically evaluates the utility of IONPs in enhancing MSC detection and therapeutics. It explains the rationale, principle, and advantages of labelling MSCs with IONPs, and describes IONP-induced intracellular alterations and consequent cellular manifestations. By exemplifying clinical pathologies, it examines contextual in-vitro, animal, and clinical studies that used IONP-labelled bone marrow-, umbilical cord-, adipose tissue- and dental pulp-derived MSCs. It compiles and discusses studies involving MSC-labelling of IONPs in combinations with carbohydrates (Venofer, ferumoxytol, dextran, glucosamine), non-carbohydrate polymers [poly(L-lysine), poly(lactide-co-glycolide), poly(L-lactide), polydopamine], elements (ruthenium, selenium, gold, zinc), compounds/stains (silica, polyethylene glycol, fluorophore, rhodamine B, DAPI, Prussian blue), DNA, Fibroblast growth Factor-2 and the drug doxorubicin. Furthermore, IONP-labelling of MSC exosomes is reviewed. Also, limitations of IONP-labelling are addressed and methods of tackling those challenges are suggested.
Collapse
|
10
|
Liu Y, Fan S, Niu F, Liu Y, Liu X, Ren X, Yang Y, Fan G, Dong H, Shen M, Sui H, Fang F, She G. Polyphenol-rich fraction from Thymus quinquecostatus Celak attenuates the myocardial ischemia injury in mice induced by isoproterenol through inhibiting apoptosis, antioxidation and activating PI3K/AKT pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2021; 7:47-72. [PMID: 34466716 PMCID: PMC8377441 DOI: 10.1016/j.bioactmat.2021.06.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Interventional coronary reperfusion strategies are widely adopted to treat acute myocardial infarction, but morbidity and mortality of acute myocardial infarction are still high. Reperfusion injuries are inevitable due to the generation of reactive oxygen species (ROS) and apoptosis of cardiac muscle cells. However, many antioxidant and anti-inflammatory drugs are largely limited by pharmacokinetics and route of administration, such as short half-life, low stability, low bioavailability, and side effects for treatment myocardial ischemia reperfusion injury. Therefore, it is necessary to develop effective drugs and technologies to address this issue. Fortunately, nanotherapies have demonstrated great opportunities for treating myocardial ischemia reperfusion injury. Compared with traditional drugs, nanodrugs can effectively increase the therapeutic effect and reduces side effects by improving pharmacokinetic and pharmacodynamic properties due to nanodrugs’ size, shape, and material characteristics. In this review, the biology of ROS and molecular mechanisms of myocardial ischemia reperfusion injury are discussed. Furthermore, we summarized the applications of ROS-based nanoparticles, highlighting the latest achievements of nanotechnology researches for the treatment of myocardial ischemia reperfusion injury. Cardiovascular diseases are the leading cause of death worldwide. Researches of the myocardial infarction pathology and development of new treatments have very important scientific significance in the biomedical field. Many nanomaterials have shown amazing therapeutic effects to reduce myocardial damage by eliminating ROS. Nanomaterials effectively reduced myocardial damage through eliminating ROS from NOXs, M-ETC, M-Ca2+, M-mPTP, and RIRR.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, 750003, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
12
|
Human amniotic membrane mesenchymal stem cells exert cardioprotective effects against isoproterenol (ISO)-induced myocardial injury through suppression of inflammation and modulation of inflammatory MAPK/NF-κB pathway. Cell Tissue Bank 2021; 23:67-77. [PMID: 33733423 DOI: 10.1007/s10561-021-09915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
A common cause of mortality around the world is ischemic myocardial injury. The study was conducted to examine the ability of amniotic membrane mesenchymal stem cells (AMSCs) for protection against isoproterenol (ISO)-induced myocardial injury and attempted to show the possible mechanisms by which AMSCs that can be linked to inhibition of inflammation by targeting inflammatory MAPK/NF-κB pathway. Model was established by subcutaneous injection of 170 mg/kg/day of ISO for four consecutive days. Flow cytometry and echocardiography were carried out to evaluate characterization of hAMSCs and cardiac function, respectively. The expression of inflammatory cytokines was determined using ELISA assay. The activities of NF-κB and phosphorylated p38 MAPK were measured using immunohistochemical assessments. The results showed that ISO administration was resulted in cardiac dysfunction, increased levels of inflammatory cytokines that reversed by intramyocardially administration of AMSCs (P < 0. 05). Cardioprotective effects of AMSCs were associated with a significant decreased expression of NF-κB and reduced levels of phosphorylated p38 MAPK (P < 0. 05). In conclusion, our finding showed that intramyocardially administration of AMSCs could contribute to improvement of heart function and inhibition of inflammation in the site of injury by targeting inflammatory MAPK/NF-κB pathway.
Collapse
|
13
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|