1
|
Currie J, Dahlberg JR, Lundberg E, Thunberg L, Eriksson J, Schweikart F, Nilsson GA, Örnskov E. Stability indicating ion-pair reversed-phase liquid chromatography method for modified mRNA. J Pharm Biomed Anal 2024; 245:116144. [PMID: 38636193 DOI: 10.1016/j.jpba.2024.116144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024]
Abstract
Modified messenger RNA (mRNA) represents a rapidly emerging class of therapeutic drug product. Development of robust stability indicating methods for control of product quality are therefore critical to support successful pharmaceutical development. This paper presents an ion-pair reversed-phase liquid chromatography (IP-RPLC) method to characterise modified mRNA exposed to a wide set of stress-inducing conditions, relevant for pharmaceutical development of an mRNA drug product. The optimised method could be used for separation and analysis of large RNA, sized up to 1000 nucleotides. Column temperature, mobile phase flow rate and ion-pair selection were each studied and optimised. Baseline separations of the model RNA ladder sample were achieved using all examined ion-pairing agents. We established that the optimised method, using 100 mM Triethylamine, enabled the highest resolution separation for the largest fragments in the RNA ladder (750/1000 nucleotides), in addition to the highest overall resolution for the selected modified mRNA compound (eGFP mRNA, 996 nucleotides). The stability indicating power of the method was demonstrated by analysing the modified eGFP mRNA, upon direct exposure to heat, hydrolytic conditions and treatment with ribonucleases. Our results showed that the formed degradation products, which appeared as shorter RNA fragments in front of the main peak, could be well monitored, using the optimised method, and the relative stability of the mRNA under the various stressed conditions could be assessed.
Collapse
Affiliation(s)
- Jonathan Currie
- Innovation Strategies and External Liaison, Pharmaceutical Technology and Development, Operations & IT, AstraZeneca, Gothenburg, Sweden
| | - Jacob R Dahlberg
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ester Lundberg
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Thunberg
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonas Eriksson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fritz Schweikart
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gunilla A Nilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Eivor Örnskov
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
2
|
Morilla MJ, Ghosal K, Romero EL. Nanomedicines against Chagas disease: a critical review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:333-349. [PMID: 38590427 PMCID: PMC11000002 DOI: 10.3762/bjnano.15.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Chagas disease (CD) is the most important endemic parasitosis in South America and represents a great socioeconomic burden for the chronically ill and their families. The only currently available treatment against CD is based on the oral administration of benznidazole, an agent, developed in 1971, of controversial effectiveness on chronically ill patients and toxic to adults. So far, conventional pharmacological approaches have failed to offer more effective and less toxic alternatives to benznidazole. Nanomedicines reduce toxicity and increase the effectiveness of current oncological therapies. Could nanomedicines improve the treatment of the neglected CD? This question will be addressed in this review, first by critically discussing selected reports on the performance of benznidazole and other molecules formulated as nanomedicines in in vitro and in vivo CD models. Taking into consideration the developmental barriers for nanomedicines and the degree of current technical preclinical efforts, a prospect of developing nanomedicines against CD will be provided. Not surprisingly, we conclude that structurally simpler formulations with minimal production cost, such as oral nanocrystals and/or parenteral nano-immunostimulants, have the highest chances of making it to the market to treat CD. Nonetheless, substantive political and economic decisions, key to facing technological challenges, are still required regarding a realistic use of nanomedicines effective against CD.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
3
|
Jackman MJ, Li W, Smith A, Workman D, Treacher KE, Corrigan A, Abdulrazzaq F, Sonzini S, Nazir Z, Lawrence MJ, Mahmoudi N, Cant D, Counsell J, Cairns J, Ferguson D, Lenz E, Baquain S, Madla CM, van Pelt S, Moss J, Peter A, Puri S, Ashford M, Mazza M. Impact of the physical-chemical properties of poly(lactic acid)-poly(ethylene glycol) polymeric nanoparticles on biodistribution. J Control Release 2024; 365:491-506. [PMID: 38030083 DOI: 10.1016/j.jconrel.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Nanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy. Together, these techniques revealed a uniquely detailed picture of PNP size, surface structure, internal molecular architecture and the preferred site(s) of incorporation of the hydrophobic drug, AZD5991, properties which cannot be accessed via conventional characterization methodologies. Within the PNP size distribution, it was shown that the smallest PNPs contained significantly less drug than their larger sized counterparts, reducing overall drug loading, while PNP molecular architecture was critical in understanding the nature of in vitro drug release. The effect of PNP size and structure on drug biodistribution was determined by administrating selected PNP size fractions to mice, with the smaller sized NP fractions increasing the total drug-plasma concentration area under the curve and reducing drug concentrations in liver and spleen, due to greater avoidance of the reticuloendothelial system. In contrast, administration of unfractionated PNPs, containing a large population of NPs with extremely low drug load, did not significantly impact the drug's pharmacokinetic behavior - a significant result for nanomedicine development where a uniform formulation is usually an important driver. We also demonstrate how, in this study, it is not practicable to validate the bioanalytical methodology for drug released in vivo due to the NP formulation properties, a process which is applicable for most small molecule-releasing nanomedicines. In conclusion, this work details a strategy for determining the effect of formulation variability on in vivo performance, thereby informing the translation of PNPs, and other NPs, from the laboratory to the clinic.
Collapse
Affiliation(s)
- Mark J Jackman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Weimin Li
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Aaron Smith
- DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - David Workman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Kevin E Treacher
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Adam Corrigan
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Fadi Abdulrazzaq
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Silvia Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Zahid Nazir
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - M Jayne Lawrence
- Division of Pharmacy & Optometry and the North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Najet Mahmoudi
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot, UK
| | - David Cant
- National Physical Laboratory, Teddington, UK
| | | | - Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Doug Ferguson
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Eva Lenz
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Saif Baquain
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Christine M Madla
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sally van Pelt
- Business, Planning & Operations, AstraZeneca, Cambridge, UK
| | - Jennifer Moss
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Alison Peter
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
4
|
Chen H, Gu ZG, Zhang J. Surface chiroselective assembly of enantiopure crystalline porous films containing bichiral building blocks. Chem Sci 2021; 12:12346-12352. [PMID: 34603664 PMCID: PMC8480342 DOI: 10.1039/d1sc03089b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022] Open
Abstract
The development of chiral crystalline porous materials (CPMs) containing multiple chiral building blocks plays an important role in chiral chemistry and applications but is a challenging task. Herein, we report the first example of bichiral building block based enantiopure CPM films containing metal-organic cages (MOCs) and metal complexes. The functionalized substrate was immersed subsequently into homochiral metal complex (R)- or (S)-Mn(DCH)3 (DCH = 1,2-diaminocyclohexane) and racemic Ti4L6 cage (L = embonate) solutions by a layer-by-layer growth method. During the assembly process, the substrate surface coordinated with (R)- or (S)-Mn(DCH)3 can, respectively, layer-by-layer chiroselectively connect Δ- or Λ-Ti4L6 cages to form homochiral (R, Δ)- or (S, Λ)-CPM films with a preferred [111] growth orientation, tunable thickness and homogeneous surface. The resulting enantiopure CPM films show strong chirality, photoluminescence, and circularly polarized luminescence (CPL) properties as well as good enantioselective adsorption toward enantiomers of 2-butanol and methyl-lactate. The present in situ surface chiroselective strategy opens a new route to assemble homochiral CPM films containing multiple chiral building blocks for chiral applications.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
5
|
Algorri M, Abernathy MJ, Cauchon NS, Christian TR, Lamm CF, Moore CMV. Re-Envisioning Pharmaceutical Manufacturing: Increasing Agility for Global Patient Access. J Pharm Sci 2021; 111:593-607. [PMID: 34478754 DOI: 10.1016/j.xphs.2021.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
The traditional paradigm for pharmaceutical manufacturing is focused primarily upon centralized facilities that enable mass production and distribution. While this system reliably maintains high product quality and reproducibility, its rigidity imposes limitations upon new manufacturing innovations that could improve efficiency and support supply chain resiliency. Agile manufacturing methodologies, which leverage flexibility through portability and decentralization, allow manufacturers to respond to patient needs on demand and present a potential solution to enable timely access to critical medicines. Agile approaches are particularly applicable to the production of small-batch, personalized therapies, which must be customized for each individual patient close to the point-of-care. However, despite significant progress in the advancement of agile-enabling technologies across several different industries, there are substantial global regulatory challenges that encumber the adoption of agile manufacturing techniques in the pharmaceutical industry. This review provides an overview of regulatory barriers as well as emerging opportunities to facilitate the use of agile manufacturing for the production of pharmaceutical products. Future-oriented approaches for incorporating agile methodologies within the global regulatory framework are also proposed. Collaboration between regulators and manufacturers to cohesively navigate the regulatory waters is ultimately needed to best serve patients in the rapidly-changing healthcare environment.
Collapse
Affiliation(s)
- Marquerita Algorri
- Department of Global Regulatory Affairs and Strategy-CMC, Amgen Inc, Thousand Oaks, California 91320, USA
| | - Michael J Abernathy
- Department of Global Regulatory Affairs and Strategy-CMC, Amgen Inc, Thousand Oaks, California 91320, USA
| | - Nina S Cauchon
- Department of Global Regulatory Affairs and Strategy-CMC, Amgen Inc, Thousand Oaks, California 91320, USA.
| | | | | | | |
Collapse
|