1
|
Zhang J, Zhang G, Wang J, Xiao Y, Lu X, Lan X, Zhang Y, Dai Z. Establishment and Validation of a Nomogram Clinical Prediction Model for Nosocomial Candidemia: An 18-Year Retrospective Analysis. Infect Drug Resist 2024; 17:4455-4466. [PMID: 39431215 PMCID: PMC11491067 DOI: 10.2147/idr.s480028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background Nosocomial candidemia is a life-threatening condition, and the incidence has increased in recent years. Thorough epidemiological data is still lacking in China. Methods A retrospective cohort study was conducted to investigate the patients admitted to Zhongshan Hospital Xiamen University from 1 January 2004 to 31 December 2022. This study included 205 individuals who were diagnosed with candidemia as subjects. Additionally, 303 cases with blood cultures were negative during the same period and were from the same department as a control group. We randomly assigned them to the training and validation groups in a 7:3 ratio. The least absolute shrinkage and selection operator regression, univariate and multivariate logistic regression analyses were used to filtrate independent factors associated with nosocomial candidemia. A nomogram model was established based on the selected variables. Receiver operating characteristic (ROC) curve, calibration plots and decision curve analysis (DCA) were used to evaluate clinical utility. Results Two hundred and five nosocomial candidemia patients were reported, containing a high proportion of Candida albicans (n = 91,44.39%), followed by Candida parapsilosis (n = 40, 19.51%), Candida tropicalis (n = 37,18.05%), Candida glabrata (n = 23, 11.22%) and Candida guilliermondii (n = 9,4.39%). Multiple organ dysfunction syndrome (OR = 10.372, 95% CI: 4.745-24.14 P < 0.001), increased urea nitrogen of serum (OR=1.088,95% CI: 1.039-1.144 P<0.001), decreased albumin of serum (OR = 0.922 95% CI: 0.850-0.997 P=0.045), mechanical ventilation (OR=4.074,95% CI: 1.397-12.77 P=0.012), central venous indwelling catheter (OR=7.422,95% CI: 3.189-18.41 P<0.001) and solid tumor (OR = 3.036 95% CI: 1.276-7.359 P=0.012) were identified as independent risk factors of candidemia. The area under the curve (AUC) of the nomogram model was 0.925 (95% CI: 0.898-0.952) in the training group and 0.946 (95% CI: 0.881-0.963) in the validation group. The calibration curve revealed good agreement between the probability and the observed values. DCA indicated that this nomogram might be clinically beneficial. Conclusion The nomogram including multiple organ dysfunction syndrome, elevated blood urea nitrogen, decreased albumin, mechanical ventilation, central venous indwelling catheter and solid tumor could provide reference value to clinicians for identifying nosocomial candidemia.
Collapse
Affiliation(s)
- Jingwen Zhang
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Guoqiang Zhang
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - JiaJia Wang
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yun Xiao
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Xinxin Lu
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Xunhong Lan
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yan Zhang
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Zhang Dai
- Centre of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
2
|
Abruzzo A, Corazza E, Giordani B, Nicoletta FP, Vitali B, Cerchiara T, Luppi B, Bigucci F. Association of mucoadhesive polymeric matrices and liposomes for local delivery of miconazole: A new approach for the treatment of oral candidiasis. Int J Pharm 2024; 661:124461. [PMID: 38996824 DOI: 10.1016/j.ijpharm.2024.124461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Since the local treatment of oral candidiasis usually requires long-term administration of the antifungal drug, an ideal dosage form should be able to maintain the drug release over an extended period, assuring an adequate concentration at the infection site. In this context, we have considered the possibility of a buccal delivery of miconazole nitrate (MN) by mucoadhesive polymeric matrices. The loading of the antifungal drug in a hydrophilic matrix was made possible by taking advantage of the amphiphilic nature of liposomes (LP). The MN-loaded LP were prepared by a thin film evaporation method followed by extrusion, while solid matrices were obtained by freeze-drying a suspension of the LP in a polymeric solution based on chitosan (CH), sodium hyaluronate (HYA), or hydroxypropyl methylcellulose (HPMC). MN-loaded LP measured 284.7 ± 20.1 nm with homogeneous size distribution, adequate drug encapsulation efficiency (86.0 ± 3.3 %) and positive zeta potential (+47.4 ± 3.3). CH and HYA-based formulations almost completely inhibited C. albicans growth after 24 h, even if the HYA-based one released a higher amount of the drug. The CH-based matrix also provided the best mucoadhesive capacity and therefore represents the most promising candidate for the local treatment of oral candidiasis.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Elisa Corazza
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, 87036 Arcavacata di Rende, Cosenza, Italy.
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy.
| |
Collapse
|
3
|
Bellavita R, Falanga A, Merlino F, D'Auria G, Molfetta N, Saviano A, Maione F, Galdiero U, Catania MR, Galdiero S, Grieco P, Roscetto E, Falcigno L, Buommino E. Unveiling the mechanism of action of acylated temporin L analogues against multidrug-resistant Candida albicans. J Enzyme Inhib Med Chem 2023; 38:36-50. [PMID: 36305289 PMCID: PMC9621209 DOI: 10.1080/14756366.2022.2134359] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The increasing resistance of fungi to conventional antifungal drugs has prompted worldwide the search for new compounds. In this work, we investigated the antifungal properties of acylated Temporin L derivatives, Pent-1B and Dec-1B, against Candida albicans, including the multidrug-resistant strains. Acylated peptides resulted to be active both on reference and clinical strains with MIC values ranging from 6.5 to 26 µM, and they did not show cytotoxicity on human keratinocytes. In addition, we also observed a synergistic or additive effect with voriconazole for peptides Dec-1B and Pent-1B through the checkerboard assay on voriconazole-resistant Candida strains. Moreover, fluorescence-based assays, NMR spectroscopy, and confocal microscopy elucidated a potential membrane-active mechanism, consisting of an initial electrostatic interaction of acylated peptides with fungal membrane, followed by aggregation and insertion into the lipid bilayer and causing membrane perturbation probably through a carpeting effect.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples "Federico II", Portici, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Gabriella D'Auria
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Nicola Molfetta
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Anella Saviano
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Francesco Maione
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Umberto Galdiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucia Falcigno
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
4
|
da Silva CR, Silveira MJCB, Soares GC, de Andrade CR, Cabral VPDF, Sá LGDAV, Rodrigues DS, Moreira LEA, Barbosa AD, da Silva LJ, da Silva AR, Gomes AOCV, Cavalcanti BC, de Moraes MO, Nobre Júnior HV, de Andrade Neto JB. Analysis of possible pathways on the mechanism of action of minocycline and doxycycline against strains of Candida spp. resistant to fluconazole. J Med Microbiol 2023; 72. [PMID: 37801011 DOI: 10.1099/jmm.0.001759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Species of the genus Candida, characterized as commensals of the human microbiota, are opportunistic pathogens capable of generating various types of infections with high associated costs. Considering the limited pharmacological arsenal and the emergence of antifungal-resistant strains, the repositioning of drugs is a strategy used to search for new therapeutic alternatives, in which minocycline and doxycycline have been evaluated as potential candidates. Thus, the objective was to evaluate the in vitro antifungal activity of two tetracyclines, minocycline and doxycycline, and their possible mechanism of action against fluconazole-resistant strains of Candida spp. The sensitivity test for antimicrobials was performed using the broth microdilution technique, and the pharmacological interaction with fluconazole was also analysed using the checkerboard method. To analyse the possible mechanisms of action, flow cytometry assays were performed. The minimum inhibitory concentration obtained was 4-427 µg ml-1 for minocycline and 128-512 µg ml-1 for doxycycline, and mostly indifferent and additive interactions with fluconazole were observed. These tetracyclines were found to promote cellular alterations that generated death by apoptosis, with concentration-dependent reactive oxygen species production and reduced cell viability. Therefore, minocycline and doxycycline present themselves as promising study molecules against Candida spp.
Collapse
Affiliation(s)
- Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria Janielly Castelo Branco Silveira
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | | | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Jiang Y, Yin C, Mo J, Wang X, Wang T, Li G, Zhou Q. Recent progress in carbon dots for anti-pathogen applications in oral cavity. Front Cell Infect Microbiol 2023; 13:1251309. [PMID: 37780847 PMCID: PMC10540312 DOI: 10.3389/fcimb.2023.1251309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Background Oral microbial infections are one of the most common diseases. Their progress not only results in the irreversible destruction of teeth and other oral tissues but also closely links to oral cancers and systemic diseases. However, traditional treatment against oral infections by antibiotics is not effective enough due to microbial resistance and drug blocking by oral biofilms, along with the passive dilution of the drug on the infection site in the oral environment. Aim of review Besides the traditional antibiotic treatment, carbon dots (CDs) recently became an emerging antimicrobial and microbial imaging agent because of their excellent (bio)physicochemical performance. Their application in treating oral infections has received widespread attention, as witnessed by increasing publication in this field. However, to date, there is no comprehensive review available yet to analyze their effectiveness and mechanism. Herein, as a step toward addressing the present gap, this review aims to discuss the recent advances in CDs against diverse oral pathogens and thus propose novel strategies in the treatment of oral microbial infections. Key scientific concepts of review In this manuscript, the recent progress of CDs against oral pathogens is summarized for the first time. We highlighted the antimicrobial abilities of CDs in terms of oral planktonic bacteria, intracellular bacteria, oral pathogenic biofilms, and fungi. Next, we introduced their microbial imaging and detection capabilities and proposed the prospects of CDs in early diagnosis of oral infection and pathogen microbiological examination. Lastly, we discussed the perspectives on clinical transformation and the current limitations of CDs in the treatment of oral microbial infections.
Collapse
Affiliation(s)
- Yuying Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Chuqiang Yin
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianning Mo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ting Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guotai Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
6
|
Costa RHF, Krawczyk-Santos AP, Martins Andrade JF, Barbalho GN, Almeida RM, Nóbrega YKM, Cunha-Filho M, Gelfuso GM, Taveira SF, Gratieri T. α-Cyclodextrin-based poly(pseudo)rotaxane for antifungal drug delivery to the vaginal mucosa. Carbohydr Polym 2023; 302:120420. [PMID: 36604082 DOI: 10.1016/j.carbpol.2022.120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
This work aimed to evaluate poly(pseudo)rotaxanes (PPRs) potential for vaginal antifungal delivery. For this, PPRs containing terbinafine (TB) 2 % were obtained using two small surfactants, Kolliphor® RH40 and Gelucire® 48/16, and different α-cyclodextrin (α-CD) concentrations (5 and 10 %). PPRs were characterized by their physicochemical characteristics, irritation, and mucoadhesion capabilities. Formulations' performance was assessed in a vertical penetration model, which uses ex vivo entire porcine vagina. Conventional penetration experiments with excised vaginal tissue were performed as a control. Results showed all formulations were non-irritant according to the HET-CAM test. Furthermore, PPRs with 10 % αCD showed superior mucoadhesion (p < 0.05). Conventional horizontal penetration studies could not differentiate formulations (p > 0.05). However, PPRs with 10 % αCD presented a better performance in vertical ex vivo studies, achieving higher drug penetration into the vaginal mucosa (p < 0.05), which is probably related to the formulation's prolonged residence time. In addition, the antifungal activity of the formulations was maintained against Candida albicans and C. glabrata cultures. More importantly, the formulation's viscosity and drug delivery control had no negative impact on the antifungal activity. In conclusion, the best performance in a more realistic model evidenced the remarkable potential of PPRs for vaginal drug delivery.
Collapse
Affiliation(s)
- Rayssa H F Costa
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Anna Paula Krawczyk-Santos
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás (UFG), 74605-170 Goiânia, GO, Brazil
| | | | - Geisa N Barbalho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Rosane M Almeida
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia (UnB), 70910-900 Brasilia, DF, Brazil
| | - Yanna K M Nóbrega
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia (UnB), 70910-900 Brasilia, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Stephânia F Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás (UFG), 74605-170 Goiânia, GO, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
7
|
Dynamic nitric oxide/drug codelivery system based on polyrotaxane architecture for effective treatment of Candida albicans infection. Acta Biomater 2023; 155:618-634. [PMID: 36371005 DOI: 10.1016/j.actbio.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
The low permeability of antifungal agents to fungal biofilms, which allows the continued survival of the fungus inside, is a key issue that makes fungal infections difficult to cure. Inspired by the unique dynamic molecule motion properties of the polyrotaxane (PR) nanomedicine, herein, a dynamic delivery system Clo@mPRP/NONOate was fabricated by co-loading nitric oxide (NO) and the antifungal drug clotrimazole (Clo) onto the α-cyclodextrin (α-CD) PR modified mesoporous polydopamine (mPDA) nanoparticles, in which pentaethylenehexamine (PEHA) was grafted to α-CDs. The cationic α-CDs endowed this dynamic NO/Clo codelivery system with the ability to effectively attach to fungal biofilms through electrostatic interaction, while the introduction of PRs with flexible molecule motion (slide and rotation of CDs) enhanced the permeability of nanoparticles to biofilms. Meanwhile, NO could effectively inhibit the formation of fungal hyphae, showing an dissipating effect on mature biofilms, and could be further combined with Clo to completely eradicate fungi inside the biofilms. In addition, the dynamic system Clo@mPRP/NONOate could efficiently and synergistically eliminate planktonic Candida albicans (C. albicans) in a safe and no toxic side effect manner, and effectively cured C. albicans-induced vaginal infection in mice. Therefore, this dynamic NO/Clo codelivery system provided an effective solution to the clinical treatment of C. albicans-induced vaginal infection, and the application prospect could even be extended to other microbial infectious diseases. STATEMENT OF SIGNIFICANCE: A dynamic codelivery system based on cationized cyclodextrin polyrotaxane combining nitric oxide and antifungal drugs clotrimazole was prepared to deal with the issue of clinical fungal biofilm infection. This dynamic codelivery system could be attached to the Candida albicans biofilms and penetrate into biofilm via flexible molecular mobility to effectively eradicate the fungi. This dynamic codelivery system could synergistically and efficiently eliminate planktonic-state Candida albicans, but did not show significant cytotoxicity to normal somatic cells.
Collapse
|
8
|
Zhang W, Hu E, Wang Y, Miao S, Liu Y, Hu Y, Liu J, Xu B, Chen D, Shen Y. Emerging Antibacterial Strategies with Application of Targeting Drug Delivery System and Combined Treatment. Int J Nanomedicine 2021; 16:6141-6156. [PMID: 34511911 PMCID: PMC8423451 DOI: 10.2147/ijn.s311248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
At present, some bacteria have developed significant resistance to almost all available antibiotics. One of the reasons that cannot be ignored is long-term exposure of bacteria to the sub-minimum inhibitory concentration (MIC) of antibiotics. Therefore, it is necessary to develop a targeted antibiotic delivery system to improve drug delivery behavior, in order to delay the generation of bacterial drug resistance. In recent years, with the continuous development of nanotechnology, various types of nanocarriers that respond to the infection microenvironment, targeting specific bacterial targets, and targeting infected cells, and so on, are gradually being used in the delivery of antibacterial agents to increase the concentration of drugs at the site of infection and reduce the side effects of drugs in normal tissues. Here, this article describes in detail the latest research progress on nanocarriers for antimicrobial, and commonly used targeted antimicrobial strategies. The advantages of the combination of nanotechnology and targeting strategies in combating bacterial infections are highlighted in this review, and the upcoming opportunities and remaining challenges in this field are rationally prospected.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Enshi Hu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yajie Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Si Miao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yanyan Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yumin Hu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ji Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China
| | - Daquan Chen
- School of Pharmacy, Yantai University, State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, 264005, People's Republic of China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
9
|
van Riel SJJM, Lardenoije CMJG, Oudhuis GJ, Cremers NAJ. Treating (Recurrent) Vulvovaginal Candidiasis with Medical-Grade Honey-Concepts and Practical Considerations. J Fungi (Basel) 2021; 7:jof7080664. [PMID: 34436203 PMCID: PMC8400673 DOI: 10.3390/jof7080664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023] Open
Abstract
Recurrent vulvovaginal candidiasis (RVVC) is a relapsing vaginal fungal infection caused by Candida species. The prevalence varies among age populations and can be as high as 9%. Treatment options are limited, and in 57% of the cases, relapses occur within six months after fluconazole maintenance therapy, which is the current standard of care. The pathogenesis of RVVC is multifactorial, and recent studies have demonstrated that the vaginal microenvironment and activity of the immune system have a strong influence on the disease. Medical-grade honey (MGH) has protective, antimicrobial, and immunomodulatory activity and forms a putative alternative treatment. Clinical trials have demonstrated that honey can benefit the treatment of bacterial and Candida-mediated vaginal infections. We postulate that MGH will actively fight ongoing infections; eradicate biofilms; and modulate the vaginal microenvironment by its anti-inflammatory, antioxidative, and immunomodulatory properties, and subsequently may decrease the number of relapses when compared to fluconazole. The MGH formulation L-Mesitran Soft has stronger antimicrobial activity against various Candida species than its raw honey. In advance of a planned randomized controlled clinical trial, we present the setup of a study comparing L-Mesitran Soft with fluconazole and its practical considerations.
Collapse
Affiliation(s)
- Senna J. J. M. van Riel
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands; (S.J.J.M.v.R.); (C.M.J.G.L.)
| | - Celine M. J. G. Lardenoije
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands; (S.J.J.M.v.R.); (C.M.J.G.L.)
| | - Guy J. Oudhuis
- Department of Medical Microbiology, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6202 AZ Maastricht, The Netherlands;
| | - Niels A. J. Cremers
- Triticum Exploitatie B.V., Sleperweg 44, 6222 NK Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-325-1773
| |
Collapse
|
10
|
Drug delivery for fighting infectious diseases: a global perspective. Drug Deliv Transl Res 2021; 11:1316-1322. [PMID: 34109534 PMCID: PMC8189707 DOI: 10.1007/s13346-021-01009-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
|