1
|
Zhang J, Pan W, Wang Y, Zhang C, Wang C, Li S, Chen F, Zhu A. Enhancing vaccine efficacy: Evaluating the superiority of cationic liposome-embedded squalene adjuvant against PCV2 infection. Virology 2024; 600:110251. [PMID: 39362035 DOI: 10.1016/j.virol.2024.110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Cationic liposome-embedded squalene (CLS) is a promising adjuvant that enhances antigen stability and mobility and improves immune response. This study compares the efficacy of a CLS-adjuvant porcine circovirus type 2 (PCV2) vaccine (CSV) with a conventional vaccine against PCV2. The CSV vaccine showed superior stability and was effective against PCV2-induced growth decline. It significantly increased serum immunoglobulin and cytokine levels, reduced serum PCV2 DNA, shortened the duration of viremia, and provided robust protection. CSV outperformed conventional vaccines, highlighting its potential for innovative vaccine development.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Wenjing Pan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - You Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Chi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Chunwei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shuang Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Fan Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Aixia Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
2
|
Archambault MJ, Tshibwabwa LM, Côté-Cyr M, Moffet S, Shiao TC, Bourgault S. Nanoparticles as Delivery Systems for Antigenic Saccharides: From Conjugation Chemistry to Vaccine Design. Vaccines (Basel) 2024; 12:1290. [PMID: 39591192 PMCID: PMC11598982 DOI: 10.3390/vaccines12111290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Glycoconjugate vaccines have been effective in preventing numerous bacterial infectious diseases and have shown recent potential to treat cancers through active immunotherapy. Soluble polysaccharides elicit short-lasting immune responses and are usually covalently linked to immunogenic carrier proteins to enhance the antigen-specific immune response by stimulating T-cell-dependent mechanisms. Nonetheless, the conjugation of purified polysaccharides to carrier proteins complexifies vaccine production, and immunization with protein glycoconjugates can lead to the undesirable immunogenic interference of the carrier. Recently, the use of nanoparticles and nanoassemblies for the delivery of antigenic saccharides has gathered attention from the scientific community. Nanoparticles can be easily functionalized with a diversity of functionalities, including T-cell epitope, immunomodulator and synthetic saccharides, allowing for the modulation and polarization of the glycoantigen-specific immune response. Notably, the conjugation of glycan to nanoparticles protects the antigens from degradation and enhances their uptake by immune cells. Different types of nanoparticles, such as liposomes assembled from lipids, inorganic nanoparticles, virus-like particles and dendrimers, have been explored for glycovaccine design. The versatility of nanoparticles and their ability to induce robust immune responses make them attractive delivery platforms for antigenic saccharides. The present review aims at summarizing recent advancements in the use of nano-scaled systems for the delivery of synthetic glycoantigens. After briefly presenting the immunological mechanisms required to promote a robust immune response against antigenic saccharides, this review will offer an overview of the current trends in the nanoparticle-based delivery of glycoantigens.
Collapse
Affiliation(s)
- Marie-Jeanne Archambault
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| | - Laetitia Mwadi Tshibwabwa
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| | - Serge Moffet
- Glycovax Pharma Inc., Laval, QC H7V 5B7, Canada; (S.M.); (T.C.S.)
| | - Tze Chieh Shiao
- Glycovax Pharma Inc., Laval, QC H7V 5B7, Canada; (S.M.); (T.C.S.)
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, C.P.8888, Succursale Centre-Ville, Montreal, QC H3C 3P8, Canada (L.M.T.)
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), Montreal, QC H3C 3P8, Canada
- The Center of Excellence in Research on Orphan Diseases-Fondation Courtois (CERMO-FC), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
3
|
Weerarathna IN, Doelakeh ES, Kiwanuka L, Kumar P, Arora S. Prophylactic and therapeutic vaccine development: advancements and challenges. MOLECULAR BIOMEDICINE 2024; 5:57. [PMID: 39527305 PMCID: PMC11554974 DOI: 10.1186/s43556-024-00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Biomedical research is fundamental in developing preventive and therapeutic vaccines, serving as a cornerstone of global public health. This review explores the key concepts, methodologies, tools, and challenges in the vaccine development landscape, focusing on transitioning from basic biomedical sciences to clinical applications. Foundational disciplines such as virology, immunology, and molecular biology lay the groundwork for vaccine creation, while recent innovations like messenger RNA (mRNA) technology and reverse vaccinology have transformed the field. Additionally, it highlights the role of pharmaceutical advancements in translating lab discoveries into clinical solutions. Techniques like CRISPR-Cas9, genome sequencing, monoclonal antibodies, and computational modeling have significantly enhanced vaccine precision and efficacy, expediting the development of vaccines against infectious diseases. The review also discusses challenges that continue to hinder progress, including stringent regulatory pathways, vaccine hesitancy, and the rapid emergence of new pathogens. These obstacles underscore the need for interdisciplinary collaboration and the adoption of innovative strategies. Integrating personalized medicine, nanotechnology, and artificial intelligence is expected to revolutionize vaccine science further. By embracing these advancements, biomedical research has the potential to overcome existing challenges and usher in a new era of therapeutic and prophylactic vaccines, ultimately improving global health outcomes. This review emphasizes the critical role of vaccines in combating current and future health threats, advocating for continued investment in biomedical science and technology.
Collapse
Affiliation(s)
- Induni Nayodhara Weerarathna
- Department of Biomedical Sciences, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India.
| | - Elijah Skarlus Doelakeh
- Department of Anesthesia, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Lydia Kiwanuka
- Department of Medical Radiology and Imaging Technology, School of Allied Health Sciences, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Praveen Kumar
- Department of Computer Science and Medical Engineering, FEAT, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| | - Sanvi Arora
- Faculty of Medicine, Jawaharlal Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to Be University), Wardha, Maharashtra, 442001, India
| |
Collapse
|
4
|
Celia C, Teesalu T, Santos HA. Unlocking the potential of nanomedicine: advances in precision targeting strategies. Drug Deliv Transl Res 2024; 14:2593-2597. [PMID: 39095582 DOI: 10.1007/s13346-024-01686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Christian Celia
- Department of Pharmacy, University of Chieti- Pescara "G. d'Annunzio", 66100, Chieti I, Italy.
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, Kaunas, LT-44307, Lithuania.
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- UdA-TechLab, Research Center, University of Chieti- Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu, 50090, Estonia.
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, Groningen, 9713 AV, The Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
| |
Collapse
|
5
|
Meng F, Liang C, Ali B, Wan C, He F, Chen J, Zhang Y, Luo Z, Su L, Zhao X, Yang B, Zhang J. In vivo spatiotemporal characterizing diverse body transportation of optical labeled high immunity aluminium adjuvants with photoacoustic tomography. PHOTOACOUSTICS 2024; 39:100643. [PMID: 39309020 PMCID: PMC11416220 DOI: 10.1016/j.pacs.2024.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024]
Abstract
Vaccine development requires high-resolution, in situ, and visual adjuvant technology. To address this need, this work proposed a novel adjuvant labeling that involved indocyanine green (ICG) and bovine serum albumin (BSA) with self-assembled aluminium adjuvant (Alum), which was called BSA@ICG@Alum. This compound exhibited excellent photoacoustic properties and has been confirmed its safety, biocompatibility, high antigen binding efficiency, and superior induction of immune response. Photoacoustic tomography (PAT) tracked the distribution of Alum in lymph nodes (LNs) and lymphatic vessels in real time after diverse injection modalities. The non-invasive imaging approach revealed that BSA@ICG@Alum was transported to the draining LNs 60 min after intramuscular injection and to distal LNs within 30 min after lymph node injection. In conclusion, PAT enabled real-time three-dimensional and quantitative visualization, thus offering a powerful tool for advancing vaccine design by providing critical insights into adjuvant transport and immune system activation.
Collapse
Affiliation(s)
- Fan Meng
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Chaohao Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Barkat Ali
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Changwu Wan
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221000, PR China
| | - Fengbing He
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Jiarui Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Yiqing Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Zhijia Luo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Lingling Su
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Xiaoya Zhao
- School of Pharmacy, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Bin Yang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| | - Jian Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510182, PR China
| |
Collapse
|
6
|
Buckland B, Sanyal G, Ranheim T, Pollard D, Searles JA, Behrens S, Pluschkell S, Josefsberg J, Roberts CJ. Vaccine process technology-A decade of progress. Biotechnol Bioeng 2024; 121:2604-2635. [PMID: 38711222 DOI: 10.1002/bit.28703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024]
Abstract
In the past decade, new approaches to the discovery and development of vaccines have transformed the field. Advances during the COVID-19 pandemic allowed the production of billions of vaccine doses per year using novel platforms such as messenger RNA and viral vectors. Improvements in the analytical toolbox, equipment, and bioprocess technology have made it possible to achieve both unprecedented speed in vaccine development and scale of vaccine manufacturing. Macromolecular structure-function characterization technologies, combined with improved modeling and data analysis, enable quantitative evaluation of vaccine formulations at single-particle resolution and guided design of vaccine drug substances and drug products. These advances play a major role in precise assessment of critical quality attributes of vaccines delivered by newer platforms. Innovations in label-free and immunoassay technologies aid in the characterization of antigenic sites and the development of robust in vitro potency assays. These methods, along with molecular techniques such as next-generation sequencing, will accelerate characterization and release of vaccines delivered by all platforms. Process analytical technologies for real-time monitoring and optimization of process steps enable the implementation of quality-by-design principles and faster release of vaccine products. In the next decade, the field of vaccine discovery and development will continue to advance, bringing together new technologies, methods, and platforms to improve human health.
Collapse
Affiliation(s)
- Barry Buckland
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| | - Gautam Sanyal
- Vaccine Analytics, LLC, Kendall Park, New Jersey, USA
| | - Todd Ranheim
- Advanced Analytics Core, Resilience, Chapel Hill, North Carolina, USA
| | - David Pollard
- Sartorius, Corporate Research, Marlborough, Massachusetts, USA
| | | | - Sue Behrens
- Engineering and Biopharmaceutical Processing, Keck Graduate Institute, Claremont, California, USA
| | - Stefanie Pluschkell
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| | - Jessica Josefsberg
- Merck & Co., Inc., Process Research & Development, Rahway, New Jersey, USA
| | - Christopher J Roberts
- National Institute for Innovation in Manufacturing Biopharmaceuticals, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
7
|
Chang X, Ma J, Zhou Y, Xiao S, Xiao X, Fang L. Development of a Ferritin Protein Nanoparticle Vaccine with PRRSV GP5 Protein. Viruses 2024; 16:991. [PMID: 38932282 PMCID: PMC11209462 DOI: 10.3390/v16060991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) presents a significant threat to the global swine industry. The development of highly effective subunit nanovaccines is a promising strategy for preventing PRRSV variant infections. In this study, two different types of ferritin (Ft) nanovaccines targeting the major glycoprotein GP5, named GP5m-Ft and (Bp-IVp)3-Ft, were constructed and evaluated as vaccine candidates for PRRSV. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) demonstrated that both purified GP5m-Ft and (Bp-IVp)3-Ft proteins could self-assemble into nanospheres. A comparison of the immunogenicity of GP5m-Ft and (Bp-IVp)3-Ft with an inactivated PRRSV vaccine in BALB/c mice revealed that mice immunized with GP5m-Ft exhibited the highest ELISA antibody levels, neutralizing antibody titers, the lymphocyte proliferation index, and IFN-γ levels. Furthermore, vaccination with the GP5m-Ft nanoparticle effectively protected piglets against a highly pathogenic PRRSV challenge. These findings suggest that GP5m-Ft is a promising vaccine candidate for controlling PRRS.
Collapse
Affiliation(s)
- Xinjian Chang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jun Ma
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xun Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.C.); (J.M.); (Y.Z.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
8
|
Marin C, Ruiz Moreno FN, Sánchez Vallecillo MF, Pascual MM, Dho ND, Allemandi DA, Palma SD, Pistoresi-Palencia MC, Crespo MI, Gomez CG, Morón G, Maletto BA. Improved biodistribution and enhanced immune response of subunit vaccine using a nanostructure formed by self-assembly of ascorbyl palmitate. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 58:102749. [PMID: 38719107 DOI: 10.1016/j.nano.2024.102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/04/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024]
Abstract
New adjuvant strategies are needed to improve protein-based subunit vaccine immunogenicity. We examined the potential to use nanostructure of 6-O-ascorbyl palmitate to formulate ovalbumin (OVA) protein and an oligodeoxynucleotide (CpG-ODN) (OCC). In mice immunized with a single dose, OCC elicited an OVA-specific immune response superior to OVA/CpG-ODN solution (OC). Rheological studies demonstrated OCC's self-assembling viscoelastic properties. Biodistribution studies indicated that OCC prolonged OVA and CpG-ODN retention at injection site and lymph nodes, reducing systemic spread. Flow-cytometry assays demonstrated that OCC promoted OVA and CpG-ODN co-uptake by Ly6ChiCD11bhiCD11c+ monocytes. OCC and OC induced early IFN-γ in lymph nodes, but OCC led to higher concentration. Conversely, mice immunized with OC showed higher serum IFN-γ concentration compared to those immunized with OCC. In mice immunized with OCC, NK1.1+ cells were the IFN-γ major producers, and IFN-γ was essential for OVA-specific IgG2c switching. These findings illustrate how this nanostructure improves vaccine's response.
Collapse
Affiliation(s)
- Constanza Marin
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Federico N Ruiz Moreno
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - María F Sánchez Vallecillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - María M Pascual
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Nicolas D Dho
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Daniel A Allemandi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas; CONICET, UNITEFA, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Santiago D Palma
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas; CONICET, UNITEFA, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - María C Pistoresi-Palencia
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - María I Crespo
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Cesar G Gomez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina; CONICET, IPQA, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina
| | - Gabriel Morón
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina
| | - Belkys A Maletto
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica; CONICET, CIBICI, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| |
Collapse
|
9
|
Sarvmeili J, Baghban Kohnehrouz B, Gholizadeh A, Shanehbandi D, Ofoghi H. Immunoinformatics design of a structural proteins driven multi-epitope candidate vaccine against different SARS-CoV-2 variants based on fynomer. Sci Rep 2024; 14:10297. [PMID: 38704475 PMCID: PMC11069592 DOI: 10.1038/s41598-024-61025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The ideal vaccines for combating diseases that may emerge in the future require more than simply inactivating a few pathogenic strains. This study aims to provide a peptide-based multi-epitope vaccine effective against various severe acute respiratory syndrome coronavirus 2 strains. To design the vaccine, a library of peptides from the spike, nucleocapsid, membrane, and envelope structural proteins of various strains was prepared. Then, the final vaccine structure was optimized using the fully protected epitopes and the fynomer scaffold. Using bioinformatics tools, the antigenicity, allergenicity, toxicity, physicochemical properties, population coverage, and secondary and three-dimensional structures of the vaccine candidate were evaluated. The bioinformatic analyses confirmed the high quality of the vaccine. According to further investigations, this structure is similar to native protein and there is a stable and strong interaction between vaccine and receptors. Based on molecular dynamics simulation, structural compactness and stability in binding were also observed. In addition, the immune simulation showed that the vaccine can stimulate immune responses similar to real conditions. Finally, codon optimization and in silico cloning confirmed efficient expression in Escherichia coli. In conclusion, the fynomer-based vaccine can be considered as a new style in designing and updating vaccines to protect against coronavirus disease.
Collapse
Affiliation(s)
- Javad Sarvmeili
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, 51666, Iran
| | | | - Ashraf Gholizadeh
- Department of Animal Biology, University of Tabriz, Tabriz, 51666, Iran
| | - Dariush Shanehbandi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, 51666, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, 33131, Iran
| |
Collapse
|
10
|
Chen YL, Lee J, Liu Z, Strych U, Bottazzi ME, Lin YP, Chen WH. Biophysical and biochemical characterization of a recombinant Lyme disease vaccine antigen, CspZ-YA. Int J Biol Macromol 2024; 259:129295. [PMID: 38211914 DOI: 10.1016/j.ijbiomac.2024.129295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Lyme disease, caused by Lyme Borrelia spirochetes, is the most common vector-borne illness in the United States. Despite its global significance, with an estimated 14.5 % seroprevalence, there is currently no licensed vaccine. Previously, we demonstrated that CspZ-YA protein conferred protection against Lyme Borrelia infection, making it a promising vaccine candidate. However, such a protein was tagged with hexahistidine, and thus not preferred for vaccine development; furthermore, the formulation to stabilize the protein was understudied. In this work, we developed a two-step purification process for tag-free E. coli-expressed recombinant CspZ-YA. We further utilized various bioassays to analyze the protein and determine the suitable buffer system for long-term storage and formulation as a vaccine immunogen. The results indicated that a buffer with a pH between 6.5 and 8.5 stabilized CspZ-YA by reducing its surface hydrophobicity and colloidal interactions. Additionally, low pH values induced a change in local spatial conformation and resulted in a decrease in α-helix content. Lastly, an optimal salinity of 22-400 mM at pH 7.5 was found to be important for its stability. Collectively, this study provides a fundamental biochemical and biophysical understanding and insights into the ideal stabilizing conditions to produce CspZ-YA recombinant protein for use in vaccine formulation and development.
Collapse
Affiliation(s)
- Yi-Lin Chen
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Jungsoon Lee
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Zhuyun Liu
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Ulrich Strych
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA; Department of Biomedical Sciences, SUNY Albany, Albany, NY, USA.
| | - Wen-Hsiang Chen
- Department of Pediatrics, Division of Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA.
| |
Collapse
|
11
|
Sobhani-Nasab A, Banafshe HR, Atapour A, Khaksary Mahabady M, Akbari M, Daraei A, Mansoori Y, Moradi Hasan-Abad A. The use of nanoparticles in the treatment of infectious diseases and cancer, dental applications and tissue regeneration: a review. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 5:1330007. [PMID: 38323112 PMCID: PMC10844477 DOI: 10.3389/fmedt.2023.1330007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 02/08/2024] Open
Abstract
The emergence of nanotechnology as a field of study can be traced back to the 1980s, at which point the means to artificially produce, control, and observe matter on a nanometer level was made viable. Recent advancements in technology have enabled us to extend our reach to the nanoscale, which has presented an unparalleled opportunity to directly target biomolecular interactions. As a result of these developments, there is a drive to arise intelligent nanostructures capable of overcoming the obstacles that have impeded the progress of conventional pharmacological methodologies. After four decades, the gradual amalgamation of bio- and nanotechnologies is initiating a revolution in the realm of disease detection, treatment, and monitoring, as well as unsolved medical predicaments. Although a significant portion of research in the field is still confined to laboratories, the initial application of nanotechnology as treatments, vaccines, pharmaceuticals, and diagnostic equipment has now obtained endorsement for commercialization and clinical practice. The current issue presents an overview of the latest progress in nanomedical strategies towards alleviating antibiotic resistance, diagnosing and treating cancer, addressing neurodegenerative disorders, and an array of applications, encompassing dentistry and tuberculosis treatment. The current investigation also scrutinizes the deployment of sophisticated smart nanostructured materials in fields of application such as regenerative medicine, as well as the management of targeted and sustained release of pharmaceuticals and therapeutic interventions. The aforementioned concept exhibits the potential for revolutionary advancements within the field of immunotherapy, as it introduces the utilization of implanted vaccine technology to consistently regulate and augment immune functions. Concurrently with the endeavor to attain the advantages of nanomedical intervention, it is essential to enhance the unceasing emphasis on nanotoxicological research and the regulation of nanomedications' safety. This initiative is crucial in achieving the advancement in medicine that currently lies within our reach.
Collapse
Affiliation(s)
- Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akbari
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Garg A, Agrawal R, Chopra H, Singh T, Chaudhary R, Tankara A. A Glance on Nanovaccine: A Potential Approach for Disease Prevention. Curr Pharm Biotechnol 2024; 25:1406-1418. [PMID: 37861010 DOI: 10.2174/0113892010254221231006100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
There are several vaccines available for preventing various bacterial and viral infections, but still, there are many challenges that require the development of noninvasive, more efficient, and active vaccines. The advancement in biotechnological tools has provided safer antigens, such as nucleic acids, proteins etc., but due to their lower immunogenic property, adjuvants of stronger immune response are required. Nanovaccines are effective vaccines when compared with conventional vaccines as they can induce both Humoral and cell-mediated immune responses and also provide longer immunogenic memory. The nanocarriers used in vaccines act as adjuvant. They provide site-specific delivery of antigens and can be used in conjugation with immunostimulatory molecules for enhancing adjuvant therapy. The nanovaccines avoid degrading cell pathways and provide effective absorption into blood vessels. The higher potential of nanovaccines to treat various diseases, such as acquired immuno deficiency syndrome, cancer, tuberculosis, malaria and many others, along with their immunological mechanisms and different types, have been discussed in the review.
Collapse
Affiliation(s)
- Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Talever Singh
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Ramkumar Chaudhary
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| | - Abhishek Tankara
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura-Delhi Road, P.O Chhatikara, Mathura, 281001, Uttar Pradesh, India
| |
Collapse
|
13
|
Razali SA, Shamsir MS, Ishak NF, Low CF, Azemin WA. Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ 2023; 11:e16419. [PMID: 38089909 PMCID: PMC10712311 DOI: 10.7717/peerj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
The spread of infectious illnesses has been a significant factor restricting aquaculture production. To maximise aquatic animal health, vaccination tactics are very successful and cost-efficient for protecting fish and aquaculture animals against many disease pathogens. However, due to the increasing number of immunological cases and their complexity, it is impossible to manage, analyse, visualise, and interpret such data without the assistance of advanced computational techniques. Hence, the use of immunoinformatics tools is crucial, as they not only facilitate the management of massive amounts of data but also greatly contribute to the creation of fresh hypotheses regarding immune responses. In recent years, advances in biotechnology and immunoinformatics have opened up new research avenues for generating novel vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses, thereby reducing aquaculture losses. This review focuses on understanding in silico epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular interaction of immunogenic vaccines, and the application of immunoinformatics in fish disease based on the frequency of their application and reliable results. It is believed that it can bridge the gap between experimental and computational approaches and reduce the need for experimental research, so that only wet laboratory testing integrated with in silico techniques may yield highly promising results and be useful for the development of vaccines for fish.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nur Farahin Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
14
|
Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, Sundriyal A, Saini J. Nanovaccines: A game changing approach in the fight against infectious diseases. Biomed Pharmacother 2023; 167:115597. [PMID: 37783148 DOI: 10.1016/j.biopha.2023.115597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
The field of nanotechnology has revolutionised global attempts to prevent, treat, and eradicate infectious diseases in the foreseen future. Nanovaccines have proven to be a valuable pawn in this novel technology. Nanovaccines are made up of nanoparticles that are associated with or prepared with components that can stimulate the host's immune system. In addition to their delivery capabilities, the nanocarriers have been demonstrated to possess intrinsic adjuvant properties, working as immune cell stimulators. Thus, nanovaccines have the potential to promote rapid as well as long-lasting humoral and cellular immunity. The nanovaccines have several possible benefits, including site-specific antigen delivery, increased antigen bioavailability, and a diminished adverse effect profile. To avail these benefits, several nanoparticle-based vaccines are being developed, including virus-like particles, liposomes, polymeric nanoparticles, nanogels, lipid nanoparticles, emulsion vaccines, exomes, and inorganic nanoparticles. Inspired by their distinctive properties, researchers are working on the development of nanovaccines for a variety of applications, such as cancer immunotherapy and infectious diseases. Although a few challenges still need to be overcome, such as modulation of the nanoparticle pharmacokinetics to avoid rapid elimination from the bloodstream by the reticuloendothelial system, The future prospects of this technology are also assuring, with multiple options such as personalised vaccines, needle-free formulations, and combination nanovaccines with several promising candidates.
Collapse
Affiliation(s)
- Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| | - Mai Abdel Haleem Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Abhilasha Sharma
- Department of Life Science, Gujarat University, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Suhad Asad Mustafa
- Scientific Research Center/ Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| | - Rajiv Khosla
- Department of Biotechnology, Doaba College, Jalandhar 144004, Punjab, India
| | - Aanchal Loshali
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ankush Sundriyal
- School of Pharmaceutical Sciences and Research, Sardar Bhagwan Singh University, Balawala, Dehradun 248001, India
| | - Jyoti Saini
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India
| |
Collapse
|
15
|
Maurizi A, Patrizii P, Teti A, Sutera FM, Baran-Rachwalska P, Burns C, Nandi U, Welsh M, Torabi-Pour N, Dehsorkhi A, Saffie-Siebert S. Novel hybrid silicon-lipid nanoparticles deliver a siRNA to cure autosomal dominant osteopetrosis in mice. Implications for gene therapy in humans. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:925-937. [PMID: 37680985 PMCID: PMC10480457 DOI: 10.1016/j.omtn.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023]
Abstract
Rare skeletal diseases are still in need of proper clinically available transfection agents as the major challenge for first-in-human translation relates to intrinsic difficulty in targeting bone without exacerbating any inherent toxicity due to used vector. SiSaf's silicon stabilized hybrid lipid nanoparticles (sshLNPs) constitute next-generation non-viral vectors able to retain the integrity and stability of constructs and to accommodate considerable payloads of biologicals, without requiring cold-chain storage. sshLNP was complexed with a small interfering RNA (siRNA) specifically designed against the human CLCN7G215R mRNA. When tested via single intraperitoneal injection in pre-puberal autosomal dominant osteopetrosis type 2 (ADO2) mice, carrying a heterozygous mutation of the Clcn7 gene (Clcn7G213R), sshLNP, this significantly downregulated the Clcn7G213R related mRNA levels in femurs at 48 h. Confirmatory results were observed at 2 weeks and 4 weeks after treatments (3 intraperitoneal injections/week), with rescue of the bone phenotype and demonstrating safety. The pre-clinical results will enable advanced preclinical development of RNA-based therapy for orphan and genetic skeletal disorders by safely and effectively delivering biologicals of interest to cure human systemic conditions.
Collapse
Affiliation(s)
- Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Piergiorgio Patrizii
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dahri M, Beheshtizadeh N, Seyedpour N, Nakhostin-Ansari A, Aghajani F, Seyedpour S, Masjedi M, Farjadian F, Maleki R, Adibkia K. Biomaterial-based delivery platforms for transdermal immunotherapy. Biomed Pharmacother 2023; 165:115048. [PMID: 37385212 DOI: 10.1016/j.biopha.2023.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
Nowadays, immunotherapy is one of the most essential treatments for various diseases and a broad spectrum of disorders are assumed to be treated by altering the function of the immune system. For this reason, immunotherapy has attracted a great deal of attention and numerous studies on different approaches for immunotherapies have been investigated, using multiple biomaterials and carriers, from nanoparticles (NPs) to microneedles (MNs). In this review, the immunotherapy strategies, biomaterials, devices, and diseases supposed to be treated by immunotherapeutic strategies are reviewed. Several transdermal therapeutic methods, including semisolids, skin patches, chemical, and physical skin penetration enhancers, are discussed. MNs are the most frequent devices implemented in transdermal immunotherapy of cancers (e.g., melanoma, squamous cell carcinoma, cervical, and breast cancer), infectious (e.g., COVID-19), allergic and autoimmune disorders (e.g., Duchenne's muscular dystrophy and Pollinosis). The biomaterials used in transdermal immunotherapy vary in shape, size, and sensitivity to external stimuli (e.g., magnetic field, photo, redox, pH, thermal, and even multi-stimuli-responsive) were reported. Correspondingly, vesicle-based NPs, including niosomes, transferosomes, ethosomes, microemulsions, transfersomes, and exosomes, are also discussed. In addition, transdermal immunotherapy using vaccines has been reviewed for Ebola, Neisseria gonorrhoeae, Hepatitis B virus, Influenza virus, respiratory syncytial virus, Hand-foot-and-mouth disease, and Tetanus.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasrin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nakhostin-Ansari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Aghajani
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Sciences and Technology (IROST), P.O. Box 33535111 Tehran, Iran.
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Chu KB, Quan FS. Recent progress in vaccine development targeting pre-clinical human toxoplasmosis. PARASITES, HOSTS AND DISEASES 2023; 61:231-239. [PMID: 37648228 PMCID: PMC10471472 DOI: 10.3347/phd.22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/30/2023] [Indexed: 09/01/2023]
Abstract
Toxoplasma gondii is an intracellular parasitic organism affecting all warm-blooded vertebrates. Due to the unavailability of commercialized human T. gondii vaccine, many studies have been reported investigating the protective efficacy of pre-clinical T. gondii vaccines expressing diverse antigens. Careful antigen selection and implementing multifarious immunization strategies could enhance protection against toxoplasmosis in animal models. Although none of the available vaccines could remove the tissue-dwelling parasites from the host organism, findings from these pre-clinical toxoplasmosis vaccine studies highlighted their developmental potential and provided insights into rational vaccine design. We herein explored the progress of T. gondii vaccine development using DNA, protein subunit, and virus-like particle vaccine platforms. Specifically, we summarized the findings from the pre-clinical toxoplasmosis vaccine studies involving T. gondii challenge infection in mice published in the past 5 years.
Collapse
Affiliation(s)
- Ki-Back Chu
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447,
Korea
| |
Collapse
|
18
|
Stiefel J, Zimmer J, Schloßhauer JL, Vosen A, Kilz S, Balakin S. Just Keep Rolling?-An Encompassing Review towards Accelerated Vaccine Product Life Cycles. Vaccines (Basel) 2023; 11:1287. [PMID: 37631855 PMCID: PMC10459022 DOI: 10.3390/vaccines11081287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
In light of the recent pandemic, several COVID-19 vaccines were developed, tested and approved in a very short time, a process that otherwise takes many years. Above all, these efforts have also unmistakably revealed the capacity limits and potential for improvement in vaccine production. This review aims to emphasize recent approaches for the targeted rapid adaptation and production of vaccines from an interdisciplinary, multifaceted perspective. Using research from the literature, stakeholder analysis and a value proposition canvas, we reviewed technological innovations on the pharmacological level, formulation, validation and resilient vaccine production to supply bottlenecks and logistic networks. We identified four main drivers to accelerate the vaccine product life cycle: computerized candidate screening, modular production, digitized quality management and a resilient business model with corresponding transparent supply chains. In summary, the results presented here can serve as a guide and implementation tool for flexible, scalable vaccine production to swiftly respond to pandemic situations in the future.
Collapse
Affiliation(s)
- Janis Stiefel
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany
| | - Jan Zimmer
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany
| | - Jeffrey L. Schloßhauer
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Agnes Vosen
- Fraunhofer Center for International Management and Knowledge Economy IMW, Neumarkt 20, 04109 Leipzig, Germany
| | - Sarah Kilz
- Fraunhofer Center for International Management and Knowledge Economy IMW, Neumarkt 20, 04109 Leipzig, Germany
| | - Sascha Balakin
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS Material Diagnostics, Bio- and Nanotechnology, Maria-Reiche-Straße 2, 01109 Dresden, Germany
- Max Bergmann Center of Biomaterials (MBC), Technical University of Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| |
Collapse
|
19
|
Ghaemi A, Vakili-Azghandi M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Oral non-viral gene delivery platforms for therapeutic applications. Int J Pharm 2023; 642:123198. [PMID: 37406949 DOI: 10.1016/j.ijpharm.2023.123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Since gene therapy can regulate gene and protein expression directly, it has a great potential to prevent or treat a variety of genetic or acquired diseases through vaccines such as viral infections, cystic fibrosis, and cancer. Owing to their high efficacy, in vivo gene therapy trials are usually conducted intravenously, which is usually costly and invasive. There are several advantages to oral drug administration over intravenous injections, such as better patient compliance, ease of use, and lower cost. However, gene therapy is successful if the oligonucleotides can cross the cell membrane easily and reach the nucleus after the endosomal escape. In order to accomplish this task and deliver the cargo to the intended location, appropriate delivery systems should be introduced. This review summarizes oral delivery systems developed for effective gene delivery, vaccination, and treatment of various diseases. Studies have also shown that oral delivery approaches are potentially applicable to treat various diseases, especially inflammatory bowel disease, stomach, and colorectal cancers. Also, the current review provides an update overview on the development of non-viral and oral gene delivery techniques for gene therapy and vaccination purposes.
Collapse
Affiliation(s)
- Asma Ghaemi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoume Vakili-Azghandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Aroffu M, Manca ML, Pedraz JL, Manconi M. Liposome-based vaccines for minimally or noninvasive administration: an update on current advancements. Expert Opin Drug Deliv 2023; 20:1573-1593. [PMID: 38015659 DOI: 10.1080/17425247.2023.2288856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Vaccination requires innovation to provide effective protection. Traditional vaccines have several drawbacks, which can be overcome with advanced technologies and different administration routes. Over the past 10 years, a significant amount of research has focussed on the delivery of antigens into liposomes due to their dual role as antigen-carrying systems and vaccine adjuvants able to increase the immunogenicity of the carried antigen. AREAS COVERED This review encompasses the progress made over the last 10 years with liposome-based vaccines designed for minimally or noninvasive administration, filling the gaps in previous reviews and providing insights on composition, administration routes, results achieved, and Technology Readiness Level of the most recent formulations. EXPERT OPINION Liposome-based vaccines administered through minimally or noninvasive routes are expected to improve efficacy and complacency of vaccination programs. However, the translation from lab-scale production to large-scale production and collaborations with hospitals, research centers, and companies are needed to allow new products to enter the market and improve the vaccination programs in the future.
Collapse
Affiliation(s)
- Matteo Aroffu
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- BioAraba, NanoBioCel research Group, Vitoria-Gasteiz, Spain
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
21
|
Castellanos MM, Gressard H, Li X, Magagnoli C, Moriconi A, Stranges D, Strodiot L, Tello Soto M, Zwierzyna M, Campa C. CMC Strategies and Advanced Technologies for Vaccine Development to Boost Acceleration and Pandemic Preparedness. Vaccines (Basel) 2023; 11:1153. [PMID: 37514969 PMCID: PMC10386492 DOI: 10.3390/vaccines11071153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
This review reports on an overview of key enablers of acceleration/pandemic and preparedness, covering CMC strategies as well as technical innovations in vaccine development. Considerations are shared on implementation hurdles and opportunities to drive sustained acceleration for vaccine development and considers learnings from the COVID pandemic and direct experience in addressing unmet medical needs. These reflections focus on (i) the importance of a cross-disciplinary framework of technical expectations ranging from target antigen identification to launch and life-cycle management; (ii) the use of prior platform knowledge across similar or products/vaccine types; (iii) the implementation of innovation and digital tools for fast development and innovative control strategies.
Collapse
Affiliation(s)
- Maria Monica Castellanos
- Drug Product Development, Vaccines Technical R&D, GSK, 14200 Shady Grove Road, Rockville, MD 20850, USA
| | - Hervé Gressard
- Project & Digital Sciences, Vaccines Technical R&D, GSK, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Xiangming Li
- Drug Substance Development, Vaccines Technical R&D, GSK, 14200 Shady Grove Road, Rockville, MD 20850, USA
| | - Claudia Magagnoli
- Analytical Research & Development, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Alessio Moriconi
- Drug Product Development, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Daniela Stranges
- Drug Product Development, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Laurent Strodiot
- Drug Product Development, Vaccines Technical R&D, GSK, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Monica Tello Soto
- Drug Substance Development, Vaccines Technical R&D, GSK, Rue de l'Institut 89, 1330 Rixensart, Belgium
| | - Magdalena Zwierzyna
- Project & Digital Sciences, Vaccines Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Cristiana Campa
- Vaccines Global Technical R&D, GSK, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
22
|
Bajoria S, Kumru OS, Doering J, Berman K, Slyke GV, Prigodich A, Rodriguez-Aponte SA, Kleanthous H, Love JC, Mantis NJ, Joshi SB, Volkin DB. Nanoalum Formulations Containing Aluminum Hydroxide and CpG 1018 TM Adjuvants: The Effect on Stability and Immunogenicity of a Recombinant SARS-CoV-2 RBD Antigen. Vaccines (Basel) 2023; 11:1030. [PMID: 37376419 PMCID: PMC10303432 DOI: 10.3390/vaccines11061030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Aluminum-salt vaccine adjuvants (alum) are commercially available as micron-sized particles with varying chemical composition and crystallinity. There are reports of enhanced adjuvanticity when the alum's particle size is reduced to the nanometer range. Previously, we demonstrated that a recombinant receptor-binding domain (RBD)-based COVID-19 vaccine candidate (RBD-J; RBD-L452K-F490W) formulated with aluminum hydroxide (Alhydrogel®; AH) and CpG 1018™ (CpG) adjuvants induced potent neutralizing antibody responses in mice yet displayed instability during storage. In this work, we evaluated whether sonication of AH to the nanometer size range (nanoAH) could further enhance immunogenicity or improve storage stability of the above formulation. The addition of CpG to nanoAH (at mouse doses), however, caused re-agglomeration of nanoAH. AH-CpG interactions were evaluated by Langmuir binding isotherms and zeta potential measurements, and stabilized nanoAH + CpG formulations of RBD-J were then designed by (1) optimizing CpG:Aluminum dose ratios or (2) adding a small-molecule polyanion (phytic acid, PA). Compared with the micron-sized AH + CpG formulation, the two stabilized nanoAH + CpG formulations of RBD-J demonstrated no enhancement in SARS-CoV-2 pseudovirus neutralizing titers in mice, but the PA-containing nanoAH + CpG formulation showed improved RBD-J storage stability trends (at 4, 25, and 37 °C). The formulation protocols presented herein can be employed to evaluate the potential benefits of the nanoAH + CpG adjuvant combination with other vaccine antigens in different animal models.
Collapse
Affiliation(s)
- Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Ozan S. Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Jennifer Doering
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Katherine Berman
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Greta Van Slyke
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Anneka Prigodich
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Sergio A. Rodriguez-Aponte
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - J. Christopher Love
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
23
|
Tripathi S, Sharma N, Naorem LD, Raghava GPS. ViralVacDB: A manually curated repository of viral vaccines. Drug Discov Today 2023; 28:103523. [PMID: 36764575 DOI: 10.1016/j.drudis.2023.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Over the years, numerous vaccines have been developed against viral infections; however, a complete database that provides comprehensive information on viral vaccines has been lacking. In this review, along with our freely accessible database ViralVacDB, we provide details of the viral vaccines, their type, routes of administration and approving agencies. This repository systematically covers additional information such as disease name, adjuvant, manufacturer, clinical status, age and dosage against 422 viral vaccines, including 145 approved vaccines and 277 in clinical trials. We anticipate that this database will be highly beneficial to researchers and others working in pharmaceuticals and immuno-informatics.
Collapse
Affiliation(s)
- Sadhana Tripathi
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Leimarembi Devi Naorem
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi 110020, India.
| |
Collapse
|
24
|
Austin LA, Smith JS, Nahas DD, Danzinger A, Secore S, O'Donnell G, Radcliffe S, Hu S, Perley J, Bett AJ, Gindy ME. Split-Dose Administration Enhances Immune Responses Elicited by a mRNA/Lipid Nanoparticle Vaccine Expressing Respiratory Syncytial Virus F Protein. Mol Pharm 2023; 20:279-289. [PMID: 36251490 DOI: 10.1021/acs.molpharmaceut.2c00635] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
mRNA vaccines have recently received significant attention due to their role in combating the SARS-CoV-2 pandemic. As a platform, mRNA vaccines have been shown to elicit strong humoral and cellular immune responses with acceptable safety profiles for prophylactic use. Despite their potential, industrial challenges have limited realization of the vaccine platform on a global scale. Critical among these challenges are supply chain considerations, including mRNA production, cost of goods, and vaccine frozen-chain distribution. Here, we assess the delivery of lipid nanoparticle-encapsulated mRNA (mRNA/LNP) vaccines using a split-dose immunization regimen as an approach to develop mRNA dose-sparing vaccine regimens with potential to mitigate mRNA supply chain challenges. Our data demonstrate that immunization by a mRNA/LNP vaccine encoding respiratory syncytial virus pre-F (RSV pre-F) over a 9 day period elicits comparable or superior magnitude of antibodies when compared to traditional bolus immunization of the vaccine. The split-dose immunization regimens evaluated in our studies were designed to mimic reported drug or antigen release profiles from microneedle patches, highlighting the potential benefit of pairing mRNA vaccines with patch-based delivery technologies to enable sustained release and solid-state stabilization. Overall, our findings provide a proof of concept to support further investigations into the development of sustained delivery approaches for mRNA/LNP vaccines.
Collapse
Affiliation(s)
- Lauren A Austin
- Merck & Co., Inc., Rahway, New Jersey 07033-1310, United States
| | - Jeffrey S Smith
- Merck & Co., Inc., Rahway, New Jersey 07033-1310, United States
| | - Debbie D Nahas
- Merck & Co., Inc., Rahway, New Jersey 07033-1310, United States
| | | | - Susan Secore
- Merck & Co., Inc., Rahway, New Jersey 07033-1310, United States
| | | | - Scott Radcliffe
- Merck & Co., Inc., Rahway, New Jersey 07033-1310, United States
| | - Shuai Hu
- Merck & Co., Inc., Rahway, New Jersey 07033-1310, United States
| | - Jeffrey Perley
- Merck & Co., Inc., Rahway, New Jersey 07033-1310, United States
| | - Andrew J Bett
- Merck & Co., Inc., Rahway, New Jersey 07033-1310, United States
| | - Marian E Gindy
- Merck & Co., Inc., Rahway, New Jersey 07033-1310, United States
| |
Collapse
|
25
|
Chavda VP, Soni S, Vora LK, Soni S, Khadela A, Ajabiya J. mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics. Vaccines (Basel) 2022; 10:2150. [PMID: 36560560 PMCID: PMC9785933 DOI: 10.3390/vaccines10122150] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
An unheard mobilization of resources to find SARS-CoV-2 vaccines and therapies has been sparked by the COVID-19 pandemic. Two years ago, COVID-19's launch propelled mRNA-based technologies into the public eye. Knowledge gained from mRNA technology used to combat COVID-19 is assisting in the creation of treatments and vaccines to treat existing illnesses and may avert pandemics in the future. Exploiting the capacity of mRNA to create therapeutic proteins to impede or treat a variety of illnesses, including cancer, is the main goal of the quickly developing, highly multidisciplinary field of biomedicine. In this review, we explore the potential of mRNA as a vaccine and therapeutic using current research findings.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Shailvi Soni
- Massachussets College of Pharmacy and Health Science, 19 Foster Street, Worcester, MA 01608, USA
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shruti Soni
- PharmD Section, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Avinash Khadela
- Department of Pharmacology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Jinal Ajabiya
- Department of Pharmaceutics Analysis and Quality Assurance, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
26
|
Yin Q, Wang Y, Xiang Y, Xu F. Nanovaccines: Merits, and diverse roles in boosting antitumor immune responses. Hum Vaccin Immunother 2022; 18:2119020. [PMID: 36170662 DOI: 10.1080/21645515.2022.2119020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An attractive type of cancer immunotherapy is cancer therapeutic vaccines that induce antitumor immunity effectively. Although supportive results in the recent vaccine studies, there are still numerous drawbacks, such as poor stability, weak immunogenicity and strong toxicity, to be tackled for promoting the potency and durability of antitumor efficacy. NPs (Nanoparticles)-based vaccines offer unique opportunities to breakthrough the current bottleneck. As a rule, nanovaccines are new the generations of vaccines that use NPs as carriers and/or adjuvants. Several advantages of nanovaccines are constantly explored, including optimal nanometer size, high stability, plenty of antigen loading, enhanced immunogenicity, tunable antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Here, we summarized the merits and highlight the diverse role nanovaccines play in improving antitumor responses.
Collapse
Affiliation(s)
- Qiliang Yin
- Department of Cadre Ward, The First Hospital of Jilin University, Changchun, China
| | - Ying Wang
- Academy of Health Management, Changchun University of Chinese Medicine, Changchun, China
| | - Yipeng Xiang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Feng Xu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Computational Clues of Immunogenic Hotspots in Plasmodium falciparum Erythrocytic Stage Vaccine Candidate Antigens: In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5886687. [PMID: 36277884 PMCID: PMC9584662 DOI: 10.1155/2022/5886687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
Malaria is the most pernicious parasitic infection, and Plasmodium falciparum is the most virulent species with substantial morbidity and mortality worldwide. The present in silico investigation was performed to reveal the biophysical characteristics and immunogenic epitopes of the 14 blood-stage proteins of the P. falciparum using comprehensive immunoinformatics approaches. For this aim, various web servers were employed to predict subcellular localization, antigenicity, allergenicity, solubility, physicochemical properties, posttranslational modification sites (PTMs), the presence of signal peptide, and transmembrane domains. Moreover, structural analysis for secondary and 3D model predictions were performed for all and stable proteins, respectively. Finally, human helper T lymphocyte (HTL) epitopes were predicted using HLA reference set of IEDB server and screened in terms of antigenicity, allergenicity, and IFN-γ induction as well as population coverage. Also, a multiserver B-cell epitope prediction was done with subsequent screening for antigenicity, allergenicity, and solubility. Altogether, these proteins showed appropriate antigenicity, abundant PTMs, and many B-cell and HTL epitopes, which could be directed for future vaccination studies in the context of multiepitope vaccine design.
Collapse
|
28
|
Nahar UJ, Toth I, Skwarczynski M. Mannose in vaccine delivery. J Control Release 2022; 351:284-300. [PMID: 36150579 DOI: 10.1016/j.jconrel.2022.09.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
Adjuvants and vaccine delivery systems are used widely to improve the efficacy of vaccines. Their primary roles are to protect antigen from degradation and allow its delivery and uptake by antigen presenting cells (APCs). Carbohydrates, including various structures/forms of mannose, have been broadly utilized to target carbohydrate binding receptors on APCs. This review summarizes basic functions of the immune system, focusing on the role of mannose receptors in antigen recognition by APCs. The most popular strategies to produce mannosylated vaccines via conjugation and formulation are presented. The efficacy of mannosylated vaccines is discussed in detail, taking into consideration factors, such as valency and number of mannose in mannose ligands, mannose density, length of spacers, special arrangement of mannose ligands, and routes of administration of mannosylated vaccines. The advantages and disadvantages of mannosylation strategy and future directions in the development of mannosylated vaccines are also debated.
Collapse
Affiliation(s)
- Ummey Jannatun Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
29
|
Tu Y, Yao Z, Yang W, Tao S, Li B, Wang Y, Su Z, Li S. Application of Nanoparticles in Tumour Targeted Drug Delivery and Vaccine. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.948705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer is a major cause of death worldwide, and nearly 1 in 6 deaths each year is caused by cancer. Traditional cancer treatment strategies cannot completely solve cancer recurrence and metastasis. With the development of nanotechnology, the study of nanoparticles (NPs) has gradually become a hotspot of medical research. NPs have various advantages. NPs exploit the enhanced permeability and retention (EPR) of tumour cells to achieve targeted drug delivery and can be retained in tumours long-term. NPs can be used as a powerful design platform for vaccines as well as immunization enhancers. Liposomes, as organic nanomaterials, are widely used in the preparation of nanodrugs and vaccines. Currently, most of the anticancer drugs that have been approved and entered clinical practice are prepared from lipid materials. However, the current clinical conversion rate of NPs is still extremely low, and the transition of NPs from the laboratory to clinical practice is still a substantial challenge. In this paper, we review the in vivo targeted delivery methods, material characteristics of NPs and the application of NPs in vaccine preparation. The application of nanoliposomes is also emphasized. Furthermore, the challenges and limitations of NPs are briefly discussed.
Collapse
|
30
|
Jawalagatti V, Kirthika P, Lee JH. Oral mRNA Vaccines Against Infectious Diseases- A Bacterial Perspective [Invited]. Front Immunol 2022; 13:884862. [PMID: 35592330 PMCID: PMC9110646 DOI: 10.3389/fimmu.2022.884862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
The mRNA vaccines from Pfizer/BioNTech and Moderna were granted emergency approval in record time in the history of vaccinology and played an instrumental role in limiting the pandemic caused by SARS-CoV-2. The success of these vaccines resulted from over 3 decades of research from many scientists. However, the development of orally administrable mRNA vaccine development is surprisingly underexplored. Our group specializing in Salmonella-based vaccines explored the possibility of oral mRNA vaccine development. Oral delivery was made possible by the exploitation of the Semliki Forest viral replicon and Salmonella vehicle for transgene amplification and gene delivery, respectively. Herein we highlight the prospect of developing oral replicon-based mRNA vaccines against infectious diseases based on our recent primary studies on SARS-CoV-2. Further, we discuss the potential advantages and limitations of bacterial gene delivery.
Collapse
Affiliation(s)
| | | | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
31
|
Hidalgo T, Simón-Vázquez R, González-Fernández A, Horcajada P. Cracking the immune fingerprint of metal-organic frameworks. Chem Sci 2022; 13:934-944. [PMID: 35211258 PMCID: PMC8790785 DOI: 10.1039/d1sc04112f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
The human body is in a never-ending chess game against pathogens. When the immune system, our natural defence tool, is weakened, these organisms are able to escape, overcoming the body's contingency plan, which results in the body going into a pathological state. To overcome this checkmate status, emerging nanomedicines have been successfully employed as one of the best tactics for boosting the immune response, manipulating the body's defence tools for the specific recognition/elimination of pathological cells via the active ingredient delivery. However, the vast majority of these drug-delivery systems (DDS) are considered to be exclusively passive vehicles, with nanoscale metal-organic frameworks (nanoMOFs) attracting a great deal of attention due to their versatility and ability to carry and deliver exceptional drug payloads and to modulate their biological bypass. Nonetheless, their intrinsic immunogenicity character has been never addressed. Considering the immense possibilities that nanoMOFs offer as a treatment platform, the present study aimed to unveil the immunological fingerprint of MOFs, including an in-deep evaluation of the cellular oxidation balance, the inflammation and recruitment of immune cells and the precise Th1/Th2 cytokine profile that is triggered. This study aims to gain insights that will make more feasible the design of customized immune-active MOF nanoplatforms according to targeted diseases, as the next ace up immune system sleeve.
Collapse
Affiliation(s)
- T Hidalgo
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute Av. Ramón de la Sagra 3 28935 Móstoles-Madrid Spain
- Institut Lavoisier, UMR CNRS 8180, Université de Versailles Saint-Quentin-en-Yvelines 45 Av. des Etats-Unis 78035 Versailles Cedex France
| | - R Simón-Vázquez
- CINBIO, Immunology Group, Universidade de Vigo 36310 Vigo Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO Spain
| | - A González-Fernández
- CINBIO, Immunology Group, Universidade de Vigo 36310 Vigo Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO Spain
| | - P Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute Av. Ramón de la Sagra 3 28935 Móstoles-Madrid Spain
| |
Collapse
|
32
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
33
|
Mohammadi G, Sotoudehnia Koranni Z, Jebali A. The oral vaccine based on self-replicating RNA lipid nanoparticles can simultaneously neutralize both SARS-CoV-2 variants alpha and delta. Int Immunopharmacol 2021; 101:108231. [PMID: 34655852 PMCID: PMC8495003 DOI: 10.1016/j.intimp.2021.108231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
The aim of this study was to evaluate self-replicating RNA lipid nanoparticles (saRNA LNPs) to neutralize SARS-CoV-2 variants delta (B.1.617 lineage) and alpha (B.1.1.7 lineage). Before immunization of mice with saRNA LNPs, we saw high expression of S-protein at both mRNA and protein levels after transfection of HEK293T/17 cells with saRNA LNPs. After oral immunization of BALB/c mice with 0.1 - 10 µg saRNA LNPs , a high quantity of SARS-CoV-2 specific IgG and IgA antibodies were seen with a dose-dependent pattern. Importantly, the ratio of IgG2a/IgG1 in serum of vaccinated mice showed Th1/Th2 skewing response. We also found that the secreted antibodies could neutralize SARS-CoV-2 variants delta (B.1.617 lineage) and alpha (B.1.1.7 lineage). Re-stimulated splenocytes of vaccinated mice showed high secretion of IFN-γ, IL-6, and TNF- α . The authors think that although the preclinical study confirmed the efficacy of saRNA LNPs against SARS-CoV-2, the actual efficacy and safety of the oral vaccine must be evaluated in clinical trials.
Collapse
Affiliation(s)
| | | | - Ali Jebali
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
34
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|
35
|
Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8 + T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021; 176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
After centuries of development, using vaccination to stimulate immunity has become an effective method for prevention and treatment of a variety of diseases including infective diseases and cancers. However, the tailor-made efficient delivery system for specific antigens is still urgently needed due to the low immunogenicity and stability of antigens, especially for vaccines to induce CD8+ T cells-mediated cellular immunity. Unlike B cells-mediated humoral immunity, CD8+ T cells-mediated cellular immunity mainly aims at the intracellular antigens from microorganism in virus-infected cells or genetic mutations in tumor cells. Therefore, the vaccines for stimulating CD8+ T cells-mediated cellular immunity should deliver the antigens efficiently into the cytoplasm of antigen presenting cells (APCs) to form major histocompatibility complex I (MHCI)-antigen complex through cross-presentation, followed by activating CD8+ T cells for immune protection and clearance. Importantly, nanotechnology has been emerged as a powerful tool to facilitate these multiple processes specifically, allowing not only enhanced antigen immunogenicity and stability but also APCs-targeted delivery and elevated cross-presentation. This review summarizes the process of CD8+ T cells-mediated cellular immunity induced by vaccines and the technical advantages of nanotechnology implementation in general, then provides an overview of the whole spectrum of nanocarriers studied so far and the recent development of delivery nanotechnology in vaccines against infectious diseases and cancer. Finally, we look forward to the future development of nanotechnology for the next generation of vaccines to induce CD8+ T cells-mediated cellular immunity.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| |
Collapse
|
36
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
37
|
Wertz PW. Roles of Lipids in the Permeability Barriers of Skin and Oral Mucosa. Int J Mol Sci 2021; 22:ijms22105229. [PMID: 34063352 PMCID: PMC8155912 DOI: 10.3390/ijms22105229] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
PubMed searches reveal much literature regarding lipids in barrier function of skin and less literature on lipids in barrier function of the oral mucosa. In terrestrial mammals, birds, and reptiles, the skin’s permeability barrier is provided by ceramides, fatty acids, and cholesterol in the outermost layers of the epidermis, the stratum corneum. This layer consists of about 10–20 layers of cornified cells embedded in a lipid matrix. It effectively prevents loss of water and electrolytes from the underlying tissue, and it limits the penetration of potentially harmful substances from the environment. In the oral cavity, the regions of the gingiva and hard palate are covered by keratinized epithelia that much resemble the epidermis. The oral stratum corneum contains a lipid mixture similar to that in the epidermal stratum corneum but in lower amounts and is accordingly more permeable. The superficial regions of the nonkeratinized oral epithelia also provide a permeability barrier. These epithelial regions do contain ceramides, cholesterol, and free fatty acids, which may underlie barrier function. The oral epithelial permeability barriers primarily protect the underlying tissue by preventing the penetration of potentially toxic substances, including microbial products. Transdermal drug delivery, buccal absorption, and lipid-related disease are discussed.
Collapse
|