1
|
Oliyaei N, Altemimi AB, Abedi E, Hashemi SMB. An overview of fucoidan electrospun nanofibers: Fabrication, modification, characterizations and applications. Food Chem 2025; 467:142318. [PMID: 39642423 DOI: 10.1016/j.foodchem.2024.142318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 11/30/2024] [Indexed: 12/08/2024]
Abstract
Nanofibers provide tunable attributes which make them promising for various applications. The electrospinning technique provides nanofibers with a large surface area and eases functionalization for various food and pharmaceutical applications. Numerous biopolymers have been employed to produce nanofibers due to their biocompatibility, biodegradability, and absorbability. Among different biopolymers, algal polysaccharides have gained much attention. Fucoidan is a sulfated polysaccharide isolated from brown macroalgae with a broad range of biological properties; therefore, it is highly investigated as a functional and therapeutic agent in foods and pharmaceuticals. Thus, different chemical modifications, such as depolymerization, oversulfation, phosphorylation, amination, acetylation, and benzoylation, or conjugation and functionalization with other polymers, have been used to make them desirable for target applications. The present study comprehensively reviews the electrospinning technique, applications, and crosslinking methods, then highlights the fucoidan attributes, fabrication of fucoidan-based electrospun nanofibers, their properties and functionality for food and biomedical applications.
Collapse
Affiliation(s)
- Najmeh Oliyaei
- Department of Food Science and Technology, and Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Ammar B Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah, Iraq
| | - Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | |
Collapse
|
2
|
Dogaris I, Pylypchuk I, Henriksson G, Abbadessa A. Polyelectrolyte complexes based on a novel and sustainable hemicellulose-rich lignosulphonate for drug delivery applications. Drug Deliv Transl Res 2024; 14:3452-3466. [PMID: 38530607 PMCID: PMC11499397 DOI: 10.1007/s13346-024-01573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Polyelectrolyte complexes (PECs) are polymeric structures formed by the self-assembly of oppositely charged polymers. Novel biomaterials based on PECs are currently under investigation as drug delivery systems, among other applications. This strategy leverages the ability of PECs to entrap drugs under mild conditions and control their release. In this study, we combined a novel and sustainably produced hemicellulose-rich lignosulphonate polymer (EH, negatively charged) with polyethyleneimine (PEI) or chitosan (CH, positively charged) and agar for the development of drug-releasing PECs. A preliminary screening demonstrated the effect of several parameters (polyelectrolyte ratio, temperature, and type of polycation) on PECs formation. From this, selected formulations were further characterized in terms of thermal properties, surface morphology at the microscale, stability, and ability to load and release methylene blue (MB) as a model drug. EH/PEI complexes had a more pronounced gel-like behaviour compared to the EH/CH complexes. Differential scanning calorimetry (DSC) results supported the establishment of polymeric interactions during complexation. Overall, PECs' stability was positively affected by low pH, ratios close to 1:1, and the addition of agar. PECs with higher EH content showed a higher MB loading, likely promoted by stronger electrostatic interactions. The EH/CH formulation enriched with agar showed the best sustained release profile of MB during the first 30 h in a pH-dependent environment simulating the gastrointestinal tract. Overall, we defined the conditions to formulate novel PECs based on a sustainable hemicellulose-rich lignosulphonate for potential applications in drug delivery, which promotes the valuable synergy between sustainability and the biomedical field.
Collapse
Affiliation(s)
- Ioannis Dogaris
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Ievgen Pylypchuk
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, Stockholm, 10691, Sweden
| | - Gunnar Henriksson
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden
| | - Anna Abbadessa
- Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology, and Health, Royal Institute of Technology, Teknikringen 56-58, Stockholm, SE-100 44, Sweden.
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Avenida Barcelona s/n, Santiago de Compostela, 15782, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Dong H, Li J, Huang X, Liu H, Gui R. Platelet-membrane camouflaged cerium nanoparticle-embedded gelatin methacryloyl hydrogel for accelerated diabetic wound healing. Int J Biol Macromol 2023; 251:126393. [PMID: 37595703 DOI: 10.1016/j.ijbiomac.2023.126393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Impaired angiogenesis and excessive inflammation are major factors contributing to delayed wound healing in diabetic patients. This study presents the development of a novel multifunctional hydrogel, Pltm@CNPs/Gel, which incorporates platelet membrane camouflaged cerium nanoparticles into a gelatin methacryloyl matrix. The Pltm@CNPs/Gel nanocomposite hydrogel was characterized and tested for its effects on platelet activation, coagulation, cell viability, anti-oxidation, and anti-inflammation in vitro. Moreover, we evaluated the wound healing potential of the hydrogel in a diabetic rat model. Our findings demonstrate that the Pltm@CNPs/Gel hydrogel possesses anti-oxidative and anti-inflammatory properties. Furthermore, it accelerates diabetic wound healing by promoting neovascularization, cell proliferation, and collagen fiber organization. This study highlights the potential of the Pltm@CNPs/Gel hydrogel as a therapeutic option for diabetic wound healing and its promising applications as a diabetic wound dressing candidate.
Collapse
Affiliation(s)
- Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueyuan Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Alvarado N, Abarca RL, Linares-Flores C. Use of Chitosan-Based Polyelectrolyte Complexes for Its Potential Application in Active Food Packaging: A Review of Recent Literature. Int J Mol Sci 2023; 24:11535. [PMID: 37511293 PMCID: PMC10381007 DOI: 10.3390/ijms241411535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The current challenges in the food packaging field are, on one side, replacing plastic from non-renewable sources with biopolymers and, on the other hand, generating a packaging material with attractive properties for the consumer. Currently, the consumer is ecologically concerned; the food packaging industry must think ahead to satisfy their needs. In this context, the utilization of polyelectrolyte complexes (PECs) in this industry presents itself as an excellent candidate for fulfilling these requirements. PECs possess enticing characteristics such as encapsulation, protection, and transportation, among others. On the other hand, diverse types of biopolymers have been used in the formation of PECs, such as alginate, cellulose, gelatin, collagen, and so on. Hence, this paper reviews the use of PECs in food packaging where chitosan forms polyelectrolyte complexes.
Collapse
Affiliation(s)
- Nancy Alvarado
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago 8910060, Chile
| | - Romina L Abarca
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile
| | - Cristian Linares-Flores
- Instituto de Ciencias Naturales, Universidad de Las Américas, Manuel Montt 948, Providencia, Santiago 7500975, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia, Santiago 7510157, Chile
| |
Collapse
|
5
|
Taheriazam A, Entezari M, Firouz ZM, Hajimazdarany S, Hossein Heydargoy M, Amin Moghadassi AH, Moghadaci A, Sadrani A, Motahhary M, Harif Nashtifani A, Zabolian A, Tabari T, Hashemi M, Raesi R, Jiang M, Zhang X, Salimimoghadam S, Ertas YN, Sun D. Eco-friendly chitosan-based nanostructures in diabetes mellitus therapy: Promising bioplatforms with versatile therapeutic perspectives. ENVIRONMENTAL RESEARCH 2023; 228:115912. [PMID: 37068723 DOI: 10.1016/j.envres.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Mohammadi Firouz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Hossein Amin Moghadassi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amin Sadrani
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
6
|
Haggag YA, Abd Elrahman AA, Ulber R, Zayed A. Fucoidan in Pharmaceutical Formulations: A Comprehensive Review for Smart Drug Delivery Systems. Mar Drugs 2023; 21:112. [PMID: 36827153 PMCID: PMC9965894 DOI: 10.3390/md21020112] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Fucoidan is a heterogeneous group of polysaccharides isolated from marine organisms, including brown algae and marine invertebrates. The physicochemical characteristics and potential bioactivities of fucoidan have attracted substantial interest in pharmaceutical industries in the past few decades. These polysaccharides are characterized by possessing sulfate ester groups that impart negatively charged surfaces, low/high molecular weight, and water solubility. In addition, various promising bioactivities have been reported, such as antitumor, immunomodulatory, and antiviral effects. Hence, the formulation of fucoidan has been investigated in the past few years in diverse pharmaceutical dosage forms to be able to reach their site of action effectively. Moreover, they can act as carriers for various drugs in value-added drug delivery systems. The current work highlights the attractive biopharmaceutical properties of fucoidan being formulated in oral, inhalable, topical, injectable, and other advanced formulations treating life-quality-affecting diseases. Therefore, the present work points out the current status of fucoidan pharmaceutical formulations for future research transferring their application from in vitro and in vivo studies to clinical application and market availability.
Collapse
Affiliation(s)
- Yusuf A. Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, El-Geish Street, Tanta 31527, Egypt
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abeer A. Abd Elrahman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, El-Geish Street, Tanta 31527, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Street 49, 67663 Kaiserslautern, Germany
| | - Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Street 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, El-Guish Street, Tanta 31527, Egypt
| |
Collapse
|
7
|
Dubashynskaya NV, Gasilova ER, Skorik YA. Nano-Sized Fucoidan Interpolyelectrolyte Complexes: Recent Advances in Design and Prospects for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24032615. [PMID: 36768936 PMCID: PMC9916530 DOI: 10.3390/ijms24032615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The marine polysaccharide fucoidan (FUC) is a promising polymer for pharmaceutical research and development of novel drug delivery systems with modified release and targeted delivery. The presence of a sulfate group in the polysaccharide makes FUC an excellent candidate for the formation of interpolyelectrolyte complexes (PECs) with various polycations. However, due to the structural diversity of FUC, the design of FUC-based nanoformulations is challenging. This review describes the main strategies for the use of FUC-based PECs to develop drug delivery systems with improved biopharmaceutical properties, including nanocarriers in the form of FUC-chitosan PECs for pH-sensitive oral delivery, targeted delivery systems, and polymeric nanoparticles for improved hydrophobic drug delivery (e.g., FUC-zein PECs, core-shell structures obtained by the layer-by-layer self-assembly method, and self-assembled hydrophobically modified FUC particles). The importance of a complex study of the FUC structure, and the formation process of PECs based on it for obtaining reproducible polymeric nanoformulations with the desired properties, is also discussed.
Collapse
|
8
|
Tang J, Li H, Peng H, Zhang Z, Liu C, Cheng Y, Wang K, Yu Z, Lyu Z, Zhang J, Yi C. Pre-clinical evaluation of thermosensitive decellularized adipose tissue/platelet-rich plasma interpenetrating polymer network hydrogel for wound healing. Mater Today Bio 2022; 17:100498. [DOI: 10.1016/j.mtbio.2022.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
|