1
|
Tong C, Tong X, Shi S, Guo K. Rapid discrimination and quantification of isomeric flavonoid-O-diglycosides in Citrus paradisi cv. changshanhuyou by online extraction-quadrupole time-of flight tandem mass spectrometry. J Pharm Biomed Anal 2018; 165:24-30. [PMID: 30500597 DOI: 10.1016/j.jpba.2018.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 01/19/2023]
Abstract
Rapid differentiation, characterization and quantification of isomers from complex mixtures by direct mass spectrometry (MS) remained an analytical challenge due to their similar or identical MS/MS spectra and matrix interferences. Here, we reported a novel online extraction-quadrupole time-of-flight tandem mass spectrometry (OLE-QTOF-MS/MS) system to rapid, efficient and sensitive analysis of interglycosidic linkage isomers (hesperidin and neohesperidin) in Citrus paradisi cv. Changshanhuyou (Changshanhuyou). OLE system packed with solid Changshanhuyou (0.02 mg) could be firstly used to online remove interferences with large polarities, and then online extract and enrich hesperidin and neohesperidin, which shows great potential to diminish the analysis time of sample pretreatment, as well as to reduce matrix effects and instrument consumption. Detailed fragmentation analysis found that, under positive ion mode, relative abundance of specific fragment ions m/z 449 to m/z 303 showed linear correlation to the mass content of hesperidin (0% to 100%) with good correlation coefficient (R2 = 0.9958). Utilizing this method, the mass ratio of hesperidin to neohesperidin in Changshanhuyou was relatively quantified as 3.7:96.3 with RSD at 2.9%. Finally, using internal standard method, the absolute quantitative analysis was performed with acceptable reproducibility (RSD 1.3 and 4.5% for intra- and inter-day variations) and recoveries (from 95.9% to 108.9%), acceptable limit of detection (0.33 ng). In general, OLE-QTOF-MS/MS represented a promising and practical method for simple, rapid and effective analysis of isomeric compounds in complex matrices.
Collapse
Affiliation(s)
- Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, PR China
| | - Xia Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, PR China.
| | - Keke Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China; Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, 410083, PR China
| |
Collapse
|
2
|
Zhan L, Xie X, Li Y, Liu H, Xiong C, Nie Z. Differentiation and Relative Quantitation of Disaccharide Isomers by MALDI-TOF/TOF Mass Spectrometry. Anal Chem 2018; 90:1525-1530. [DOI: 10.1021/acs.analchem.7b03735] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lingpeng Zhan
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Xie
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafeng Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huihui Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Caiqiao Xiong
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center for Mass Spectrometry in Beijing, Beijing 100190, China
| |
Collapse
|
3
|
Campbell MT, Chen D, Glish GL. Identifying the D-Pentoses Using Water Adduction to Lithium Cationized Molecule. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1420-1424. [PMID: 28411310 DOI: 10.1007/s13361-017-1656-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/07/2023]
Abstract
A method has been developed that is capable of distinguishing an exhaustive list of underivatized D-pentoses with only a mass spectrometer. Electrospray ionization (ESI) of a solution containing a pentose and a lithium salt yields [Pentose + Li]+. These lithiated pentoses adduct water in a quadrupole ion trap. The reaction rate of water adduction is unique for several of the pentose isomers. Additionally, there are multiple potential gas-phase lithiation sites to form [Pentose + Li]+. A mixture of ions with at least one reactive (water adducting) and at least one unreactive (non-adducting) lithiation site is formed for each pentose. The water adduction reaction rate along with the unreactive fraction of lithiated pentose can be used to completely discriminate all D-pentoses. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Matthew T Campbell
- Department of Chemistry, Caudill Laboratories, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Dazhe Chen
- Department of Chemistry, Caudill Laboratories, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | - Gary L Glish
- Department of Chemistry, Caudill Laboratories, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA.
| |
Collapse
|
4
|
Nagy G, Peng T, Pohl NLB. General Label-Free Mass Spectrometry-Based Assay To Identify Glycosidase Substrate Competence. Anal Chem 2016; 88:7183-90. [DOI: 10.1021/acs.analchem.6b01360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicola L. B. Pohl
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Gaye MM, Nagy G, Clemmer DE, Pohl NLB. Multidimensional Analysis of 16 Glucose Isomers by Ion Mobility Spectrometry. Anal Chem 2016; 88:2335-44. [PMID: 26799269 DOI: 10.1021/acs.analchem.5b04280] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diastereomeric adducts comprising an enantiomerically pure monosaccharide analyte, a peptide, and/or an amino acid and a divalent metal ion (for 16 different monosaccharide isomers) are generated by electrospray ionization and analyzed by combined ion mobility spectrometry-mass spectrometry (IMS-MS) techniques. Mobility distributions of [l-Ser + M + H](+) (where l-Ser is l-serine and M is a given monosaccharide), [l-Phe-Gly + M + H](+) (where l-Phe-Gly is l-phenylalanine-glycine), and [Mn(II) + (l-Phe-Gly - H) + M](+) complex ions are used to determine collision cross sections (ccs in Å(2)), and groups of cross sections for different clusters are proposed as means of identifying the sugar isomers. Within one type of complex, variations in ccs do not always allow delineation between the 16 glucose isomers, but interestingly, when ccs of three different ions are combined as a spatial vector, enantiomers are partially resolved. As a result of this analysis, l-glucose, d-glucose, l-allose, d-allose, d-gulose, d-galactose, and l-mannose are delineated, and for all eight enantiomeric pairs, d and l entities display different coordinates. In addition, different combinations of amino acids, peptide, and metal ions are surveyed, and the potential for yielding unique coordinates for the generated diastereomeric complexes is assessed.
Collapse
Affiliation(s)
- M M Gaye
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - G Nagy
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - D E Clemmer
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | - N L B Pohl
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Monosaccharide Identification as a First Step toward de Novo Carbohydrate Sequencing: Mass Spectrometry Strategy for the Identification and Differentiation of Diastereomeric and Enantiomeric Pentose Isomers. Anal Chem 2015; 87:4566-71. [DOI: 10.1021/acs.analchem.5b00760] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Nagy G, Pohl NLB. Complete hexose isomer identification with mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:677-685. [PMID: 25652933 DOI: 10.1007/s13361-014-1072-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 06/04/2023]
Abstract
The first analytical method is presented for the identification and absolute configuration determination of all 24 aldohexose and 2-ketohexose isomers, including the D and L enantiomers for allose, altrose, galactose, glucose, gulose, idose, mannose, talose, fructose, psicose, sorbose, and tagatose. Two unique fixed ligand kinetic method combinations were discovered to create significant enough energetic differences to achieve chiral discrimination among all 24 hexoses. Each of these 24 hexoses yields unique ratios of a specific pair of fragment ions that allows for simultaneous determination of identification and absolute configuration. This mass spectrometric-based methodology can be readily employed for accurate identification of any isolated monosaccharide from an unknown biological source. This work provides a key step towards the goal of complete de novo carbohydrate analysis.
Collapse
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | | |
Collapse
|
8
|
Wan D, Yang H, Yan C, Song F, Liu Z, Liu S. Differentiation of glucose-containing disaccharides isomers by fragmentation of the deprotonated non-covalent dimers using negative electrospray ionization tandem mass spectrometry. Talanta 2013; 115:870-5. [PMID: 24054676 DOI: 10.1016/j.talanta.2013.06.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022]
Abstract
In this work, the glucose-containing disaccharide isomers were studied using negative electrospray ionization tandem mass spectrometry (ESI-MS/MS). Interestingly, the full-scan mass spectra of the disaccharides revealed that the deprotonated dimers were the predominant gas phase ions during ionization process. Importantly, several diagnostic fragment ions relative to linkage positions and anomeric configurations, arising from the covalent bond dissociation of dimers without breakdown of the non-covalent complexes, can be detected in the tandem mass spectra. Based on the scarce fragmentation characteristic, an original and simple approach for structural discrimination of disaccharide isomers was put forward. In addition, density functional theory (DFT) was employed to find out the reason why several fragmentations of intramolecular sugar bonds had preceded breakdown of the non-covalent complexes.
Collapse
Affiliation(s)
- Debin Wan
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | | | | | | | | | | |
Collapse
|
9
|
Wan D, Yang H, Song F, Liu Z, Liu S. Identification of isomeric disaccharides in mixture by the 1-phenyl-3-methyl-5-pyrazolone labeling technique in conjunction with electrospray ionization tandem mass spectrometry. Anal Chim Acta 2013; 780:36-45. [PMID: 23680549 DOI: 10.1016/j.aca.2013.03.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/15/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
1-Phenyl-3-methyl-5-pyrazolone (PMP) labeling technique has hitherto proved to be a convenient and sensitive method for separating and detecting oligosaccharides. However, the detailed fragmentation of the derivatives by tandem mass spectrometry has been reported limitedly and no characteristic fragment ions for isomers have been detected. In this study, eight disaccharide isomers were labeled with PMP and analyzed by positive ion electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)). In comparison with the native disaccharides, PMP labeled disaccharides gave rise to more fragment ions in the tandem mass spectra. The distinctive diagnostic fragment ions formed from cleavage of C-C bonds have been detected in the fragmentation of PMP-labeled disaccharide linkage isomers, allowing unambiguous assignment of the position of the glycosidic linkages. This feature is particularly useful for the structural determination of unknown isomeric disaccharides mixed together. In addition, the anomeric configurations can also be easily assigned based on the relative abundance ratios of the selected ion pairs. To verify the feasibility of the method used in the analysis of natural product, water soluble Panax Ginseng extract has been further investigated to identify its unknown disaccharides. The results confirmed that the PMP labeling technique in conjunction with ESI-MS(n) could offer a powerful and convenient tool for differentiation of structurally closely related isomers, even the unknown mixtures of isomeric disaccharides with different linkage types.
Collapse
Affiliation(s)
- Debin Wan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | | | |
Collapse
|