1
|
Asakawa D, Takahashi H, Iwamoto S, Tanaka K. De Novo Sequencing of Tryptic Phosphopeptides Using Matrix-Assisted Laser Desorption/Ionization Based Tandem Mass Spectrometry with Hydrogen Atom Attachment. Anal Chem 2018; 90:2701-2707. [DOI: 10.1021/acs.analchem.7b04635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Daiki Asakawa
- National
Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hidenori Takahashi
- Koichi
Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Shinichi Iwamoto
- Koichi
Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Koichi Tanaka
- Koichi
Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto, 604-8511, Japan
| |
Collapse
|
2
|
Mu X, Song T, Siu CK, Chu IK. Tautomerization and Dissociation of Molecular Peptide Radical Cations. CHEM REC 2017. [DOI: 10.1002/tcr.201700013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Tao Song
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| | - Chi-Kit Siu
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Avenue Kowloon Tong, Hong Kong SAR P. R. China
| | - Ivan K. Chu
- Department of Chemistry; University of Hong Kong; Pokfulam, Hong Kong SAR P. R. China
| |
Collapse
|
3
|
Jang I, Lee SY, Hwangbo S, Kang D, Lee H, Kim HI, Moon B, Oh HB. TEMPO-Assisted Free Radical-Initiated Peptide Sequencing Mass Spectrometry (FRIPS MS) in Q-TOF and Orbitrap Mass Spectrometers: Single-Step Peptide Backbone Dissociations in Positive Ion Mode. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:154-163. [PMID: 27686973 DOI: 10.1007/s13361-016-1508-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/15/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
The present study demonstrates that one-step peptide backbone fragmentations can be achieved using the TEMPO [2-(2,2,6,6-tetramethyl piperidine-1-oxyl)]-assisted free radical-initiated peptide sequencing (FRIPS) mass spectrometry in a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer and a Q-Exactive Orbitrap instrument in positive ion mode, in contrast to two-step peptide fragmentation in an ion-trap mass spectrometer (reference Anal. Chem. 85, 7044-7051 (30)). In the hybrid Q-TOF and Q-Exactive instruments, higher collisional energies can be applied to the target peptides, compared with the low collisional energies applied by the ion-trap instrument. The higher energy deposition and the additional multiple collisions in the collision cell in both instruments appear to result in one-step peptide backbone dissociations in positive ion mode. This new finding clearly demonstrates that the TEMPO-assisted FRIPS approach is a very useful tool in peptide mass spectrometry research. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Inae Jang
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Sun Young Lee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Song Hwangbo
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon, 34113, Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|
4
|
Wu QY, Zhai FW, Liu Y, Yuan LY, Chai ZF, Shi WQ. Interactions between uranium(vi) and phosphopeptide: experimental and theoretical investigations. Dalton Trans 2016; 45:14988-97. [DOI: 10.1039/c6dt03009b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A phosphorylated pentapeptide (WpTPpTW, P1) motif was designed as a model to mimic possible U(vi) coordination sites of genuine phosphorylated proteins.
Collapse
Affiliation(s)
- Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Fu-Wan Zhai
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yang Liu
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Li-Yong Yuan
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
5
|
Oh HB, Moon B. Radical-driven peptide backbone dissociation tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2015; 34:116-132. [PMID: 24863492 DOI: 10.1002/mas.21426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 05/06/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
In recent years, a number of novel tandem mass spectrometry approaches utilizing radical-driven peptide gas-phase fragmentation chemistry have been developed. These approaches show a peptide fragmentation pattern quite different from that of collision-induced dissociation (CID). The peptide fragmentation features of these approaches share some in common with electron capture dissociation (ECD) or electron transfer dissociation (ETD) without the use of sophisticated equipment such as a Fourier-transform mass spectrometer. For example, Siu and coworkers showed that CID of transition metal (ligand)-peptide ternary complexes led to the formation of peptide radical ions through dissociative electron transfer (Chu et al., 2000. J Phys Chem B 104:3393-3397). The subsequent collisional activation of the generated radical ions resulted in a number of characteristic product ions, including a, c, x, z-type fragments and notable side-chain losses. Another example is the free radical initiated peptide sequencing (FRIPS) approach, in which Porter et al. and Beauchamp et al. independently introduced a free radical initiator to the primary amine group of the lysine side chain or N-terminus of peptides (Masterson et al., 2004. J Am Chem Soc 126:720-721; Hodyss et al., 2005 J Am Chem Soc 127: 12436-12437). Photodetachment of gaseous multiply charged peptide anions (Joly et al., 2008. J Am Chem Soc 130:13832-13833) and UV photodissociation of photolabile radical precursors including a C-I bond (Ly & Julian, 2008. J Am Chem Soc 130:351-358; Ly & Julian, 2009. J Am Soc Mass Spectrom 20:1148-1158) also provide another route to generate radical ions. In this review, we provide a brief summary of recent results obtained through the radical-driven peptide backbone dissociation tandem mass spectrometry approach.
Collapse
Affiliation(s)
- Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 121-742, Republic of Korea
| | | |
Collapse
|
6
|
Nam J, Kwon H, Jang I, Jeon A, Moon J, Lee SY, Kang D, Han SY, Moon B, Oh HB. Bromine isotopic signature facilitates de novo sequencing of peptides in free-radical-initiated peptide sequencing (FRIPS) mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:378-387. [PMID: 25800020 DOI: 10.1002/jms.3539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 08/04/2014] [Accepted: 11/02/2014] [Indexed: 06/04/2023]
Abstract
We recently showed that free-radical-initiated peptide sequencing mass spectrometry (FRIPS MS) assisted by the remarkable thermochemical stability of (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) is another attractive radical-driven peptide fragmentation MS tool. Facile homolytic cleavage of the bond between the benzylic carbon and the oxygen of the TEMPO moiety in o-TEMPO-Bz-C(O)-peptide and the high reactivity of the benzylic radical species generated in •Bz-C(O)-peptide are key elements leading to extensive radical-driven peptide backbone fragmentation. In the present study, we demonstrate that the incorporation of bromine into the benzene ring, i.e. o-TEMPO-Bz(Br)-C(O)-peptide, allows unambiguous distinction of the N-terminal peptide fragments from the C-terminal fragments through the unique bromine doublet isotopic signature. Furthermore, bromine substitution does not alter the overall radical-driven peptide backbone dissociation pathways of o-TEMPO-Bz-C(O)-peptide. From a practical perspective, the presence of the bromine isotopic signature in the N-terminal peptide fragments in TEMPO-assisted FRIPS MS represents a useful and cost-effective opportunity for de novo peptide sequencing.
Collapse
Affiliation(s)
- Jungjoo Nam
- Department of Chemistry, Sogang University, Seoul, 121-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nie S, Pham HT, Blanksby SJ, Reid GE. Photoinduced intermolecular cross-linking of gas phase triacylglycerol lipid ions. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:287-296. [PMID: 26307708 DOI: 10.1255/ejms.1344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Complex mixtures of plant derived triglycerol (TG) lipids are commonly used as feedstock components for the production of industrial polymers. However, there remains a need for the development of analytical strategies to investigate the intrinsic intermolecular cross-linking reactivity of individual TG molecules within these mixtures as a function of their structures and physicochemical properties, and for the characterization of the resultant products. Here, to address this need, we describe a novel multistage tandem mass spectrometry based method for intermolecular cross-linking and subsequent structural characterization of TG lipid ions in the gas phase. Cross-linking reactions were initiated using 266 nm ultraviolet photodissociation tandem mass spectrometry (UVPD-MS/MS) of saturated or unsaturated TG dimers introduced via electrospray ionization into a linear ion trap mass spectrometer as noncovalent complexes with protonated 3,4-, 2,4- or 3,5- diiodoaniline (diIA). UVPD resulted in the initial formation of an anilinyl biradical via the sequential loss of two iodine radicals, which underwent further reaction to yield multiple cross-linked TG products along with competing noncross-linking processes. These chemistries are proposed to occur via sequential combinations of hydrogen abstraction (H-abstraction), radical addition and radical recombination. Multistage collision induced dissociation tandem mass spectrometry (CID-MS(n)) was used to obtain evidence for the structures and mechanisms of formation for these products, as a function of both the TG lipid and diIA ion structures. The efficiency of the UVPD reaction was shown to be dependent on the number of unsaturation sites present within the TG lipids. However, when unsaturation sites were present, formation of the cross-linked and noncross-linked product ions via H-abstraction and radical addition mechanisms was found to be competitive. Finally, the identity of the anilinyl biradical (e.g., 3,4- versus 2,4-substituted) was found to significantly affect the distribution of these two types of product ions. Importantly, owing to the observed propensity for cross-linking to occur via H-abstraction-initiated processes, this novel gas-phase cross-linking reaction provides a convenient method to link two molecules covalently without the requirement of any specific functional group, and therefore could be applied to examine the gas-phase intermolecular interactions and cross-linking of a wide range of biomolecular classes.
Collapse
Affiliation(s)
- Shuai Nie
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| | - Huong T Pham
- Department of Chemistry, University of California, Riverside, CA, USA.
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Gavin E Reid
- Department of Chemistry, Michigan State University, East Lansing, MI, USA. School of Chemistry, Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Marshall DL, Hansen CS, Trevitt AJ, Oh HB, Blanksby SJ. Photodissociation of TEMPO-modified peptides: new approaches to radical-directed dissociation of biomolecules. Phys Chem Chem Phys 2014; 16:4871-9. [DOI: 10.1039/c3cp54825b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Quan Q, Hao Q, Song T, Siu CK, Chu IK. Mechanistic investigation of phosphate ester bond cleavages of glycylphosphoserinyltryptophan radical cations under low-energy collision-induced dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:554-562. [PMID: 23516067 DOI: 10.1007/s13361-013-0597-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
Under the conditions of low-energy collision-induced dissociation (CID), the canonical glycylphosphoserinyltryptophan radical cation having its radical located on the side chain of the tryptophan residue ([G(p)SW](•+)) fragments differently from its tautomer with the radical initially generated on the α-carbon atom of the glycine residue ([G(•)(p)SW](+)). The dissociation of [G(•)(p)SW](+) is dominated by the neutral loss of H3PO4 (98 Da), with backbone cleavage forming the [b2 - H](•+)/y1(+) pair as the minor products. In contrast, for [G(p)SW](•+), competitive cleavages along the peptide backbone, such as the formation of [G(p)SW - CO2](•+) and the [c2 + 2H](+)/[z(1) - H](•+) pair, significantly suppress the loss of neutral H3PO4. In this study, we used density functional theory (DFT) to examine the mechanisms for the tautomerizations of [G(•)(p)SW](+) and [G(p)SW](•+) and their dissociation pathways. Our results suggest that the dissociation reactions of these two peptide radical cations are more efficient than their tautomerizations, as supported by Rice-Ramsperger-Kassel-Marcus (RRKM) modeling. We also propose that the loss of H3PO4 from both of these two radical cationic tautomers is preferentially charge-driven, similar to the analogous dissociations of even-electron protonated peptides. The distonic radical cationic character of [G(•)(p)SW](+) results in its charge being more mobile, thereby favoring charge-driven loss of H3PO4; in contrast, radical-driven pathways are more competitive during the CID of [G(p)SW](•+).
Collapse
Affiliation(s)
- Quan Quan
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|