1
|
Torres-García A, Torrente-López A, Hermosilla J, Hernández A, Salmerón-García A, Cabeza J, Navas N. Comprehensive Analysis of Cetuximab Critical Quality Attributes: Impact of Handling on Antigen-Antibody Binding. Pharmaceutics 2024; 16:1222. [PMID: 39339258 PMCID: PMC11435379 DOI: 10.3390/pharmaceutics16091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cetuximab, formulated in Erbitux® (5 mg/mL), is a therapeutic monoclonal antibody (mAb) widely used in several cancer treatments. Currently, there is insufficient knowledge about the behavior of cetuximab with regard to the risk associated with its routine handling or unintentional mishandling in hospitals. Forced degradation studies can simulate these conditions and provide insights into the biophysical and biochemical properties of mAbs. METHODS In this study, we conducted a deep physicochemical and functional characterization of the critical quality attributes of cetuximab in control samples and under controlled degraded conditions, including freeze-thaw cycles, heat, agitation, and light exposure. To achieve this purpose, we used a set of proper analytical techniques, including CD, IT-FS, DLS, SE/UHPLC-UV, UHPLC-MS/MS, and ELISA, to check functionality based on antigen-antibody binding. RESULTS The results revealed that light exposure was the stress stimuli with the greatest impact on the drug product, leading to the formation of non-natural oligomers, fragmentation, and oxidation of methionine residues. Additionally, cetuximab (Erbitux®, 5 mg/mL) showed a tendency to aggregate when submitted to 60 °C for 1 h. In terms of functionality, cetuximab (Erbitux®, 5 mg/mL) samples were found to be affected when subjected to freeze-thaw cycles, 60 °C (1 h), and when exposed to light (daylight with room temperature excursion and accelerated light exposure). CONCLUSIONS Thus, we suggest that Erbitux® (5 mg/mL) should be shielded from these environmental conditions, as they compromise both the safety and efficacy of the drug product.
Collapse
Affiliation(s)
- Alicia Torres-García
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Hospital Doctor Olóriz, Avda de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Avda de Madrid, 15, 18012 Granada, Spain
| | - Anabel Torrente-López
- Instituto de Investigación Biosanitaria ibs.GRANADA, Avda de Madrid, 15, 18012 Granada, Spain
- Analytical Chemistry Department, Science Faculty, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain; (A.T.-L.); (J.H.)
| | - Jesús Hermosilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Avda de Madrid, 15, 18012 Granada, Spain
- Analytical Chemistry Department, Science Faculty, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain; (A.T.-L.); (J.H.)
| | - Amparo Hernández
- Analytical Chemistry Department, Science Faculty, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain; (A.T.-L.); (J.H.)
| | - Antonio Salmerón-García
- Instituto de Investigación Biosanitaria ibs.GRANADA, Avda de Madrid, 15, 18012 Granada, Spain
- Servicio de Farmacia Hospitalaria, Hospital Universitario San Cecilio, Avenida de la Investigación s/n, 18016 Granada, Spain; (A.S.-G.); (J.C.)
| | - José Cabeza
- Instituto de Investigación Biosanitaria ibs.GRANADA, Avda de Madrid, 15, 18012 Granada, Spain
- Servicio de Farmacia Hospitalaria, Hospital Universitario San Cecilio, Avenida de la Investigación s/n, 18016 Granada, Spain; (A.S.-G.); (J.C.)
| | - Natalia Navas
- Instituto de Investigación Biosanitaria ibs.GRANADA, Avda de Madrid, 15, 18012 Granada, Spain
- Analytical Chemistry Department, Science Faculty, Universidad de Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain; (A.T.-L.); (J.H.)
| |
Collapse
|
2
|
Shah A, Batabyal D, Qiu D, Cui W, Harrahy J, Ivanov AR. Mapping conformational changes on bispecific antigen-binding biotherapeutic by covalent labeling and mass spectrometry. J Pharm Anal 2024; 14:100966. [PMID: 39263356 PMCID: PMC11388688 DOI: 10.1016/j.jpha.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 09/13/2024] Open
Abstract
Biotherapeutic's higher order structure (HOS) is a critical determinant of its functional properties and conformational relevance. Here, we evaluated two covalent labeling methods: diethylpyrocarbonate (DEPC)-labeling and fast photooxidation of proteins (FPOP), in conjunction with mass spectrometry (MS), to investigate structural modifications for the new class of immuno-oncological therapy known as bispecific antigen-binding biotherapeutics (BABB). The evaluated techniques unveiled subtle structural changes occurring at the amino acid residue level within the antigen-binding domain under both native and thermal stress conditions, which cannot be detected by conventional biophysical techniques, e.g., near-ultraviolet circular dichroism (NUV-CD). The determined variations in labeling uptake under native and stress conditions, corroborated by binding assays, shed light on the binding effect, and highlighted the potential of covalent-labeling methods to effectively monitor conformational changes that ultimately influence the product quality. Our study provides a foundation for implementing the developed techniques in elucidating the inherent structural characteristics of novel therapeutics and their conformational stability.
Collapse
Affiliation(s)
- Arnik Shah
- Amgen Inc., Cambridge, MA, 02141, USA
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | | | | | | | | | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Remoroza CA, Burke MC, Mak TD, Sheetlin SL, Mirokhin YA, Cooper BT, Goecker ZC, Lowenthal MS, Yang X, Wang G, Tchekhovskoi DV, Stein SE. Comparison of N-Glycopeptide to Released N-Glycan Abundances and the Influence of Glycopeptide Mass and Charge States on N-Linked Glycosylation of IgG Antibodies. J Proteome Res 2024; 23:1443-1457. [PMID: 38450643 PMCID: PMC10997438 DOI: 10.1021/acs.jproteome.3c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
We report the comparison of mass-spectral-based abundances of tryptic glycopeptides to fluorescence abundances of released labeled glycans and the effects of mass and charge state and in-source fragmentation on glycopeptide abundances. The primary glycoforms derived from Rituximab, NISTmAb, Evolocumab, and Infliximab were high-mannose and biantennary complex galactosylated and fucosylated N-glycans. Except for Evolocumab, in-source ions derived from the loss of HexNAc or HexNAc-Hex sugars are prominent for other therapeutic IgGs. After excluding in-source fragmentation of glycopeptide ions from the results, a linear correlation was observed between fluorescently labeled N-glycan and glycopeptide abundances over a dynamic range of 500. Different charge states of human IgG-derived glycopeptides containing a wider variety of abundant attached glycans were also investigated to examine the effects of the charge state on ion abundances. These revealed a linear dependence of glycopeptide abundance on the mass of the glycan with higher charge states favoring higher-mass glycans. Findings indicate that the mass spectrometry-based bottom-up approach can provide results as accurate as those of glycan release studies while revealing the origin of each attached glycan. These site-specific relative abundances are conveniently displayed and compared using previously described glycopeptide abundance distribution spectra "GADS" representations. Mass spectrometry data are available from the MAssIVE repository (MSV000093562).
Collapse
Affiliation(s)
| | | | | | | | | | - Brian T. Cooper
- Mass Spectrometry Data Center
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | | | - Mark S. Lowenthal
- Bioanalytical Science Group, Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive Gaithersburg, MD 20899, US
| | | | | | | | | |
Collapse
|
4
|
Martinez-Cano D, Ravichandran R, Le H, Wong HE, Jagannathan B, Liu EJ, Bailey W, Yang J, Matthies K, Barkhordarian H, Shah B, Srinivasan N, Zhang J, Hsu A, Wypych J, Stevens J, Piedmonte DM, Miranda LP, Carter L, Murphy M, King NP, Soice N. Process Development of a SARS-CoV-2 Nanoparticle Vaccine. Process Biochem 2023; 129:241-256. [PMID: 37013198 PMCID: PMC10019920 DOI: 10.1016/j.procbio.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
One of the outcomes from the global COVID-19 pandemic caused by SARS-CoV-2 has been an acceleration of development timelines to provide treatments in a timely manner. For example, it has recently been demonstrated that the development of monoclonal antibody therapeutics from vector construction to IND submission can be achieved in five to six months rather than the traditional ten-to-twelve-month timeline using CHO cells [1], [2]. This timeline is predicated on leveraging existing, robust platforms for upstream and downstream processes, analytical methods, and formulation. These platforms also reduce; the requirement for ancillary studies such as cell line stability, or long-term product stability studies. Timeline duration was further reduced by employing a transient cell line for early material supply and using a stable cell pool to manufacture toxicology study materials. The development of non-antibody biologics utilizing traditional biomanufacturing processes in CHO cells within a similar timeline presents additional challenges, such as the lack of platform processes and additional analytical assay development. In this manuscript, we describe the rapid development of a robust and reproducible process for a two-component self-assembling protein nanoparticle vaccine for SARS-CoV-2. Our work has demonstrated a successful academia-industry partnership model that responded to the COVID-19 global pandemic quickly and efficiently and could improve our preparedness for future pandemic threats.
Collapse
|
5
|
Gupta S, Shah B, Fung CS, Chan PK, Wakefield DL, Kuhns S, Goudar CT, Piret JM. Engineering protein glycosylation in CHO cells to be highly similar to murine host cells. Front Bioeng Biotechnol 2023; 11:1113994. [PMID: 36873370 PMCID: PMC9978007 DOI: 10.3389/fbioe.2023.1113994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Since 2015 more than 34 biosimilars have been approved by the FDA. This new era of biosimilar competition has stimulated renewed technology development focused on therapeutic protein or biologic manufacturing. One challenge in biosimilar development is the genetic differences in the host cell lines used to manufacture the biologics. For example, many biologics approved between 1994 and 2011 were expressed in murine NS0 and SP2/0 cell lines. Chinese Hamster ovary (CHO) cells, however, have since become the preferred hosts for production due to their increased productivity, ease of use, and stability. Differences between murine and hamster glycosylation have been identified in biologics produced using murine and CHO cells. In the case of monoclonal antibodies (mAbs), glycan structure can significantly affect critical antibody effector function, binding activity, stability, efficacy, and in vivo half-life. In an attempt to leverage the intrinsic advantages of the CHO expression system and match the reference biologic murine glycosylation, we engineered a CHO cell expressing an antibody that was originally produced in a murine cell line to produce murine-like glycans. Specifically, we overexpressed cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) and N-acetyllactosaminide alpha-1,3-galactosyltransferase (GGTA) to obtain glycans with N-glycolylneuraminic acid (Neu5Gc) and galactose-α-1,3-galactose (alpha gal). The resulting CHO cells were shown to produce mAbs with murine glycans, and they were then analyzed by the spectrum of analytical methods typically used to demonstrate analytical similarity as a part of demonstrating biosimilarity. This included high-resolution mass spectrometry, biochemical, as well as cell-based assays. Through selection and optimization in fed-batch cultures, two CHO cell clones were identified with similar growth and productivity criteria to the original cell line. They maintained stable production for 65 population doubling times while matching the glycosylation profile and function of the reference product expressed in murine cells. This study demonstrates the feasibility of engineering CHO cells to express mAbs with murine glycans to facilitate the development of biosimilars that are highly similar to marketed reference products expressed in murine cells. Furthermore, this technology can potentially reduce the residual uncertainty regarding biosimilarity, resulting in a higher probability of regulatory approval and potentially reduced costs and time in development.
Collapse
Affiliation(s)
- Shivani Gupta
- Amgen, Inc., San Francisco, CA, United States.,Michael Smith Laboratories, and Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | - Scott Kuhns
- Amgen, Inc., Thousand Oaks, CA, United States
| | | | - James M Piret
- Michael Smith Laboratories, and Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Kumar A, Aglyamova G, Yim Y, Bailey AO, Lynch H, Powell R, Nguyen N, Rosenthal Z, Zhao WN, Li Y, Chen J, Fan S, Lee H, Russell W, Stephan C, Robison A, Haggarty S, Nestler E, Zhou J, Machius M, Rudenko G. Chemically targeting the redox switch in AP1 transcription factor ΔFOSB. Nucleic Acids Res 2022; 50:9548-9567. [PMID: 36039764 PMCID: PMC9458432 DOI: 10.1093/nar/gkac710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
The AP1 transcription factor ΔFOSB, a splice variant of FOSB, accumulates in the brain in response to chronic insults such as exposure to drugs of abuse, depression, Alzheimer's disease and tardive dyskinesias, and mediates subsequent long-term neuroadaptations. ΔFOSB forms heterodimers with other AP1 transcription factors, e.g. JUND, that bind DNA under control of a putative cysteine-based redox switch. Here, we reveal the structural basis of the redox switch by determining a key missing crystal structure in a trio, the ΔFOSB/JUND bZIP domains in the reduced, DNA-free form. Screening a cysteine-focused library containing 3200 thiol-reactive compounds, we identify specific compounds that target the redox switch, validate their activity biochemically and in cell-based assays, and show that they are well tolerated in different cell lines despite their general potential to bind to cysteines covalently. A crystal structure of the ΔFOSB/JUND bZIP domains in complex with a redox-switch-targeting compound reveals a deep compound-binding pocket near the DNA-binding site. We demonstrate that ΔFOSB, and potentially other, related AP1 transcription factors, can be targeted specifically and discriminately by exploiting unique structural features such as the redox switch and the binding partner to modulate biological function despite these proteins previously being thought to be undruggable.
Collapse
Affiliation(s)
| | | | - Yun Young Yim
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Haley M Lynch
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Reid T Powell
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Nghi D Nguyen
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Zachary Rosenthal
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jianping Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shanghua Fan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hubert Lee
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Clifford Stephan
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabby Rudenko
- To whom correspondence should be addressed. Tel: +1 409 772 6292; Fax: +1 409 772 9642;
| |
Collapse
|
7
|
Zhang Z, Shah B. Limited Proteolysis Coupled with Mass Spectrometry for Simultaneous Evaluation of a Large Number of Protein Variants for Their Impact on Conformational Stability. Anal Chem 2021; 93:14263-14271. [PMID: 34637272 DOI: 10.1021/acs.analchem.1c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stable molecular structure is important in the development of a protein candidate into a therapeutic product. A therapeutic protein often contains many different variants; some of them may have an impact on the conformational stability of the protein. Conventionally, to evaluate the impact of a variant on stability, the variant must be enriched to a reasonable purity, and then its stability characterized by chromatographic or biophysical techniques. However, it is often impractical to purify and characterize each variant in a therapeutic protein. A workflow, based on limited proteolysis followed by MS detection, was established to simultaneously assess the impact of a large number of variants on conformational stability without enrichment. Because a less stable domain is more susceptible to proteolytic degradation, conformational stability of the domain can be reported from the release rate of a proteolytic peptide. A kinetic model is established to quantitatively determine the extent of domain stabilization/destabilization of different variants. The methodology is demonstrated by examining variants known to affect the stability of immunoglobulin domains, such as different N-glycoforms, methionine oxidations, and sequence variants. With this methodology, near 100 variants may be evaluated within 2 days in a single experiment. Insights into the sequence-stability relationship will be obtained by monitoring the large number of low-level sequence variants, facilitating engineering of more stable molecules.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 United States
| | - Bhavana Shah
- Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 United States
| |
Collapse
|
8
|
Progress in the pretreatment and analysis of carbohydrates in food: An update since 2013. J Chromatogr A 2021; 1655:462496. [PMID: 34492577 DOI: 10.1016/j.chroma.2021.462496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
Carbohydrates in foods and other matrices plays vital roles in their diverse biological functions. Carbohydrates serve not only as functional substances but also as structural materials, such as components of membranes, and participate in cellular recognition. The fact that carbohydrates are indispensable has contributed to the need for pretreatment and analytical methods to be developed for their characterization. The aim of this review is to provide a comprehensive overview of carbohydrate pretreatment and determination methods in various matrices. The pretreatment methods include simple and more developed approaches (e.g., solid phase extraction, supercritical fluid extraction, and different microextraction methods, among others). The analytical methods include those by liquid chromatography (including high-performance anion-exchange chromatography), capillary electrophoresis, gas chromatography and supercritical fluid chromatography, and others. Different pretreatment methods and determination approaches are updated, compared, and discussed. Moreover, we discuss and compare the strengths and weaknesses of different methods and suggest their future prospects.
Collapse
|
9
|
Zhang Z, Chan PK, Richardson J, Shah B. An evaluation of instrument types for mass spectrometry-based multi-attribute analysis of biotherapeutics. MAbs 2021; 12:1783062. [PMID: 32643531 PMCID: PMC7531562 DOI: 10.1080/19420862.2020.1783062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Multi-attribute methods (MAM), based on proteolytic digestion followed by liquid chromatography-mass spectrometry analysis of proteolytic peptides, have gained substantial attention in the biopharmaceutical industry for quantifying a variety of quality attributes for therapeutic proteins. Most MAM developed so far have been based on high-resolution mass spectrometers, due to their superb resolving power to distinguish analyte signals from interferences. Lower-resolution instruments, if demonstrated suitable, may further promote the adoption of the technology due to their low cost, small footprint, and ease of use. In this work, we compared the performance of a high-resolution instrument with a few low-resolution quadrupole-type instruments in quantifying a diverse set of quality attributes in a monoclonal antibody product. Different modes of operation for the quadrupole instruments, including scan mode, selected-ion monitoring and multiple-reaction monitoring, were evaluated. The high-resolution instrument has superb performance, with a quantitation limit of 0.002%. Single-quadrupole instruments in scan mode, on the other hand, provide a quantitation limit of about 1%, which may be fit-for-purpose for many routine MAM applications.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Process Development, Amgen, Inc ., Thousand Oaks, CA, USA
| | - Pik K Chan
- Process Development, Amgen, Inc ., Thousand Oaks, CA, USA
| | | | - Bhavana Shah
- Process Development, Amgen, Inc ., Thousand Oaks, CA, USA
| |
Collapse
|
10
|
Patabandige MW, Go EP, Desaire H. Clinically Viable Assay for Monitoring Uromodulin Glycosylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:436-443. [PMID: 33301684 PMCID: PMC8541689 DOI: 10.1021/jasms.0c00317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Uromodulin, also known as the Tamm-Horsfall protein or THP, is the most abundant protein excreted in human urine. It is associated with the progression of kidney diseases; therefore, changes in the glycosylation profile of this protein could serve as a potential biomarker for kidney health. The typical glycomics analysis approaches used to quantify uromodulin glycosylation involve time-consuming and tedious glycoprotein isolation and labeling steps, which limit their utility in clinical glycomics assays, where sample throughput is important. Herein, we introduce a radically simplified sample preparation workflow, with direct ESI-MS analysis, enabling the quantification of N-linked glycans that originate from uromodulin. The method omits any glycan labeling steps but includes steps to reduce the salt content of the samples, thereby minimizing ion suppression. The method is effective for quantifying subtle glycosylation differences of uromodulin samples derived from different biological states. As a proof of concept, glycosylation from samples that differ by pregnancy status were shown to be differentiable.
Collapse
Affiliation(s)
- Milani Wijeweera Patabandige
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Eden P. Go
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, Lawrence, KS 66047, United States
| |
Collapse
|
11
|
Simultaneous Monitoring and Comparison of Multiple Product Quality Attributes for Cell Culture Processes at Different Scales Using a LC/MS/MS Based Multi-Attribute Method. J Pharm Sci 2020; 109:3319-3329. [DOI: 10.1016/j.xphs.2020.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
|
12
|
Bansal P, Yatsyna V, AbiKhodr AH, Warnke S, Ben Faleh A, Yalovenko N, Wysocki VH, Rizzo TR. Using SLIM-Based IMS-IMS Together with Cryogenic Infrared Spectroscopy for Glycan Analysis. Anal Chem 2020; 92:9079-9085. [PMID: 32456419 PMCID: PMC7349563 DOI: 10.1021/acs.analchem.0c01265] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
The isomeric heterogeneity of glycans poses a great challenge for their analysis. While combining ion mobility spectrometry (IMS) with tandem mass spectrometry is a powerful means for identifying and characterizing glycans, it has difficulty distinguishing the subtlest differences between isomers. Cryogenic infrared spectroscopy provides an additional dimension for glycan identification that is extremely sensitive to their structure. Our approach to glycan analysis combines ultrahigh-resolution IMS-IMS using structures for lossless ion manipulation (SLIM) with cryogenic infrared spectroscopy. We present here the design of a SLIM board containing a series of on-board traps in which we perform collision-induced dissociation (CID) at pressures in the millibar range. We characterize the on-board CID process by comparing the fragments generated from a pentapeptide to those obtained on a commercial tandem mass spectrometer. We then apply our new technique to study the mobility and vibrational spectra of CID fragments from two human milk oligosaccharides. Comparison of both the fragment drift times and IR spectra with those of suitable reference compounds allows us to identify their specific isomeric form, including the anomericity of the glycosidic linkage, demonstrating the power of this tool for glycan analysis.
Collapse
Affiliation(s)
- Priyanka Bansal
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Vasyl Yatsyna
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
- Department
of Physics, University of Gothenburg, 412 96 Gotheburg, Sweden
| | - Ali H. AbiKhodr
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Stephan Warnke
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Ahmed Ben Faleh
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Natalia Yalovenko
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| | - Vicki H. Wysocki
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Thomas R. Rizzo
- Laboratoire
de Chimie Physique Moléculaire, École
Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Chi B, Veyssier C, Kasali T, Uddin F, Sellick CA. At-line high throughput site-specific glycan profiling using targeted mass spectrometry. ACTA ACUST UNITED AC 2020; 25:e00424. [PMID: 32071892 PMCID: PMC7016254 DOI: 10.1016/j.btre.2020.e00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/24/2019] [Accepted: 01/21/2020] [Indexed: 11/26/2022]
Abstract
High throughput, site-specific glycan profiling using targeted mass spectrometry. Rapid analysis of glycan profiles directly from culture media. Methodology is fully compatible with automation. Methodology can be integrated into cell line selection and process development. Strategy can be used for multi-attribute product quality screening/monitoring.
Protein post-translational modification (PTM) plays an important role in many biological processes; of which glycosylation is arguably one of the most complex and diverse modifications and is crucial for the safety and efficacy of biotherapeutic proteins. Mass spectrometric characterization of protein glycosylation is well established with clear advantages and disadvantages; on one hand it is precise and information-rich, as well as being relative inexpensive in terms of the reagents and consumables despite the instrumentation cost and, depending on the method, can give site specific information; on the other hand it generally suffers from low throughput, restriction to largely purified samples and is less quantitative, especially for sialylated glycan species. Here, we describe a high throughput, site-specific, targeted mass spectrometric peptide mapping approach to quickly screen/rank candidate production cell lines and culture conditions that give favourable glycosylation profiles directly from conditioned culture media for an Fc-fusion protein. The methodology is fully compatible with automation and combines the speed of ‘top-down’ mass spectrometry with the site-specific information of ‘bottom-up’ mass spectrometry. In addition, this strategy can be used for multi-attribute product quality screening/monitoring as an integral part of cell line selection and process development.
Collapse
Affiliation(s)
- Bertie Chi
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | | | - Toyin Kasali
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Faisal Uddin
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | | |
Collapse
|
14
|
Dyukova I, Carrascosa E, Pellegrinelli RP, Rizzo TR. Combining Cryogenic Infrared Spectroscopy with Selective Enzymatic Cleavage for Determining Glycan Primary Structure. Anal Chem 2020; 92:1658-1662. [PMID: 31898462 DOI: 10.1021/acs.analchem.9b04776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Given the biological relevance and intrinsic structural complexity of glycans, increasing efforts are being directed toward developing a general glycan database that includes information from different analytical methods. As recently demonstrated, cryogenic infrared (IR) spectroscopy is a promising technique for glycan analysis, as it provides unique vibrational fingerprints of specific glycan isomer ions. One of the main goals of a glycan database is the identification and detailed characterization of unknown species. In this work, we combine enzymatic digestion with cryogenic IR-spectroscopy and demonstrate how it can be used for glycan identification. We measured the IR-spectra of a series of cationic glycan standards of increasing complexity and compared them with spectra of the same species after enzymatic cleavage of larger glycans. We show that the cryogenic IR spectra of the cleaved glycans are highly structured and virtually identical to those of standards after both single and multiple cleavages. Our results suggest that the combination of these methods represents a potentially powerful and specific approach for the characterization of unknown glycans.
Collapse
Affiliation(s)
- Irina Dyukova
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM , Station 6, CH-1015 Lausanne , Switzerland
| | - Eduardo Carrascosa
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM , Station 6, CH-1015 Lausanne , Switzerland
| | - Robert P Pellegrinelli
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM , Station 6, CH-1015 Lausanne , Switzerland
| | - Thomas R Rizzo
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM , Station 6, CH-1015 Lausanne , Switzerland
| |
Collapse
|
15
|
Abstract
Human IgG antibodies containing terminal alpha 2,6-linked sialic acid on their Fc N-glycans have been shown to reduce antibody-dependent cell-mediated cytotoxicity and possess anti-inflammatory properties. Although terminal sialylation on complex N-glycans can happen via either an alpha 2,3-linkage or an alpha 2,6-linkage, sialic acids on human serum IgG Fc are almost exclusively alpha 2,6-linked. Recombinant IgGs expressed in Chinese hamster ovary (CHO) cells, however, have sialic acids through alpha 2,3-linkages because of the lack of the alpha 2,6-sialyltransferase gene. The impact of different sialylation linkages to the structure of IgG has not been determined. In this work, we investigated the impact of different types of sialylation to the conformational stability of IgG through hydrogen/deuterium exchange (HDX) and limited proteolysis experiments. When human-derived and CHO-expressed IgG1 were analyzed by HDX, sialic acid-containing glycans were found to destabilize the CH2 domain in CHO-expressed IgG, but not human-derived IgG. When structural isomers of sialylated glycans were chromatographically resolved and identified in the limited proteolysis experiment, we found that only alpha 2,3-linked sialic acid on the 6-arm (the major sialylated glycans in CHO-expressed IgG1) destabilizes the CH2 domain, presumably because of the steric effect that decreases the glycan-CH2 domain interaction. The alpha 2,6-linked sialic acid on the 3-arm (the major sialylated glycan in human-derived IgG), and the alpha 2,3-linked sialic acid on the 3-arm, do not have this destabilizing effect.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Department of Attribute Sciences, Process Development, Amgen, Inc , Thousand Oaks, California , USA
| | - Bhavana Shah
- Department of Attribute Sciences, Process Development, Amgen, Inc , Thousand Oaks, California , USA
| | - Jason Richardson
- Department of Attribute Sciences, Process Development, Amgen, Inc , Thousand Oaks, California , USA
| |
Collapse
|
16
|
Shen Y, You Y, Xiao K, Chen Y, Tian Z. Large-Scale Identification and Fragmentation Pathways Analysis of N-Glycans from Mouse Brain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1254-1261. [PMID: 31098956 DOI: 10.1007/s13361-019-02181-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/18/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
N-linked glycosylation is one of the most common protein PTMs, and the topological structure (monosaccharide composition and sequence as well as glycosidic linkages) of N-glycans is vital information to understand their biological functions and roles. Tandem mass spectrometry has been widely used for topological structure characterization of N-glycans, where comprehensive understanding of fragmentation pathways and characteristics of product ions are essential to achieve best interpretation of MS/MS data and highest confidence of identification. Here, we report our glycomic study of N-glycome of mouse brain as well as fragmentation pathway analysis of the identified N-glycans. With LC-MS/MS analysis at both the positive and negative ESI modes together with our recently developed N-glycan database search engine GlySeeker, 221 unique N-glycans with putative topological structures were identified with target-decoy searches and number of best hits of 1. Analysis of fragmentation pathways and characteristics of product ions of permethylated N-glycans in the positive mode and native N-glycans in the negative mode were further carried out. The reported N-glycans serve as a basic reference for future glycosylation study of mouse brain; and in general database search of tandem mass spectra of N-glycans, B/Y/Z ions should be preferentially considered for the permethylated form in the positive mode and B/C/Z ions for the native form in the negative mode.
Collapse
Affiliation(s)
- Yun Shen
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Yiwen You
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Kaijie Xiao
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
17
|
Yang X, Bartlett MG. Glycan analysis for protein therapeutics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:29-40. [PMID: 31063953 DOI: 10.1016/j.jchromb.2019.04.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Glycosylation can be a critical quality attribute for protein therapeutics due to its extensive impact on product safety and efficacy. Glycan characterization is important in the process of protein drug development, from early stage candidate selection to late stage regulatory submission. It is also an indispensable part in the evaluation of biosimilarity. This review discusses the effects of glycosylation on the stability and activity of protein therapeutics, regulatory considerations corresponding to manufacturing and structural characterization of glycosylated protein therapeutics, and focuses on mass spectrometry compatible separation methods for glycan characterization of protein therapeutics. These approaches include hydrophilic interaction liquid chromatography, reversed-phase liquid chromatography, capillary electrophoresis, porous graphitic carbon liquid chromatography and two-dimensional liquid chromatography. Advances and novelties in each separation method, as well as associated challenges and limitations, are discussed at the released glycan, glycopeptide, glycoprotein subunit and intact glycoprotein levels.
Collapse
Affiliation(s)
- Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-2352, United States of America.
| |
Collapse
|
18
|
Zhang Z, Shah B, Guan X. Reliable LC-MS Multiattribute Method for Biotherapeutics by Run-Time Response Calibration. Anal Chem 2019; 91:5252-5260. [PMID: 30916552 DOI: 10.1021/acs.analchem.9b00027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A major challenge of a mass-spectrometry-based quantitative multiattribute method (MAM) for biotherapeutics is its high variability between instruments. For reproducible attribute measurements, not only is a similar instrument model required, but the instruments must also be tuned to the same condition. This poses great long-term challenges, considering the rapid development of new instrumentations. In addition, differences in digestion efficiency, peptide recovery, and artificial modifications during sample preparation also contribute to variability between laboratories. To overcome these challenges, new mathematical methods are developed to calculate the attribute abundance in the sample, using the reference standard (RS) material as calibrant. Most quality attributes in the RS remain constant throughout the life of the standard, and therefore, the RS can serve as a calibrant to correct for the difference between instruments or sample preparation procedures. Because RS data are usually collected in a MAM assay, no additional work is required from the analyst. Data from a large number of attributes demonstrated that these methodologies greatly reduced instrument-to-instrument and sample preparation variabilities. With these methodologies, a consistent instrument model and sample preparation procedure is no longer a requirement. As a result, changes in digestion procedure and advances in instrumentations will not significantly affect the assay result.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Process Development , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , California 91320 , United States
| | - Bhavana Shah
- Process Development , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , California 91320 , United States
| | - Xiaoyan Guan
- Process Development , Amgen Inc. , One Amgen Center Drive , Thousand Oaks , California 91320 , United States
| |
Collapse
|
19
|
Hu M, Lan Y, Lu A, Ma X, Zhang L. Glycan-based biomarkers for diagnosis of cancers and other diseases: Past, present, and future. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:1-24. [PMID: 30905444 DOI: 10.1016/bs.pmbts.2018.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are essential biomolecules in regulating human physiology and pathology ranging from signal transduction to microbial infections. Developing complex human diseases, such as cancer, diabetes, and cardiovascular diseases, are a combination of genetic and environmental factors. Genetics dominates embryonic development and the passing of genes to the next generation whereas the information in glycans reflects the impact of internal and external environmental factors, such as diseases, lifestyle, and social factors, on a person's health and disease. The reason behind this is that glycans are not directly encoded in a genetic template. Instead, they are assembled dynamically by hundreds of enzymes organized in more than 10 complex biosynthetic pathways. Any environmental changes affecting enzymatic activities or the availability of high-energy monosaccharide donors in a specific location will disturb the final structure of glycans. The glycan structure-dependent biological activities subsequently enable or disable gene expressions, which partially explain that it is difficult to pinpoint specific genetic defects to aging-associated diseases. Glycan-based biomarkers are currently used for diagnosis of diabetes, cancers, and other complex diseases. We will recapitulate the discovery of glucose, glycated proteins, glycan-, and glycoprotein-based biomarkers followed by summarizing clinically used glycan/glycoprotein-based biomarkers. The potential serum/plasma-derived N- and O-linked glycans as biomarkers will also be discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Alexander Lu
- Program in Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Xuexiao Ma
- Department of Spine Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
20
|
Guerra A, von Stosch M, Glassey J. Toward biotherapeutic product real-time quality monitoring. Crit Rev Biotechnol 2019; 39:289-305. [DOI: 10.1080/07388551.2018.1524362] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- André Guerra
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Moritz von Stosch
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jarka Glassey
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
21
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
22
|
Abstract
Even if a consensus sequence has been identified for a posttranslational modification, the presence of such a sequence motif only indicates the possibility, not the certainty that the modification actually occurs. Proteins can be glycosylated on certain amino acid side chains, and these modifications are designated as C-, N-, and O-glycosylation. C-mannosylation occurs on Trp residues within a relatively loosely defined consensus motif. N-glycosylated species are modified at Asn residues of Asn-Xxx-Ser/Thr/Cys sequons (where Xxx can be any amino acid except proline). N-linked oligosaccharides share a common core structure of GlcNAc2Man3. In addition, an enzyme, peptide N-glycosidase F (PNGase F), removes most of the common N-linked carbohydrates unaltered from proteins while hydrolyzing the originally glycosylated Asn residue to Asp. O-glycosylation occurs at Ser, Thr, and Tyr residues, usually in sequence stretches rich in hydroxy-amino acids. O-glycosylation lacks a common core structure. Mammalian proteins have been reported bearing O-linked N-acetylgalactosamine, fucose, glucose, xylose, mannose, and corresponding elongated structures, as well as N-acetylglucosamine. Chemical methods are used to liberate these oligosaccharides because no enzyme would remove all the different O-linked carbohydrates. Characterization of both N- and O-glycosylation is complicated by the fact that the same positions within a population of protein molecules may feature an array of different carbohydrate structures, or remain unmodified. This site-specific heterogeneity may vary by species and tissue, and may also be affected by physiological changes. For addressing site-specific carbohydrate heterogeneity mass spectrometry has become the method of choice. Reversed-phase HPLC directly coupled with electrospray ionization mass spectrometry (LC/ESI-MS/MS) offers the best solution. Using a mass spectrometer as online detector not only assures the analysis of every component eluting (mass mapping), but also at the same time diagnostic carbohydrate ions can be generated by collisional activation that permits the selective and specific detection of glycopeptides. In addition, ESI-compatible alternative MS/MS techniques, electron-capture and electron-transfer dissociation, aid glycopeptide identification as well as modification site assignments.
Collapse
|
23
|
|
24
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
25
|
Sudom A, Talreja S, Danao J, Bragg E, Kegel R, Min X, Richardson J, Zhang Z, Sharkov N, Marcora E, Thibault S, Bradley J, Wood S, Lim AC, Chen H, Wang S, Foltz IN, Sambashivan S, Wang Z. Molecular basis for the loss-of-function effects of the Alzheimer's disease-associated R47H variant of the immune receptor TREM2. J Biol Chem 2018; 293:12634-12646. [PMID: 29794134 DOI: 10.1074/jbc.ra118.002352] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor expressed on the surface of microglia, macrophages, dendritic cells, and osteoclasts. The R47H TREM2 variant is a significant risk factor for late-onset Alzheimer's disease (AD), and the molecular basis of R47H TREM2 loss of function is an emerging area of TREM2 biology. Here, we report three high-resolution structures of the extracellular ligand-binding domains (ECDs) of R47H TREM2, apo-WT, and phosphatidylserine (PS)-bound WT TREM2 at 1.8, 2.2, and 2.2 Å, respectively. The structures reveal that Arg47 plays a critical role in maintaining the structural features of the complementarity-determining region 2 (CDR2) loop and the putative positive ligand-interacting surface (PLIS), stabilizing conformations capable of ligand interaction. This is exemplified in the PS-bound structure, in which the CDR2 loop and PLIS drive critical interactions with PS via surfaces that are disrupted in the variant. Together with in vitro and in vivo characterization, our structural findings elucidate the molecular mechanism underlying loss of ligand binding, putative oligomerization, and functional activity of R47H TREM2. They also help unravel how decreased in vitro and in vivo stability of TREM2 contribute to loss of function in disease.
Collapse
Affiliation(s)
- Athena Sudom
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080,
| | - Santosh Talreja
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Jean Danao
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Eric Bragg
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Rob Kegel
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Xiaoshan Min
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Jason Richardson
- Amgen Discovery Research, Amgen Inc., Thousand Oaks, California 91320, and
| | - Zhongqi Zhang
- Amgen Discovery Research, Amgen Inc., Thousand Oaks, California 91320, and
| | - Nikolai Sharkov
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Edoardo Marcora
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Steve Thibault
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Jodi Bradley
- Amgen Discovery Research, Amgen Inc., Thousand Oaks, California 91320, and
| | - Steve Wood
- Amgen Discovery Research, Amgen Inc., Thousand Oaks, California 91320, and
| | - Ai-Ching Lim
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Hang Chen
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Songli Wang
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080
| | - Ian N Foltz
- Amgen Discovery Research, Amgen Inc., Burnaby, British Columbia V5A 1V7, Canada
| | - Shilpa Sambashivan
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080,
| | - Zhulun Wang
- From Amgen Discovery Research, Amgen Inc., San Francisco, California 94080,
| |
Collapse
|
26
|
Skala W, Wohlschlager T, Senn S, Huber GE, Huber CG. MoFi: A Software Tool for Annotating Glycoprotein Mass Spectra by Integrating Hybrid Data from the Intact Protein and Glycopeptide Level. Anal Chem 2018; 90:5728-5736. [DOI: 10.1021/acs.analchem.8b00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wolfgang Skala
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Therese Wohlschlager
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Stefan Senn
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Gabriel E. Huber
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Laboratories, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria
| |
Collapse
|
27
|
Mouchahoir T, Schiel JE. Development of an LC-MS/MS peptide mapping protocol for the NISTmAb. Anal Bioanal Chem 2018; 410:2111-2126. [PMID: 29411091 PMCID: PMC5830484 DOI: 10.1007/s00216-018-0848-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 11/12/2022]
Abstract
Peptide mapping is a component of the analytical toolbox used within the biopharmaceutical industry to aid in the identity confirmation of a protein therapeutic and to monitor degradative events such as oxidation or deamidation. These methods offer the advantage of providing site-specific information regarding post-translational and chemical modifications that may arise during production, processing or storage. A number of such variations may also be induced by the sample preparation methods themselves which may confound the ability to accurately evaluate the true modification levels. One important focus when developing a peptide mapping method should therefore be the use of sample preparation conditions that will minimize the degree of artificial modifications induced. Unfortunately, the conditions that are amenable to effective reduction, alkylation and digestion are often the same conditions that promote unwanted modifications. Here we describe the optimization of a tryptic digestion protocol used for peptide mapping of the NISTmAb IgG1κ which addresses the challenge of balancing maximum digestion efficiency with minimum artificial modifications. The parameters on which we focused include buffer concentration, digestion time and temperature, as well as the source and type of trypsin (recombinant vs. pancreatic; bovine vs porcine) used. Using the optimized protocol we generated a peptide map of the NISTmAb which allowed us to confirm its identity at the level of primary structure. Graphical abstract Peptide map of the NISTmAb RM 8671 monoclonal antibody. Tryptic digestion was performed using an optimized protocol and followed by LC-UV-MS analysis. The trace represents the total ion chromatogram. Each peak was mapped to peptides identified using mass spectrometry data.
Collapse
Affiliation(s)
- Trina Mouchahoir
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| | - John E Schiel
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| |
Collapse
|
28
|
Rogers RS, Abernathy M, Richardson DD, Rouse JC, Sperry JB, Swann P, Wypych J, Yu C, Zang L, Deshpande R. A View on the Importance of “Multi-Attribute Method” for Measuring Purity of Biopharmaceuticals and Improving Overall Control Strategy. AAPS JOURNAL 2017; 20:7. [DOI: 10.1208/s12248-017-0168-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/08/2017] [Indexed: 11/30/2022]
|
29
|
Qu M, An B, Shen S, Zhang M, Shen X, Duan X, Balthasar JP, Qu J. Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography mass spectrometry. MASS SPECTROMETRY REVIEWS 2017; 36:734-754. [PMID: 27097288 DOI: 10.1002/mas.21500] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
In the last decade, the advancement of liquid chromatography mass spectrometry (LC/MS) techniques has enabled their broad application in protein characterization, both quantitatively and qualitatively. Owing to certain important merits of LC/MS techniques (e.g., high selectivity, flexibility, and rapid method development), LC/MS assays are often deemed as preferable alternatives to conventional methods (e.g., ligand-binding assays) for the analysis of protein biotherapeutics. At the discovery and development stages, LC/MS is generally employed for two purposes absolute quantification of protein biotherapeutics in biological samples and qualitative characterization of proteins. For absolute quantification of a target protein in bio-matrices, recent work has led to improvements in the efficiency of LC/MS method development, sample treatment, enrichment and digestion, and high-performance low-flow-LC separation. These advances have enhanced analytical sensitivity, specificity, and robustness. As to qualitative analysis, a range of techniques have been developed to characterize intramolecular disulfide bonds, glycosylation, charge variants, primary sequence heterogeneity, and the drug-to-antibody ratio of antibody drug conjugate (ADC), which has enabled a refined ability to assess product quality. In this review, we will focus on the discussion of technical challenges and strategies of LC/MS-based quantification and characterization of biotherapeutics, with the emphasis on the analysis of antibody-based biotherapeutics such as monoclonal antibodies (mAbs) and ADCs. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:734-754, 2017.
Collapse
Affiliation(s)
- Miao Qu
- Beijing University of Chinese Medicine, Beijing, 100029, China
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Bo An
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Ming Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Xiaomeng Shen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214
- New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, 14203
| |
Collapse
|
30
|
Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins. Biotechnol Adv 2017; 36:168-181. [PMID: 29107148 DOI: 10.1016/j.biotechadv.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.
Collapse
Affiliation(s)
- H Edward Wong
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
31
|
Wang T, Chu L, Li W, Lawson K, Apostol I, Eris T. Application of a Quantitative LC–MS Multiattribute Method for Monitoring Site-Specific Glycan Heterogeneity on a Monoclonal Antibody Containing Two N-Linked Glycosylation Sites. Anal Chem 2017; 89:3562-3567. [DOI: 10.1021/acs.analchem.6b04856] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tian Wang
- Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Lily Chu
- Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Wenzhou Li
- Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Ken Lawson
- Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Izydor Apostol
- Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| | - Tamer Eris
- Process Development, Amgen Inc., Thousand
Oaks, California 91320, United States
| |
Collapse
|
32
|
Parr MK, Montacir O, Montacir H. Physicochemical characterization of biopharmaceuticals. J Pharm Biomed Anal 2016; 130:366-389. [DOI: 10.1016/j.jpba.2016.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
33
|
Hu W, Su X, Zhu Z, Go EP, Desaire H. GlycoPep MassList: software to generate massive inclusion lists for glycopeptide analyses. Anal Bioanal Chem 2016; 409:561-570. [PMID: 27614974 DOI: 10.1007/s00216-016-9896-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022]
Abstract
Protein glycosylation drives many biological processes and serves as markers for disease; therefore, the development of tools to study glycosylation is an essential and growing area of research. Mass spectrometry can be used to identify both the glycans of interest and the glycosylation sites to which those glycans are attached, when proteins are proteolytically digested and their glycopeptides are analyzed by a combination of high-resolution mass spectrometry (MS) and tandem mass spectrometry (MS/MS) methods. One major challenge in these experiments is collecting the requisite MS/MS data. The digested glycopeptides are often present in complex mixtures and in low abundance, and the most commonly used approach to collect MS/MS data on these species is data-dependent acquisition (DDA), where only the most intense precursor ions trigger MS/MS. DDA results in limited glycopeptide coverage. Semi-targeted data acquisition is an alternative experimental approach that can alleviate this difficulty. However, due to the massive heterogeneity of glycopeptides, it is not obvious how to expediently generate inclusion lists for these types of analyses. To solve this problem, we developed the software tool GlycoPep MassList, which can be used to generate inclusion lists for liquid chromatography tandem-mass spectrometry (LC-MS/MS) experiments. The utility of the software was tested by conducting comparisons between semi-targeted and untargeted data-dependent analysis experiments on a variety of proteins, including IgG, a protein whose glycosylation must be characterized during its production as a biotherapeutic. When the GlycoPep MassList software was used to generate inclusion lists for LC-MS/MS experiments, more unique glycopeptides were selected for fragmentation. Generally, ∼30 % more unique glycopeptides can be analyzed per protein, in the simplest cases, with low background. In cases where background ions from proteins or other interferents are high, usage of an inclusion list is even more advantageous. The software is freely publically accessible. Graphical abstract Software increases the number of glycopeptides that get selected for MS/MS analysis.
Collapse
Affiliation(s)
- Wenting Hu
- Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Xiaomeng Su
- Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Zhikai Zhu
- Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Eden P Go
- Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
| |
Collapse
|
34
|
Traylor MJ, Tchoudakova AV, Lundquist AM, Gill JE, Boldog FL, Tangarone BS. Comprehensive Discovery and Quantitation of Protein Heterogeneity via LC-MS/MS Peptide Mapping for Clone Selection of a Therapeutic Protein. Anal Chem 2016; 88:9309-17. [DOI: 10.1021/acs.analchem.6b02895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M. J. Traylor
- Departments of †Analytical Development and ‡Cell Line Development, Shire, Lexington, Massachusetts United States
| | - A. V. Tchoudakova
- Departments of †Analytical Development and ‡Cell Line Development, Shire, Lexington, Massachusetts United States
| | - A. M. Lundquist
- Departments of †Analytical Development and ‡Cell Line Development, Shire, Lexington, Massachusetts United States
| | - J. E. Gill
- Departments of †Analytical Development and ‡Cell Line Development, Shire, Lexington, Massachusetts United States
| | - F. L. Boldog
- Departments of †Analytical Development and ‡Cell Line Development, Shire, Lexington, Massachusetts United States
| | - B. S. Tangarone
- Departments of †Analytical Development and ‡Cell Line Development, Shire, Lexington, Massachusetts United States
| |
Collapse
|
35
|
Dong Q, Yan X, Liang Y, Stein SE. In-Depth Characterization and Spectral Library Building of Glycopeptides in the Tryptic Digest of a Monoclonal Antibody Using 1D and 2D LC–MS/MS. J Proteome Res 2016; 15:1472-86. [DOI: 10.1021/acs.jproteome.5b01046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qian Dong
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Xinjian Yan
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Yuxue Liang
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Stephen E. Stein
- Biomolecular
Measurement
Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
36
|
Reusch D, Haberger M, Falck D, Peter B, Maier B, Gassner J, Hook M, Wagner K, Bonnington L, Bulau P, Wuhrer M. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 2: Mass spectrometric methods. MAbs 2016; 7:732-42. [PMID: 25996192 PMCID: PMC4622708 DOI: 10.1080/19420862.2015.1045173] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To monitor the Fc glycosylation of therapeutic immunoglobulin G in bioprocess development, product characterization and release analytics, reliable techniques for glycosylation analysis are needed. Several analytical methods are suitable for this application. We recently presented results comparing detection methods for glycan analysis that are separation-based, but did not include mass spectrometry (MS). In the study reported here, we comprehensively compared MS-based methods for Fc glycosylation profiling of an IgG biopharmaceutical. A therapeutic antibody reference material was analyzed 6-fold on 2 different days, and the methods investigated were compared with respect to precision, accuracy, throughput and analysis time. Emphasis was put on the detection and quantitation of sialic acid-containing glycans. Eleven MS methods were compared to hydrophilic interaction liquid chromatography of 2-aminobenzamide labeled glycans with fluorescence detection, which served as a reference method and was also used in the first part of the study. The methods compared include electrospray MS of the heavy chain and Fc part after limited digestion, liquid chromatography MS of a tryptic digest, porous graphitized carbon chromatography MS of released glycans, electrospray MS of glycopeptides, as well as matrix assisted laser desorption ionization MS of glycans and glycopeptides. Most methods showed excellent precision and accuracy. Some differences were observed with regard to the detection and quantitation of low abundant glycan species like the sialylated glycans and the amount of artefacts due to in-source decay.
Collapse
Key Words
- 2-AB, 2-aminobenzamide
- CE, capillary electrophoresis
- ESI-MS
- ESI-MS, electrospray ionization-mass spectrometry
- Fab, fragment antigen-binding
- Fc, fragment crystallizable
- HILIC-UHPLC, hydrophilic interaction liquid chromatography-ultra high performance liquid chromatography
- HILIC-UPLC
- HPAEC-PAD, high-performance anion exchange chromatography with pulsed amperometric detection
- IdeS protease, proteolytic enzyme like protease from Streptococcus pyrogenes
- IgG glycosylation
- IgG, immunoglobulin G
- LC-MS
- LCMS, liquid chromatography-mass spectrometry
- MALDI, matrix assisted laser desorption ionization
- MALDI-MS
- PGC-MS, porous graphitized carbon chromatography- mass spectrometry
- PNGase F, Peptide-N-Glycosidase F
- RP-HPLC, reversed phase high performance liquid chromatography
- TIC, total ion chromatogram
- glycan analysis
- mAb, monoclonal antibody
- mass spectrometry
- method comparison
- monoclonal antibody (mAb)
Collapse
Affiliation(s)
- Dietmar Reusch
- a Pharma Biotech Development Penzberg; Roche Diagnostics GmbH ; Penzberg , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Aich U, Lakbub J, Liu A. State-of-the-art technologies for rapid and high-throughput sample preparation and analysis ofN-glycans from antibodies. Electrophoresis 2016; 37:1468-88. [DOI: 10.1002/elps.201500551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Udayanath Aich
- Biopharmaceutical Analytical Sciences; Biopharmaceutical Development, GlaxoSmithKline; King of Prussia PA USA
| | - Jude Lakbub
- Biopharmaceutical Analytical Sciences; Biopharmaceutical Development, GlaxoSmithKline; King of Prussia PA USA
| | - Aston Liu
- Biopharmaceutical Analytical Sciences; Biopharmaceutical Development, GlaxoSmithKline; King of Prussia PA USA
| |
Collapse
|
38
|
Fang J, Richardson J, Du Z, Zhang Z. Effect of Fc-Glycan Structure on the Conformational Stability of IgG Revealed by Hydrogen/Deuterium Exchange and Limited Proteolysis. Biochemistry 2016; 55:860-8. [PMID: 26812426 DOI: 10.1021/acs.biochem.5b01323] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human therapeutic immunoglobulin gamma (IgG) molecules contain an N-glycan on each of their Fc CH2 domains. These glycans include high-mannose, hybrid, and complex types. Recombinant IgG molecules containing high-mannose glycans have been shown to clear faster in human blood, and exhibit decreased thermal stability. The molecular mechanism behind these observations, however, is not well understood. In this work, we used hydrogen/deuterium exchange combined with mass spectrometry (HDX MS), as well as proteolytic degradation under a native-like condition, to assess the impact of different glycoforms on the molecular structure and stability of recombinant IgG1 and IgG2 molecules expressed from Chinese hamster ovary cells. Our HDX MS data indicate that the conformation of these IgG molecules was indeed influenced by the glycan structure. IgG molecules containing high-mannose and hybrid glycans showed more conformational flexibility in the CH2 domain. This conclusion was further supported by the analysis of glycopeptides released from these molecules by trypsin digestion under a native-like condition. The higher CH2 conformational flexibility of IgG molecules with high-mannose and hybrid glycans contributes to their decreased thermal stability. IgG molecules containing sialylated glycans in the CH2 domain exhibited similar enzymatic degradation behavior as high-mannose glycans, suggesting decreased CH2-domain stability compared to shorter complex glycans, likely resulting from steric effect that decreased the glycan-CH2 domain interaction.
Collapse
Affiliation(s)
- Jing Fang
- Process Development, Amgen, Inc. , Thousand Oaks, California 91320, United States
| | - Jason Richardson
- Process Development, Amgen, Inc. , Thousand Oaks, California 91320, United States
| | - Zhimei Du
- Process Development, Amgen, Inc. , Seattle, Washington 98119, United States
| | - Zhongqi Zhang
- Process Development, Amgen, Inc. , Thousand Oaks, California 91320, United States
| |
Collapse
|
39
|
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal Chem 2015; 88:480-507. [DOI: 10.1021/acs.analchem.5b04561] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Szabolcs Fekete
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| |
Collapse
|
40
|
Dotz V, Haselberg R, Shubhakar A, Kozak RP, Falck D, Rombouts Y, Reusch D, Somsen GW, Fernandes DL, Wuhrer M. Mass spectrometry for glycosylation analysis of biopharmaceuticals. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Reusch D, Haberger M, Maier B, Maier M, Kloseck R, Zimmermann B, Hook M, Szabo Z, Tep S, Wegstein J, Alt N, Bulau P, Wuhrer M. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles--part 1: separation-based methods. MAbs 2015; 7:167-79. [PMID: 25524468 PMCID: PMC4623496 DOI: 10.4161/19420862.2014.986000] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin G (IgG) crystallizable fragment (Fc) glycosylation is crucial for antibody effector functions, such as antibody-dependent cell-mediated cytotoxicity, and for their pharmacokinetic and pharmacodynamics behavior. To monitor the Fc-glycosylation in bioprocess development, as well as product characterization and release analytics, reliable techniques for glycosylation analysis are needed. A wide range of analytical methods has found its way into these applications. In this study, a comprehensive comparison was performed of separation-based methods for Fc-glycosylation profiling of an IgG biopharmaceutical. A therapeutic antibody reference material was analyzed 6-fold on 2 different days, and the methods were compared for precision, accuracy, throughput and other features; special emphasis was placed on the detection of sialic acid-containing glycans. Seven, non-mass spectrometric methods were compared; the methods utilized liquid chromatography-based separation of fluorescent-labeled glycans, capillary electrophoresis-based separation of fluorescent-labeled glycans, or high-performance anion exchange chromatography with pulsed amperometric detection. Hydrophilic interaction liquid chromatography-ultra high performance liquid chromatography of 2-aminobenzamide (2-AB)-labeled glycans was used as a reference method. All of the methods showed excellent precision and accuracy; some differences were observed, particularly with regard to the detection and quantitation of minor glycan species, such as sialylated glycans.
Collapse
Key Words
- 2-AB labeling
- 2-AB, 2-aminobenzamide
- ANTS, 8-aminonaphthalene-1, 3, 6-trisulfonate
- APTS labeling
- APTS, 8-aminopyrene-1, 3, 6-trisulfonic acid
- CCGE, cartridge-based capillary gel electrophoresis
- CE-LIF
- CE-LIF, capillary electrophoresis-laser induced fluorescence
- CHO, Chinese hamster ovary
- DNA analyzer
- DSA-FACE, DNA-sequencer-aided fluorophore-assisted carbohydrate electrophoresis
- ESI-MS, electrospray ionization-mass spectrometry
- Fab, fragment, antigen-binding
- Fc, fragment crystallizable
- HILIC-UPLC
- HILIC-UPLC, hydrophilic interaction liquid chromatography-ultra high performance liquid chromatography
- HPAEC
- HPAEC-PAD, high-performance anion exchange chromatography with pulsed amperometric detection
- HPLC, high performance liquid chromatography
- HR, high resolution
- IAB, InstantAB labeling
- IgG glycosylation
- IgG, immunoglobulin G
- MALDI-MS, matrix-assisted laser desorption/ionization-mass spectrometry
- glycan analysis
- high-throughput
- mAb, monoclonal antibody
- method comparison
- monoclonal antibody (mAb)
Collapse
Affiliation(s)
- Dietmar Reusch
- a Pharma Biotech Development Penzberg; Roche Diagnostics GmbH ; Penzberg , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bodnar E, Raymond C, Lopez PG, Villacrés C, Butler M, Schoenhofen IC, Durocher Y, Perreault H. Mass spectrometric analysis of products of metabolic glycan engineering with azido-modification of sialic acids. Anal Bioanal Chem 2015; 407:8945-58. [PMID: 26362153 DOI: 10.1007/s00216-015-9010-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/22/2015] [Accepted: 08/26/2015] [Indexed: 12/18/2022]
Abstract
Metabolic engineering of glycans present on antibodies and other glycoproteins is becoming an interesting research area for improving our understanding of the glycome. With knowledge of the sialic acid biosynthetic pathways, the experiments described in this report are based on a published procedure involving the addition of a synthesized azido-mannosamine sugar into cell culture media and evaluation of downstream expression as azido-sialic acid. This unique bioorthogonal sugar has the potential for a variety of "click chemistry" reactions through the azide linkage, which allow for it to be isolated and quantified given the choice of label. In this report, mass spectrometry was used to investigate and optimize the cellular absorption of peracetylated N-azidoacetylmannosamine (Ac4ManNAz) to form N-azidoacetylneuraminic acid (SiaNAz) in a Chinese hamster ovary (CHO) cell line transiently expressing a double mutant trastuzumab (TZMm2), human galactosyltransferase 1 (GT), and human α-2,6-sialyltransferase (ST6). This in vivo approach is compared to in vitro enzymatic addition SiaNAz onto TZMm2 using soluble β-galactosamide α-2,6-sialyltransferase 1 and CMP-SiaNAz as donor. The in vivo results suggest that for this mAb, concentrations above 100 μM of Ac4ManNAz are necessary to allow for observation of terminal SiaNAz on tryptic peptides of TZMm2 by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. This is further confirmed by a parallel study on the production of EG2-hFc monoclonal antibody (Zhang J et al. Prot Expr Purific 65(1); 77-82, 2009) in the presence of increasing concentrations of Ac4ManNAz.
Collapse
Affiliation(s)
- Edward Bodnar
- Chemistry Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Céline Raymond
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, H4P 2R2, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Paul G Lopez
- Chemistry Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Carina Villacrés
- Microbiology Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael Butler
- Microbiology Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ian C Schoenhofen
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, H4P 2R2, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
43
|
Zhou M, Gucinski AC, Boyne MT. Performance metrics for evaluating system suitability in liquid chromatography--Mass spectrometry peptide mass mapping of protein therapeutics and monoclonal antibodies. MAbs 2015. [PMID: 26218711 DOI: 10.1080/19420862.2015.1074364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The use of liquid chromatography--mass spectrometry (LC-MS) for the characterization of proteins can provide a plethora of information related to their structure, including amino acid sequence determination and analysis of posttranslational modifications. The variety of LC-MS based applications has led to the use of LC-MS characterization of therapeutic proteins and monoclonal antibodies as an integral part of the regulatory approval process. However, the improper use of an LC-MS system, related to intrinsic instrument limitations, improper tuning parameters, or poorly optimized methods may result in the production of low quality data. Improper system performance may arise from subtle changes in operating conditions that limit the ability to detect low abundance species. To address this issue, we systematically evaluated LC-MS/MS operating parameters to identify a set of metrics that can be used in a workflow to determine if a system is suitable for its intended purpose. Development of this workflow utilized a bovine serum albumin (BSA) digest standard spiked with synthetic peptides present at 0.1% to 100% of the BSA digest peptide concentration to simulate the detection of low abundance species using a traditional bottom-up workflow and data-dependent MS(2) acquisition. BSA sequence coverage, a commonly used indicator for instrument performance did not effectively identify settings that led to limited dynamic range or poorer absolute mass accuracy on 2 separate LC-MS systems. Additional metrics focusing on the detection limit and sensitivity for peptide identification were determined to be necessary to establish system suitability for protein therapeutic characterization by LC-MS.
Collapse
Affiliation(s)
- Mowei Zhou
- a Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, United States Food and Drug Administration , Saint Louis , MO , USA.,b Current affiliation: Pacific Northwest National Laboratory ; Richland , WA USA
| | - Ashley C Gucinski
- a Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, United States Food and Drug Administration , Saint Louis , MO , USA
| | - Michael T Boyne
- a Center for Drug Evaluation and Research, Office of Testing and Research, Division of Pharmaceutical Analysis, United States Food and Drug Administration , Saint Louis , MO , USA.,c Current affiliation: BioTechLogic, Inc. ; Glenview , IL USA
| |
Collapse
|
44
|
Rogers RS, Nightlinger NS, Livingston B, Campbell P, Bailey R, Balland A. Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics. MAbs 2015; 7:881-90. [PMID: 26186204 PMCID: PMC4623056 DOI: 10.1080/19420862.2015.1069454] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 02/03/2023] Open
Abstract
Regulatory agencies have recently recommended a Quality by Design (QbD) approach for the manufacturing of therapeutic molecules. A QbD strategy requires deep understanding at the molecular level of the attributes that are crucial for safety and efficacy and for insuring that the desired quality of the purified protein drug product is met at the end of the manufacturing process. A mass spectrometry (MS)-based approach to simultaneously monitor the extensive array of product quality attributes (PQAs) present on therapeutic molecules has been developed. This multi-attribute method (MAM) uses a combination of high mass accuracy / high resolution MS data generated by Orbitrap technology and automated identification and relative quantification of PQAs with dedicated software (Pinpoint). The MAM has the potential to replace several conventional electrophoretic and chromatographic methods currently used in Quality Control to release therapeutic molecules. The MAM represents an optimized analytical solution to focus on the attributes of the therapeutic molecule essential for function and implement QbD principles across process development, manufacturing and drug disposition.
Collapse
Affiliation(s)
- Richard S Rogers
- Analytical Sciences; Amgen Inc.; Seattle, WA USA
- Present affiliation: Just Biotherapeutics; Seattle, WA USA
| | | | - Brittney Livingston
- Analytical Sciences; Amgen Inc.; Seattle, WA USA
- Present affiliation: Just Biotherapeutics; Seattle, WA USA
| | | | - Robert Bailey
- Analytical Sciences; Amgen Inc.; Seattle, WA USA
- Present affiliation: Zymeworks; Seattle, WA USA
| | - Alain Balland
- Analytical Sciences; Amgen Inc.; Seattle, WA USA
- Present affiliation: Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach an der Riss, Germany
| |
Collapse
|
45
|
Li W, Kerwin JL, Schiel J, Formolo T, Davis D, Mahan A, Benchaar SA. Structural Elucidation of Post-Translational Modifications in Monoclonal Antibodies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzhou Li
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - James L. Kerwin
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - John Schiel
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Trina Formolo
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Darryl Davis
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Andrew Mahan
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Sabrina A. Benchaar
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
46
|
In-depth analysis of site-specific N-glycosylation in vitronectin from human plasma by tandem mass spectrometry with immunoprecipitation. Anal Bioanal Chem 2014; 406:7999-8011. [DOI: 10.1007/s00216-014-8226-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/11/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|