1
|
Miller A, York EM, Stopka SA, Martínez-François JR, Hossain MA, Baquer G, Regan MS, Agar NYR, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. Nat Metab 2023; 5:1820-1835. [PMID: 37798473 PMCID: PMC10626993 DOI: 10.1038/s42255-023-00890-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices, coupled with fast metabolite preservation and followed by mass spectrometry (MS) imaging, to generate spatially resolved metabolomics and isotope-tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, because inhibition of PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MS imaging on brain slices bridges the gap between live-cell physiology and the deep chemical analysis enabled by MS.
Collapse
Affiliation(s)
- Anne Miller
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Elisa M York
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Md Amin Hossain
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Miller A, York E, Stopka S, Martínez-François J, Hossain MA, Baquer G, Regan M, Agar N, Yellen G. Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation. RESEARCH SQUARE 2023:rs.3.rs-2276903. [PMID: 37546759 PMCID: PMC10402263 DOI: 10.21203/rs.3.rs-2276903/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Neuronal activity creates an intense energy demand that must be met by rapid metabolic responses. To investigate metabolic adaptations in the neuron-enriched dentate granule cell (DGC) layer within its native tissue environment, we employed murine acute hippocampal brain slices coupled with fast metabolite preservation, followed by mass spectrometry imaging (MALDI-MSI) to generate spatially resolved metabolomics and isotope tracing data. Here we show that membrane depolarization induces broad metabolic changes, including increased glycolytic activity in DGCs. Increased glucose metabolism in response to stimulation is accompanied by mobilization of endogenous inosine into pentose phosphates, via the action of purine nucleotide phosphorylase (PNP). The PNP reaction is an integral part of the neuronal response to stimulation, as inhibiting PNP leaves DGCs energetically impaired during recovery from strong activation. Performing MSI on brain slices bridges the gap between live cell physiology and the deep chemical analysis enabled by mass spectrometry.
Collapse
|
3
|
Unsihuay D, Hu H, Qiu J, Latorre-Palomino A, Yang M, Yue F, Yin R, Kuang S, Laskin J. Multimodal high-resolution nano-DESI MSI and immunofluorescence imaging reveal molecular signatures of skeletal muscle fiber types. Chem Sci 2023; 14:4070-4082. [PMID: 37063787 PMCID: PMC10094364 DOI: 10.1039/d2sc06020e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
The skeletal muscle is a highly heterogeneous tissue comprised of different fiber types with varying contractile and metabolic properties. The complexity in the analysis of skeletal muscle fibers associated with their small size (30-50 μm) and mosaic-like distribution across the tissue tnecessitates the use of high-resolution imaging to differentiate between fiber types. Herein, we use a multimodal approach to characterize the chemical composition of skeletal fibers in a limb muscle, the gastrocnemius. Specifically, we combine high-resolution nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging (MSI) with immunofluorescence (IF)-based fiber type identification. Computational image registration and segmentation approaches are used to integrate the information obtained with both techniques. Our results indicate that the transition between oxidative and glycolytic fibers is associated with shallow chemical gradients (<2.5 fold change in signals). Interestingly, we did not find any fiber type-specific molecule. We hypothesize that these findings might be linked to muscle plasticity thereby facilitating a switch in the metabolic properties of fibers in response to different conditions such as exercise and diet, among others. Despite the shallow chemical gradients, cardiolipins (CLs), acylcarnitines (CAR), monoglycerides (MGs), fatty acids, highly polyunsaturated phospholipids, and oxidized phospholipids, were identified as molecular signatures of oxidative metabolism. In contrast, histidine-related compounds were found as molecular signatures of glycolytic fibers. Additionally, the presence of highly polyunsaturated acyl chains in phospholipids was found in oxidative fibers whereas more saturated acyl chains in phospholipids were found in glycolytic fibers which suggests an effect of the membrane fluidity on the metabolic properties of skeletal myofibers.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Philadelphia PA 19104 USA
| | - Hang Hu
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University West Lafayette IN 47907 USA
| | | | - Manxi Yang
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University West Lafayette IN 47907 USA
| | - Ruichuan Yin
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University West Lafayette IN 47907 USA
| | - Julia Laskin
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
4
|
Luo L, Ma W, Liang K, Wang Y, Su J, Liu R, Liu T, Shyh-Chang N. Spatial metabolomics reveals skeletal myofiber subtypes. SCIENCE ADVANCES 2023; 9:eadd0455. [PMID: 36735792 PMCID: PMC10939097 DOI: 10.1126/sciadv.add0455] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Skeletal muscle myofibers are heterogeneous in their metabolism. However, metabolomic profiling of single myofibers has remained difficult. Mass spectrometry imaging (MSI) is a powerful tool for imaging molecular distributions. In this work, we optimized the workflow of matrix-assisted laser desorption/ionization (MALDI)-based MSI from cryosectioning to metabolomics data analysis to perform high-spatial resolution metabolomic profiling of slow- and fast-twitch myofibers. Combining the advantages of MSI and liquid chromatography-MS (LC-MS), we produced spatial metabolomics results that were more reliable. After the combination of high-spatial resolution MSI and LC-MS metabolomic analysis, we also discovered a new subtype of superfast type 2B myofibers that were enriched for fatty acid oxidative metabolism. Our technological workflow could serve as an engine for metabolomics discoveries, and our approach has the potential to provide critical insights into the metabolic heterogeneity and pathways that underlie fundamental biological processes and disease states.
Collapse
Affiliation(s)
- Lanfang Luo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenwu Ma
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Liang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yuefan Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiali Su
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ruirui Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Taoyan Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ng Shyh-Chang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
5
|
Enomoto H, Zaima N. Desorption electrospray ionization-mass spectrometry imaging of carnitine and imidazole dipeptides in pork chop tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1216:123601. [PMID: 36680959 DOI: 10.1016/j.jchromb.2023.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Carnitine is essential for energy production and lipid metabolism in skeletal muscle. Carnosine and its methylated analogs anserine and balenine are histidine-containing imidazole dipeptides, which are antioxidative compounds. They are major health-related components in meat; however, analytical technique to investigate their distribution among tissues have not fully established. Here, we performed desorption electrospray ionization (DESI)-mass spectrometry imaging (MSI) of pork chop sections containing longissimus thoracis et lumborum muscle (loin), intermuscular fat tissue, transparent tissue, and spinalis muscle to investigate the distributions of carnitine and imidazole dipeptides. Liquid chromatography-MS revealed that the concentrations of carnitine, carnosine, anserine, and balenine were 11.0 ± 0.9, 330.1 ± 15.5, 21.2 ± 1.5, and 9.6 ± 0.5 mg/100 g, respectively. In the mass spectrum obtained by DESI-MSI, peaks corresponding to the chemical formulae of carnitine and imidazole dipeptides were detected. DESI-MSI provided definite identification of carnitine, while DESI-tandem MSI (MS/MSI) was necessary to accurately visualize carnosine, anserine, and balenine. Carnitine and these imidazole dipeptides were mainly distributed in the loin and spinalis muscle, while their distribution was not uniform in both muscle tissues. In addition, the balance between both tissues were different. The concentration of carnitine was higher in the spinalis muscle than that in the loin, while those of imidazole dipeptides were higher in the loin than those in the spinalis muscle. These results were consistent with those obtained by liquid chromatography-MS quantification, suggest that DESI-MSI analysis is useful for the distribution analysis of carnitine and imidazole dipeptides in meat.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan; Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya 320-8551, Japan; Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya 320-8551, Japan.
| | - Nobuhiro Zaima
- Graduate School of Agriculture, Kindai University, 204-3327 Nakamachi, Nara City, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
6
|
Ağaşcıoğlu E, Çolak R, Çakatay U. Redox status biomarkers in the fast-twitch extensor digitorum longus resulting from the hypoxic exercise. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:433-447. [PMID: 35967949 PMCID: PMC9350571 DOI: 10.18999/nagjms.84.2.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
The fast-twitch muscle may be affected from over-produced reactive oxygen species (ROS) during hypoxia/hypoxic exercise. The study aims to investigate redox status biomarkers in the fast-twitch extensor digitorum longus (EDL) muscle after hypoxic exercise. Male Sprague Dawley rats (eight-week-old) were randomly divided into six groups of the experimental "live high train high (LHTH), live high train low (LHTL) and live low train low (LLTL)" and their respective controls. Before the EDLs' extraction, the animals exercised for a 4-week familiarization period, then they exercised for four-weeks at different altitudes. The LHTH group had higher ratios of lipid hydroperoxides (LHPs) than the experimental groups of LHTL (p=0.004) and LLTL (p=0.002), while having no difference than its control 'LH'. Similarly, a higher percentage of advanced oxidation protein products (AOPP) was determined in the LHTH than the LHTL (p=0.041) and LLTL (p=0.048). Furthermore, oxidation of thiol fractions was the lowest in the LHTH and LH. However, redox biomarkers and thiol fractions illustrated no significant change in the LHTL and LLTL that might ensure redox homeostasis due to higher oxygen consumption. The study shows that not hypoxic exercise/exercise, but hypoxia might itself lead to a redox imbalance in the fast-twitch EDL muscle.
Collapse
Affiliation(s)
- Eda Ağaşcıoğlu
- Department of Recreation, Faculty of Sports Sciences, Lokman Hekim University, Ankara, Turkey
| | - Rıdvan Çolak
- Department of Physical Education and Sports, Ardahan University, Ardahan, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
7
|
Olie CS, van Zeijl R, El Abdellaoui S, Kolk A, Overbeek C, Nelissen RGHH, Heijs B, Raz V. The metabolic landscape in chronic rotator cuff tear reveals tissue-region-specific signatures. J Cachexia Sarcopenia Muscle 2022; 13:532-543. [PMID: 34866353 PMCID: PMC8818701 DOI: 10.1002/jcsm.12873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Degeneration of shoulder muscle tissues often result in tearing, causing pain, disability and loss of independence. Differential muscle involvement patterns have been reported in tears of shoulder muscles, yet the molecules involved in this pathology are poorly understood. The spatial distribution of biomolecules across the affected tissue can be accurately obtained with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The goal of this pilot study was to decipher the metabolic landscape across shoulder muscle tissues and to identify signatures of degenerated muscles in chronic conditions. METHODS Paired biopsies of two rotator cuff muscles, torn infraspinatus and intact teres minor, together with an intact shoulder muscle, the deltoid, were collected during an open tendon transfer surgery. Five patients, average age 65.2 ± 3.8 years, were selected for spatial metabolic profiling using high-spatial resolution (MALDI-TOF) and high-mass resolution (MALDI-FTICR) MSI in negative or positive ion mode. Metabolic signatures were identified using data-driven analysis. Verifications of spatial localization for selected metabolic signatures were carried out using antibody immunohistology. RESULTS Data-driven analysis revealed major metabolic differences between intact and degenerated regions across all muscles. The area of degenerated regions, encompassed of fat, inflammation and fibrosis, significantly increased in both rotator cuff muscles, teres minor (27.9%) and infraspinatus (22.8%), compared with the deltoid (8.7%). The intact regions were characterized by 49 features, among which lipids were recognized. Several of the identified lipids were specifically enriched in certain myofiber types. Degenerated regions were specifically marked by the presence of 37 features. Heme was the most abundant metabolite in degenerated regions, whereas Heme oxygenase-1 (HO-1), which catabolizes heme, was found in intact regions. Higher HO-1 levels correlated with lower heme accumulation. CONCLUSIONS Degenerated regions are distinguished from intact regions by their metabolome profile. A muscle-specific metabolome profile was not identified. The area of tissue degeneration significantly differs between the three examined muscles. Higher HO-1 levels in intact regions concurred with lower heme levels in degenerated regions. Moreover, HO-1 levels discriminated between dysfunctional and functional rotator cuff muscles. Additionally, the enrichment of specific lipids in certain myofiber types suggests that lipid metabolism differs between myofiber types. The signature metabolites can open options to develop personalized treatments for chronic shoulder muscles degeneration.
Collapse
Affiliation(s)
| | - René van Zeijl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Salma El Abdellaoui
- Human Genetics Department, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjen Kolk
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Celeste Overbeek
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob G H H Nelissen
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vered Raz
- Human Genetics Department, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Sighinolfi G, Clark S, Blanc L, Cota D, Rhourri-Frih B. Mass spectrometry imaging of mice brain lipid profile changes over time under high fat diet. Sci Rep 2021; 11:19664. [PMID: 34608169 PMCID: PMC8490458 DOI: 10.1038/s41598-021-97201-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Overweight and obesity have been shown to significantly affect brain structures and size. Obesity has been associated with cerebral atrophy, alteration of brain functions, including cognitive impairement, and psychiatric diseases such as depression. Given the importance of lipids in the structure of the brain, here, by using 47 mice fed a high fat diet (HFD) with 60% calories from fat (40% saturated fatty acids) and 20% calories from carbohydrates and age-matched control animals on a normal chow diet, we examined the effects of HFD and diet-induced obesity on the brain lipidome. Using a targeted liquid chromatography mass spectrometry analysis and a non-targeted mass spectrometry MALDI imaging approach, we show that the relative concentration of most lipids, in particular brain phospholipids, is modified by diet-induced obesity (+ 40%of body weight). Use of a non-targeted MALDI-MS imaging approach further allowed define cerebral regions of interest (ROI) involved in eating behavior and changes in their lipid profile. Principal component analysis (PCA) of the obese/chow lipidome revealed persistence of some of the changes in the brain lipidome of obese animals even after their switch to chow feeding and associated weight loss. Altogether, these data reveal that HFD feeding rapidly modifies the murine brain lipidome. Some of these HFD-induced changes persist even after weight loss, implying that some brain sequelae caused by diet-induced obesity are irreversible.
Collapse
Affiliation(s)
| | - Samantha Clark
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, INSERM, 33000, Bordeaux, France
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, University of Bordeaux, 33000, Bordeaux, France
| | | | - Daniela Cota
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, INSERM, 33000, Bordeaux, France
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, University of Bordeaux, 33000, Bordeaux, France
| | | |
Collapse
|
9
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
Song Z, Wang Z, Zhao H, Cai L, Li Z, Zhang S, Zhang X. Metabolic fingerprinting of cell types in mouse skeletal muscle by combining TOF-SIMS with immunofluorescence staining. Analyst 2020; 145:6901-6909. [PMID: 32820753 DOI: 10.1039/d0an00738b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skeletal muscle tissue is composed of various muscle cell types which differ in physiological functions. Changes in cell type composition of skeletal muscle are associated with the development of metabolic diseases. Skeletal muscle cell types are currently distinguished by immunofluorescence (IF) staining based on myosin heavy chain (MHC) isoform difference. However, it remains a challenge to provide metabolic fingerprints of different muscle cell types by IF staining. Therefore, in this study, we proposed a method to examine metabolite distribution within different cell types by time-of-flight secondary ion mass spectrometry (TOF-SIMS) with high spatial resolution. Skeletal muscle samples from C57/BL6 mice were obtained by slicing. Cell types in TOF-SIMS images were labelled corresponding to IF images from the same region of serially cut sections. Mass spectra corresponding to individual muscle cells were extracted to compare metabolic fingerprints among cell types. Skeletal muscle cells were classified into two clusters based on the mass spectra of individual cells. Unsaturated diacylglycerol (DG) and fatty acid (FA) species were found to be distributed in a cell-type dependent manner. Moreover, relative quantification showed that the content of unsaturated DGs, oleic acid and linoleic acid was higher in type I and type IIA cells than in type IIB cells. TOF-SIMS in combination with IF enables us to directly visualize metabolite distribution in different cell types, to find potential biomarkers for cell type classification. TOF-SIMS imaging coupled with IF staining has been proved to be a promising tool for metabolic fingerprinting of different skeletal muscle cell types.
Collapse
Affiliation(s)
- Zhe Song
- Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Unsihuay D, Qiu J, Swaroop S, Nagornov KO, Kozhinov AN, Tsybin YO, Kuang S, Laskin J. Imaging of Triglycerides in Tissues Using Nanospray Desorption Electrospray Ionization (Nano-DESI) Mass Spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 448:116269. [PMID: 32863736 PMCID: PMC7453423 DOI: 10.1016/j.ijms.2019.116269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nonpolar triglycerides (TGs) are rarely detected in mass spectrometry imaging (MSI) experiments unless they are abundant in the sample. Herein, we use nanospray desorption electrospray ionization (nano-DESI) to explore the role of the solvent composition and ionic dopants on the detection of TGs in a murine gastrocnemius muscle tissue used as a model system. We evaluated three solvent mixtures for their ability to extract nonpolar TG species: MeOH:H2O 9:1 (v/v), MeOH:DCM 6:4 (v/v) and MeOH:AcN:tol 5:3.5:1.5 (v/v/v). We observe that TGs are mainly detected as [M+K]+ adducts and their extraction efficiency is improved using less polar solvents: MeOH:DCM and MeOH:AcN:tol. We also explore whether the ionization efficiency of TGs may be improved by doping the MeOH:AcN:tol solvent with ammonium formate (AF) and other ionic additives. However, the formation of [M+NH4]+ adducts of TGs is less efficient than the formation of [M+K]+ adducts in the range of AF concentrations from 0.1 to 10 mM. Chemical derivatization using 100 μM of Girard T reagent predominately generates reaction products of phosphatidylcholine rather than TG species. Moreover, the presence of the Girard T reagent suppresses ion signals of all the species in the spectrum including TGs. Nano-DESI MSI experiments performed using MeOH:AcN:tol solvent enable imaging of TGs without any detectable adverse effect on signals of other lipids and metabolites. Specifically, 10 out of 14 TG species were detected exclusively using MeOH:AcN:tol and the sensitivity towards other TGs was improved by at least an order of magnitude. Although polyunsaturated TGs may be detected using both solvents, saturated and monounsaturated TGs are only detected using MeOH:AcN:tol. Our results provide a direct path for the improved detection of TGs in tissue imaging experiments using liquid-based ambient ionization techniques.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Sneha Swaroop
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Yury O. Tsybin
- Spectroswiss, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Tsai YH, Bhandari DR, Garrett TJ, Carter CS, Spengler B, Yost RA. Skeletal muscle fiber analysis by atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometric imaging at high mass and high spatial resolution. Proteomics 2017; 16:1822-4. [PMID: 27198224 DOI: 10.1002/pmic.201500536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 11/10/2022]
Abstract
Skeletal muscles are composed of heterogeneous muscle fibers with various fiber types. These fibers can be classified into different classes based on their different characteristics. MALDI mass spectrometric imaging (MSI) has been applied to study and visualize different metabolomics profiles of different fiber types. Here, skeletal muscles were analyzed by atmospheric pressure scanning microprobe MALDI-MSI at high spatial and high mass resolution.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Hessen, Germany
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christy S Carter
- Department of Aging and Geriatric Research, Institute on Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen, Hessen, Germany
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Bingol K, Brüschweiler R. Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics. Curr Opin Clin Nutr Metab Care 2015; 18:471-7. [PMID: 26154280 PMCID: PMC4533976 DOI: 10.1097/mco.0000000000000206] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review describes some of the advances made over the past year in NMR-based metabolomics for the elucidation of known and unknown compounds, including new ways of how to combine this information with high-resolution mass spectrometry. RECENT FINDINGS A new method allows the back-calculation of mass spectra from NMR spectra that have been queried against databases improving the accuracy of the identified compounds by validation and consistency analysis. For the de-novo characterization of unknown compounds, an algorithm has been introduced that predicts all viable NMR spectra from accurate masses allowing, by comparison with experimental NMR data, the determination of the structures of new metabolites in complex mixtures. SUMMARY Recent advances in NMR and mass spectrometry-based metabolomics and their synergistic use promises to significantly improve metabolomics sample characterization both in terms of identification and quantitation, and accelerate metabolite discovery.
Collapse
Affiliation(s)
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|