1
|
Fu L, Ellin NR, Pizzala NJ, Bolivar EGB, McLuckey SA. Digital Ion Trap Isolation and Mass Analysis of Macromolecular Analytes with Multiply Charged Ion Attachment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2237-2247. [PMID: 39158841 PMCID: PMC11795282 DOI: 10.1021/jasms.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Multiply charged ions produced by electrospray ionization (ESI) of heterogeneous mixtures of macromolecular analytes under native conditions are typically confined to relatively narrow ranges of mass-to-charge (m/z) ratio, often with extensive overlap. This scenario makes charge and mass assignments extremely challenging, particularly when individual charge states are unresolved. An ion/ion reaction strategy involving multiply charged ion attachment (MIA) to the mixture components in a narrow range of m/z can facilitate charge and mass assignment. In MIA operation, multiply charged reagent ions are attached to the analyte ions of opposite polarity to provide large m/z displacements resulting from both large changes in mass and charge. However, charge reduction of the high m/z ions initially generated under native ESI conditions requires the ability to isolate high m/z ions and to analyze even higher m/z product ions. Digital ion trap (DIT) operation offers means for both high m/z ion isolation and high m/z mass analysis, in addition to providing conditions for the reaction of oppositely charged ions. The feasibility of conducting MIA experiments in a DIT that takes advantage of high m/z ion operation is demonstrated here using a tandem 2D-3D DIT instrument. Proof-of-concept MIA experiments with cations derived from β-galactosidase using the 20- charge state of human serum immunoglobulin G (IgG, ∼149 kDa) as the reagent anion are described. MIA experiments involving mixtures of ions derived from the E. coli. ribosome are also described. For example, three components in a mixture of 70S particles (>2.2 MDa) were resolved and assigned with masses and charges following an MIA experiment involving the 20- charge state of human serum IgG.
Collapse
Affiliation(s)
| | | | | | | | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| |
Collapse
|
2
|
Shaw JB, Harvey SR, Du C, Xu Z, Edgington RM, Olmedillas E, Saphire EO, Wysocki VH. Protein Complex Heterogeneity and Topology Revealed by Electron Capture Charge Reduction and Surface Induced Dissociation. ACS CENTRAL SCIENCE 2024; 10:1537-1547. [PMID: 39220701 PMCID: PMC11363329 DOI: 10.1021/acscentsci.4c00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap m/z measurements to greater than 100,000 m/z. For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation. This is the first demonstration that ECCR yields more native-like SID fragmentation. ECCR also significantly improved mass and glycan heterogeneity measurements of heavily glycosylated SARS-CoV-2 spike protein trimer and thyroglobulin dimer. Protein glycosylation is important for structural and functional properties and plays essential roles in many biological processes. The immense heterogeneity in glycosylation sites and glycan structure poses significant analytical challenges that hinder a mechanistic understanding of the biological role of glycosylation. Without ECCR, average mass determination of glycoprotein complexes is available only through charge detection mass spectrometry or mass photometry. With narrow m/z selection windows followed by ECCR, multiple glycoform m/z values are apparent, providing quick global glycoform profiling and providing a future path for glycan localization on individual intact glycoforms.
Collapse
Affiliation(s)
- Jared B. Shaw
- Department
of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Sophie R. Harvey
- Native
Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, Ohio 43210, United States
| | - Chen Du
- Native
Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, Ohio State
University, Columbus, Ohio 43210, United
States
| | - Zhixin Xu
- Native
Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, Ohio State
University, Columbus, Ohio 43210, United
States
| | - Regina M. Edgington
- Department
of Chemistry and Biochemistry, Ohio State
University, Columbus, Ohio 43210, United
States
| | - Eduardo Olmedillas
- Center
for Vaccine Innovation, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
| | - Erica Ollmann Saphire
- Center
for Vaccine Innovation, La Jolla Institute
for Immunology, La Jolla, California 92037, United States
- Department
of Medicine, University of California San
Diego, La Jolla, California 92037, United States
| | - Vicki H. Wysocki
- Native
Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, Ohio 43210, United States
- Department
of Chemistry and Biochemistry, Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
3
|
Shaw JB, Harvey SR, Du C, Xu Z, Edgington RM, Olmedillas E, Saphire EO, Wysocki VH. Protein complex heterogeneity and topology revealed by electron capture charge reduction and surface induced dissociation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583498. [PMID: 38496594 PMCID: PMC10942452 DOI: 10.1101/2024.03.07.583498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We illustrate the utility of native mass spectrometry (nMS) combined with a fast, tunable gas-phase charge reduction, electron capture charge reduction (ECCR), for the characterization of protein complex topology and glycoprotein heterogeneity. ECCR efficiently reduces the charge states of tetradecameric GroEL, illustrating Orbitrap m/z measurements to greater than 100,000 m/z. For pentameric C-reactive protein and tetradecameric GroEL, our novel device combining ECCR with surface induced dissociation (SID) reduces the charge states and yields more topologically informative fragmentation. This is the first demonstration that ECCR yields more native-like SID fragmentation. ECCR also significantly improved mass and glycan heterogeneity measurements of heavily glycosylated SARS-CoV-2 spike protein trimer and thyroglobulin dimer. Protein glycosylation is important for structural and functional properties and plays essential roles in many biological processes. The immense heterogeneity in glycosylation sites and glycan structure poses significant analytical challenges that hinder a mechanistic understanding of the biological role of glycosylation. Without ECCR, average mass determination of glycoprotein complexes is available only through charge detection mass spectrometry or mass photometry. With narrow m/z selection windows followed by ECCR, multiple glycoform m/z values are apparent, providing quick global glycoform profiling and providing a future path for glycan localization on individual intact glycoforms.
Collapse
Affiliation(s)
- Jared B. Shaw
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588
| | - Sophie R. Harvey
- Native Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, OH 43210
| | - Chen Du
- Native Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210
| | - Zhixin Xu
- Native Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210
| | - Regina M. Edgington
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210
| | - Eduardo Olmedillas
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037
- Department of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Vicki H. Wysocki
- Native Mass Spectrometry Guided Structural Biology Center, Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210
| |
Collapse
|
4
|
Meldrum KL, Swansiger AK, Daniels MM, Hale WA, Kirmiz Cody C, Qiu X, Knierman M, Sausen J, Prell JS. Gábor Transform-Based Signal Isolation, Rapid Deconvolution, and Quantitation of Intact Protein Ions with Mass Spectrometry. Anal Chem 2024; 96:9512-9523. [PMID: 38788216 DOI: 10.1021/acs.analchem.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
High-resolution mass spectrometry (HRMS) is a powerful technique for the characterization and quantitation of complex biological mixtures, with several applications including clinical monitoring and tissue imaging. However, these medical and pharmaceutical applications are pushing the analytical limits of modern HRMS techniques, requiring either further development in instrumentation or data processing methods. Here, we demonstrate new developments in the interactive Fourier-transform analysis for mass spectrometry (iFAMS) software including the first application of Gábor transform (GT) to protein quantitation. Newly added automation tools detect signals from minimal user input and apply thresholds for signal selection, deconvolution, and baseline correction to improve the objectivity and reproducibility of deconvolution. Additional tools were added to improve the deconvolution of highly complex or congested mass spectra and are demonstrated here for the first time. The "Gábor Slicer" enables the user to explore trends in the Gábor spectrogram with instantaneous ion mass estimates accurate to 10 Da. The charge adjuster allows for easy visual confirmation of accurate charge state assignments and quick adjustment if necessary. Deconvolution refinement utilizes a second GT of isotopically resolved data to remove common deconvolution artifacts. To assess the quality of deconvolution from iFAMS, several comparisons are made to deconvolutions using other algorithms such as UniDec and an implementation of MaxEnt in Agilent MassHunter BioConfirm. Lastly, the newly added batch processing and quantitation capabilities of iFAMS are demonstrated and compared to a common extracted ion chromatogram approach.
Collapse
Affiliation(s)
- Kayd L Meldrum
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Andrew K Swansiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Meghan M Daniels
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Wendi A Hale
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd., Santa Clara, California 95051, United States
| | - Crystal Kirmiz Cody
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd., Santa Clara, California 95051, United States
| | - Xi Qiu
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd., Santa Clara, California 95051, United States
| | - Michael Knierman
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd., Santa Clara, California 95051, United States
| | - John Sausen
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd., Santa Clara, California 95051, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
5
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Bonney JR, Prentice BM. Structural Elucidation and Relative Quantification of Fatty Acid Double Bond Positional Isomers in Biological Tissues Enabled by Gas-Phase Charge Inversion Ion/Ion Reactions. ANALYSIS & SENSING 2024; 4:e202300063. [PMID: 38827423 PMCID: PMC11139046 DOI: 10.1002/anse.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/04/2024]
Abstract
Fatty acids (FAs) contain a vast amount of structural diversity, and differences in fatty acid structure have been associated with various disease states. Accurate identification and characterization of fatty acids is critical to fully understand the biochemical roles these compounds play in disease progression. Conventional tandem mass spectrometry (MS/MS) workflows do not provide sufficient structural information, necessitating alternative dissociation methods. Gas-phase charge inversion ion/ion reactions can be used to alter the ion type subjected to activation to provide improved or complementary structural information. Herein, we have used an ion/ion reaction between fatty acid (FA) anions and magnesium tris-phenanthroline [Mg(Phen)3] dications to promote charge remote fragmentation of carbon-carbon bonds along the fatty acid chain, allowing for localization of carbon-carbon double bond (C=C) positions to successfully differentiate monounsaturated fatty acid isomers. Relative quantification was also performed to obtain the relative abundance of fatty acid isomers in different biological tissues. For example, the relative abundance of FA 18:1 (9) was determined to vary across regions of rat brain, rat kidney, and mouse pancreas, and FA 16:1 (9) was found to have a higher relative abundance in the dermis layer compared to the sebaceous glands in human skin tissue.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
7
|
Gozzo TA, Bush MF. Effects of charge on protein ion structure: Lessons from cation-to-anion, proton-transfer reactions. MASS SPECTROMETRY REVIEWS 2024; 43:500-525. [PMID: 37129026 DOI: 10.1002/mas.21847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Collision cross-section values, which can be determined using ion mobility experiments, are sensitive to the structures of protein ions and useful for applications to structural biology and biophysics. Protein ions with different charge states can exhibit very different collision cross-section values, but a comprehensive understanding of this relationship remains elusive. Here, we review cation-to-anion, proton-transfer reactions (CAPTR), a method for generating a series of charge-reduced protein cations by reacting quadrupole-selected cations with even-electron monoanions. The resulting CAPTR products are analyzed using a combination of ion mobility, mass spectrometry, and collisional activation. We compare CAPTR to other charge-manipulation strategies and review the results of various CAPTR-based experiments, exploring their contribution to a deeper understanding of the relationship between protein ion structure and charge state.
Collapse
Affiliation(s)
- Theresa A Gozzo
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Gozzo TA, Bush MF. Quantitatively Differentiating Antibodies Using Charge-State Manipulation, Collisional Activation, and Ion Mobility-Mass Spectrometry. Anal Chem 2024; 96:505-513. [PMID: 38146701 DOI: 10.1021/acs.analchem.3c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Antibody-based therapeutics continue to expand both in the number of products and in their use in patients. These heterogeneous proteins challenge traditional drug characterization strategies, but ion mobility (IM) and mass spectrometry (MS) approaches have eased the challenge of higher-order structural characterization. Energy-dependent IM-MS, e.g., collision-induced unfolding (CIU), has been demonstrated to be sensitive to subtle differences in structure. In this study, we combine a charge-reduction method, cation-to-anion proton-transfer reactions (CAPTR), with energy-dependent IM-MS and varied solution conditions to probe their combined effects on the gas-phase structures of IgG1κ and IgG4κ from human myeloma. CAPTR paired with MS-only analysis improves the confidence of charge-state assignments and the resolution of the interfering protein species. Collision cross-section distributions were determined for each of the charge-reduced products. Similarity scoring was used to quantitatively compare distributions determined from matched experiments analyzing samples of the two antibodies. Relative to workflows using energy-dependent IM-MS without charge-state manipulation, combining CAPTR and energy-dependent IM-MS enhanced the differentiation of these antibodies. Combined, these results indicate that CAPTR can benefit many aspects of antibody characterization and differentiation.
Collapse
Affiliation(s)
- Theresa A Gozzo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
9
|
Kaltashov IA, Ivanov DG, Yang Y. Mass spectrometry-based methods to characterize highly heterogeneous biopharmaceuticals, vaccines, and nonbiological complex drugs at the intact-mass level. MASS SPECTROMETRY REVIEWS 2024; 43:139-165. [PMID: 36582075 PMCID: PMC10307928 DOI: 10.1002/mas.21829] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The intact-mass MS measurements are becoming increasingly popular in characterization of a range of biopolymers, especially those of interest to biopharmaceutical industry. However, as the complexity of protein therapeutics and other macromolecular medicines increases, the new challenges arise, one of which is the high levels of structural heterogeneity that are frequently exhibited by such products. The very notion of the molecular mass measurement loses its clear and intuitive meaning when applied to an extremely heterogenous system that cannot be characterized by a unique mass, but instead requires that a mass distribution be considered. Furthermore, convoluted mass distributions frequently give rise to unresolved ionic signal in mass spectra, from which little-to-none meaningful information can be extracted using standard approaches that work well for homogeneous systems. However, a range of technological advances made in the last decade, such as the hyphenation of intact-mass MS measurements with front-end separations, better integration of ion mobility in MS workflows, development of an impressive arsenal of gas-phase ion chemistry tools to supplement MS methods, as well as the revival of the charge detection MS and its triumphant entry into the field of bioanalysis already made impressive contributions towards addressing the structural heterogeneity challenge. An overview of these techniques is accompanied by critical analysis of the strengths and weaknesses of different approaches, and a brief overview of their applications to specific classes of biopharmaceutical products, vaccines, and nonbiological complex drugs.
Collapse
Affiliation(s)
- Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | - Daniil G. Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | | |
Collapse
|
10
|
Cheung See Kit M, Cropley TC, Bleiholder C, Chouinard CD, Sobott F, Webb IK. The role of solvation on the conformational landscape of α-synuclein. Analyst 2023; 149:125-136. [PMID: 37982746 PMCID: PMC10760066 DOI: 10.1039/d3an01680c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Native ion mobility mass spectrometry has been used extensively to characterize ensembles of intrinsically disordered protein (IDP) conformers, but the extent to which the gaseous measurements provide realistic pictures of the solution conformations for such flexible proteins remains unclear. Therefore, we systematically studied the relationship between the solution and gaseous structural ensembles by measuring electrospray charge state and collision cross section (CCS) distributions for cationic and anionic forms of α-synuclein (αSN), an anionic protein in solution, as well as directly probed gas phase residue to residue distances via ion/ion reactions between gaseous α-synuclein cations and disulfonic acid linkers that form strong electrostatic bonds. We also combined results from in-solution protein crosslinking identified from native tandem mass spectrometry (MS/MS) with an initial αSN ensemble generated computationally by IDPConformerGenerator to generate an experimentally restrained solution ensemble of αSN. CCS distributions were directly calculated for the solution ensembles determined by NMR and compared to predicted gaseous conformers. While charge state and collision cross section distributions are useful for qualitatively describing the relative structural dynamics of proteins and major conformational changes induced by changes to solution states, the predicted and measured gas phase conformers include subpopulations that are significantly different than those expected from completely "freezing" solution conformations and preserving them in the gas phase. However, insights were gained on the various roles of solvent in stabilizing various conformers for extremely dynamic proteins like α-synuclein.
Collapse
Affiliation(s)
- Melanie Cheung See Kit
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
| | - Tyler C Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
11
|
Bonney JR, Kang WY, Specker JT, Liang Z, Scoggins TR, Prentice BM. Relative Quantification of Lipid Isomers in Imaging Mass Spectrometry Using Gas-Phase Charge Inversion Ion/Ion Reactions and Infrared Multiphoton Dissociation. Anal Chem 2023; 95:17766-17775. [PMID: 37991720 PMCID: PMC11161029 DOI: 10.1021/acs.analchem.3c03804] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Accurate structural identification of lipids in imaging mass spectrometry is critical to properly contextualizing spatial distributions with tissue biochemistry. Gas-phase charge inversion ion/ion reactions alter the ion type prior to dissociation to allow for more structurally informative fragmentation and improve lipid identification at the isomeric level. In this work, infrared multiphoton dissociation (IRMPD) was interfaced with a commercial hybrid Qh-FT-ICR mass spectrometer to enable the rapid fragmentation of gas-phase charge inversion ion/ion reaction products at every pixel in imaging mass spectrometry experiments. An ion/ion reaction between phosphatidylcholine (PC) monocations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) and 1,4-phenylenediproprionic acid reagent dianions generated via electrospray ionization (ESI) followed by IRMPD of the resulting product ion complex produces selective fatty acyl chain cleavages indicative of fatty acyl carbon compositions in the lipid. Ion/ion reaction images using this workflow allow for mapping of the relative spatial distribution of multiple PC isomers under a single sum composition lipid identification. Lipid isomers display significantly different relative spatial distributions within rat brain tissue, highlighting the importance of resolving isomers in imaging mass spectrometry experiments.
Collapse
Affiliation(s)
- Julia R. Bonney
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Woo-Young Kang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | | | - Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Troy R. Scoggins
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
12
|
Hua Y, Strauss M, Fisher S, Mauser MFX, Manchet P, Smacchia M, Geyer P, Shayeghi A, Pfeffer M, Eggenweiler TH, Daly S, Commandeur J, Mayor M, Arndt M, Šolomek T, Köhler V. Giving the Green Light to Photochemical Uncaging of Large Biomolecules in High Vacuum. JACS AU 2023; 3:2790-2799. [PMID: 37885583 PMCID: PMC10598566 DOI: 10.1021/jacsau.3c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
The isolation of biomolecules in a high vacuum enables experiments on fragile species in the absence of a perturbing environment. Since many molecular properties are influenced by local electric fields, here we seek to gain control over the number of charges on a biopolymer by photochemical uncaging. We present the design, modeling, and synthesis of photoactive molecular tags, their labeling to peptides and proteins as well as their photochemical validation in solution and in the gas phase. The tailored tags can be selectively cleaved off at a well-defined time and without the need for any external charge-transferring agents. The energy of a single or two green photons can already trigger the process, and it is soft enough to ensure the integrity of the released biomolecular cargo. We exploit differences in the cleavage pathways in solution and in vacuum and observe a surprising robustness in upscaling the approach from a model system to genuine proteins. The interaction wavelength of 532 nm is compatible with various biomolecular entities, such as oligonucleotides or oligosaccharides.
Collapse
Affiliation(s)
- Yong Hua
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| | - Marcel Strauss
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Sergey Fisher
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Martin F. X. Mauser
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Pierre Manchet
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Martina Smacchia
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Philipp Geyer
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Armin Shayeghi
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Michael Pfeffer
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| | - Tim Henri Eggenweiler
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| | - Steven Daly
- MS
Vision, Televisieweg
40, 1322 AM Almere, The Netherlands
| | - Jan Commandeur
- MS
Vision, Televisieweg
40, 1322 AM Almere, The Netherlands
| | - Marcel Mayor
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
- Institute
for Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), P.O. Box 3640, DE-76021 Karlsruhe Eggenstein-Leopoldshafen, Germany
- Lehn Institute
of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510274, P. R. China
| | - Markus Arndt
- Vienna
Faculty of Physics, University of Vienna,
VDSP & VCQ, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Tomáš Šolomek
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Valentin Köhler
- Department
of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland
| |
Collapse
|
13
|
Lee KW, Salome AZ, Westphall MS, Grant T, Coon JJ. Onto Grid Purification and 3D Reconstruction of Protein Complexes Using Matrix-Landing Native Mass Spectrometry. J Proteome Res 2023; 22:851-856. [PMID: 36608276 PMCID: PMC10002473 DOI: 10.1021/acs.jproteome.2c00595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Addressing mixtures and heterogeneity in structural biology requires approaches that can differentiate and separate structures based on mass and conformation. Mass spectrometry (MS) provides tools for measuring and isolating gas-phase ions. The development of native MS including electrospray ionization allowed for manipulation and analysis of intact noncovalent biomolecules as ions in the gas phase, leading to detailed measurements of structural heterogeneity. Conversely, transmission electron microscopy (TEM) generates detailed images of biomolecular complexes that show an overall structure. Our matrix-landing approach uses native MS to probe and select biomolecular ions of interest for subsequent TEM imaging, thus unifying information on mass, stoichiometry, heterogeneity, etc., available via native MS with TEM images. Here, we prepare TEM grids of protein complexes purified via quadrupolar isolation and matrix-landing and generate 3D reconstructions of the isolated complexes. Our results show that these complexes maintain their structure through gas-phase isolation.
Collapse
Affiliation(s)
- Kenneth W. Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Austin Z. Salome
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | | | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53706
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53706
| |
Collapse
|
14
|
Chen Q, Dai R, Yao X, Chaihu L, Tong W, Huang Y, Wang G. Improving Accuracy in Mass Spectrometry-Based Mass Determination of Intact Heterogeneous Protein Utilizing the Universal Benefits of Charge Reduction and Alternative Gas-Phase Reactions. Anal Chem 2022; 94:13869-13878. [PMID: 36170625 DOI: 10.1021/acs.analchem.2c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mass analysis of proteins, mass spectrometry directly measures the mass to charge ratios of ionized proteins and promises higher accuracy than that of indirect approaches measuring other physicochemical properties, provided that the charge states of detected ions are determined. Accurate mass determination of heterogeneously glycosylated proteins is often hindered by unreliable charge determination due to the insufficient resolution of signals from different charge states and inconsistency among mass profiles of ions in individual charge states. Limited charge reduction of a subpopulation of proteoforms using electron transfer/capture reactions (ETnoD/ETnoD) solves this problem by narrowing the mass distribution of examined proteoforms and preserving the mass profile of the precursor charge state in the reduced charge states. However, the limited availability of ETnoD/ETnoD function in commercial instruments limits the application of this approach. Here, utilizing a range of charge-dependent and accuracy-affecting spectral features revealed by a systematic evaluation at levels of both the ensemble and subpopulation of proteoforms based on theoretical models and experiments, we developed a limited charge reduction workflow that enables using collision-induced dissociation and higher energy collisional dissociation, two widely available reactions, as alternatives to ETnoD/ETnoD while providing adequate accuracy. Alternatively, substituting proton transfer charge reduction for ETnoD/ETnoD provides higher accuracy of mass determination. Performing mass selection in a window-sliding manner improves the accuracy and allows profiling of the whole proteoform distribution. The proposed workflow may facilitate the development of universal characterization strategies for more complex and heterogeneous protein systems.
Collapse
Affiliation(s)
- Qingrong Chen
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Rongrong Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaopeng Yao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lingxiao Chaihu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wenjun Tong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yanyi Huang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| | - Guanbo Wang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Bhanot JS, Fabijanczuk KC, Abdillahi AM, Chao HC, Pizzala NJ, Londry FA, Dziekonski ET, Hager JW, McLuckey SA. Adaptation and Operation of a Quadrupole/Time-of-Flight Tandem Mass Spectrometer for High Mass Ion/Ion Reaction Studies. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 478:116874. [PMID: 37032994 PMCID: PMC10081487 DOI: 10.1016/j.ijms.2022.116874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A commercial quadrupole/time-of-flight tandem mass spectrometer has been modified and evaluated for its performance in conducting ion/ion reaction studies involving high mass (>100 kDa) ions. Modifications include enabling the application of dipolar AC waveforms to opposing rods in three quadrupole arrays in the ion path. This modification allows for resonance excitation of ions to effect ion activation, selective ion isolation, and ion parking. The other set of opposing rods in each array is enabled for the application of dipolar DC voltages for the purpose of broad-band (non-selective) ion heating. The plates between each quadrupole array are enabled for the application of either DC or AC (or both) voltages. The use of AC voltages allows for the simultaneous storage of ions of opposite polarity, thereby enabling mutual storage ion/ion reactions. Ions derived from nano-electrospray ionization of GroEL and β-galactosidase under native conditions were used to evaluate limits of instrument performance, in terms of m/z range, ion isolation, and ion storage. After adjustment of the pulser frequency, ions as high in m/z as 400,000 were detected. Significant losses in efficiency were noted above m/z 250,000 that is likely due to roll-over in the ion detector efficiency and possibly also due to limitations in ion transfer efficiency from the collision quadrupole to the pulser region of the mass analyzer. No measurable decrease in the apparent mass resolving power was noted upon charge state reduction of the model ions. Resonance ejection techniques that employ the dipolar AC capabilities of the quadrupoles allow for ion isolation at m/z values much greater than the RF/DC limitation of Q1 of m/z = 2100. For example, at the highest low-mass cutoff achievable in the collision quadrupole (m/z = 500), it is possible to isolate ions of m/z as high as 62,000. This is limited by the lowest dipolar AC frequency (5 kHz) that can be applied. A simple model is included to provide for an estimate of the ion cloud radius based on ion m/z, ion z, and ion trap operating conditions. The model predicts that singly charged ions of 1 MDa and thermal energy can be contained in the ion trap at the maximum low-mass cutoff, although such an ion would not be detected efficiently. Doubly charged GroEL ions were observed experimentally. Collectively, the performance characteristics at high m/z, the functionality provided by the standard instrument capabilities, the modifications described above, and highly flexible instrument control software provide for a highly versatile platform for the study of high mass ion/ion reactions.
Collapse
Affiliation(s)
- Jay S. Bhanot
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | | | | | - Hsi-Chun Chao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | - Nicolas J. Pizzala
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | | | | | | | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| |
Collapse
|
16
|
Abstract
Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed.
Collapse
Affiliation(s)
- Kelly R Karch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Dalton T Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Sophie R Harvey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
17
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
18
|
Bailey AO, Huguet R, Mullen C, Syka JEP, Russell WK. Ion-Ion Charge Reduction Addresses Multiple Challenges Common to Denaturing Intact Mass Analysis. Anal Chem 2022; 94:3930-3938. [PMID: 35189062 DOI: 10.1021/acs.analchem.1c04973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complete LC-MS-based protein primary sequence characterization requires measurement of intact protein profiles under denaturing and/or reducing conditions. To address issues of protein overcharging of unstructured proteins under acidic, denaturing conditions and sample heterogeneity (macro- and micro-scales) which often confound denaturing intact mass analysis of a wide variety of protein samples, we propose the use of broadband isolation of entire charge state distributions of intact proteins followed by ion-ion proton transfer charge reduction, which we have termed "full scan PTCR" (fsPTCR). Using rapid denaturing size exclusion chromatography coupled to fsPTCR-Orbitrap MS and time-resolved deconvolution data analysis, we demonstrate a strategy for method optimization, leading to significant analytical advantages over conventional MS1. Denaturing analysis of the flexible bacterial translation initiation factor 2 (91 kDa) using fsPTCR reduced overcharging and showed an 11-fold gain in S/N compared to conventional MS1. Analysis by fsPTCR-MS of the microheterogeneous glycoprotein fetuin revealed twice as many proteoforms as MS1 (112 vs 56). In a macroheterogeneous mixture of proteins ranging from 14 to 148 kDa, fsPTCR provided more than 10-fold increased sensitivity and quantitative accuracy for diluted bovine serum albumin (66 kDa). Finally, our analysis shows that collisional gas pressure is a key parameter which can be utilized during fsPTCR to retain or remove larger proteins from acquired spectra.
Collapse
Affiliation(s)
- Aaron O Bailey
- University of Texas Medical Branch, 301 University Drive, Galveston, Texas 77551, United States
| | - Romain Huguet
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Christopher Mullen
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - John E P Syka
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - William K Russell
- University of Texas Medical Branch, 301 University Drive, Galveston, Texas 77551, United States
| |
Collapse
|
19
|
Pitts-McCoy AM, Abdillahi AM, Lee KW, McLuckey SA. Multiply Charged Cation Attachment to Facilitate Mass Measurement in Negative-Mode Native Mass Spectrometry. Anal Chem 2022; 94:2220-2226. [PMID: 35029382 PMCID: PMC9670251 DOI: 10.1021/acs.analchem.1c04875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Native mass spectrometry (MS) is usually conducted in the positive-ion mode; however, in some cases, it is advantageous to use the negative-ion polarity. Challenges associated with native MS using ensemble measurements (i.e., the measurement of many ions at a time as opposed to the measurement of the charge and the mass-to-charge ratio of individual ions) include narrow charge state distributions with the potential for an overlap in neighboring charge states. These issues can either compromise or preclude confident charge state (and hence mass) determination. Charge state determination in challenging instances can be enabled via the attachment of multiply charged ions of opposite polarity. Multiply charged ion attachment facilitates the resolution of charge states and generates mass-to-charge (m/z) information across a broad m/z range. In this work, we demonstrated the attachment of multiply charged cations to anionic complexes generated under native MS conditions. To illustrate the flexibility available in selecting the mass and charge of the reagents, the 15+ and 20+ charge states of horse skeletal muscle apomyoglobin and the 20+ and 30+ charge states of bovine carbonic anhydrase were demonstrated to attach to model complex anions derived from either β-galactosidase or GroEL. The exclusive attachment of reagent ions is observed with no evidence for proton transfer, which is the key for the unambiguous interpretation of the post-ion/ion reaction product ion spectrum. To illustrate the application to mixtures of complex ions, the 10+ charge state of bovine ubiquitin was attached to mixtures of anions generated from the 30S and 50S particles of the Escherichia coli ribosome. Six and five major components were revealed, respectively. In the case of the 50S anion population, it was shown that the attachment of two 30+ cations of carbonic anhydrase revealed the same information as the attachment of six 10+ cations of ubiquitin. In neither case was the intact 50S particle observed. Rather, particles with different combinations of missing components were observed. This work demonstrated the utility of multiply charged cation attachment to facilitate charge state assignments in native MS ensemble measurements of heterogeneous mixtures.
Collapse
Affiliation(s)
- Anthony M. Pitts-McCoy
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Abdirahman M. Abdillahi
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Kenneth W. Lee
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| | - Scott A. McLuckey
- 560 Oval Drive, Department of Chemistry, Purdue University, West
Lafayette, IN, USA 47907-2084
| |
Collapse
|
20
|
Cheung See Kit M, Shepherd SO, Prell JS, Webb IK. Experimental Determination of Activation Energies for Covalent Bond Formation via Ion/Ion Reactions and Competing Processes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2313-2321. [PMID: 33730481 PMCID: PMC9248411 DOI: 10.1021/jasms.1c00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of ion/ion chemistry with commercially available ion mobility/mass spectrometry systems has allowed rich structural information to be obtained for gaseous protein ions. Recently, the simple modification of such an instrument with an electrospray reagent source has allowed three-dimensional gas-phase interrogation of protein structures through covalent and noncovalent interactions coupled with collision cross section measurements. However, the energetics of these processes have not yet been studied quantitatively. In this work, previously developed Monte Carlo simulations of ion temperatures inside traveling wave ion guides are used to characterize the energetics of the transition state of activated ubiquitin cation/sulfo-benzoyl-HOAt reagent anion long-lived complexes formed via ion/ion reactions. The ΔH‡ and ΔS‡ of major processes observed from collisional activation of long-lived gas-phase ion/ion complexes, namely collision induced unfolding (CIU), covalent bond formation, or neutral loss of the anionic reagent via intramolecular proton transfer, were determined. Covalent bond formation via ion/ion complexes was found to be significantly lower energy compared to unfolding and bond cleavage. The ΔG‡ values of activation of all three processes lie between 55 and 75 kJ/mol, easily accessible with moderate collisional activation. Bond formation is favored over reagent loss at lower activation energies, whereas reagent loss becomes competitive at higher collision energies. Though the ΔG‡ values between CIU of a precursor ion and covalent bond formation of its ion/ion product complex are comparable, our data suggest covalent bond formation does not require extensive isomerization.
Collapse
Affiliation(s)
- Melanie Cheung See Kit
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - Samantha O. Shepherd
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Ian K. Webb
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
21
|
Abdillahi AM, Lee KW, McLuckey SA. Mass Analysis of Macro-molecular Analytes via Multiply-Charged Ion Attachment. Anal Chem 2020; 92:16301-16306. [PMID: 33275425 DOI: 10.1021/acs.analchem.0c04335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel gas-phase charge and mass manipulation approach is demonstrated to facilitate the mass measurement of high mass complexes within the context of native mass spectrometry. Electrospray ionization applied to solutions generated under native or near-native conditions has been demonstrated to be capable of preserving biologically relevant complexes into the gas phase as multiply charged ions suitable for mass spectrometric analysis. However, charge state distributions tend to be narrow and extensive salt adduction, heterogeneity, and so on tend to lead to significantly broadened peaks. These issues can compromise mass measurement of high mass bio-complexes, particularly when charge states are not clearly resolved. In this work, we show that the attachment of high mass ions of known mass and charge to populations of ions of interest can lead to well-separated signals that can yield confident charge state and mass assignments from otherwise poorly resolved signals.
Collapse
Affiliation(s)
- Abdirahman M Abdillahi
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Kenneth W Lee
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
22
|
Lee KW, Harrilal CP, Fu L, Eakins GS, McLuckey SA. Digital ion trap mass analysis of high mass protein complexes using IR activation coupled with ion/ion reactions. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 458:116437. [PMID: 33162785 PMCID: PMC7641502 DOI: 10.1016/j.ijms.2020.116437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Native mass spectrometry (MS) focuses on measuring the masses of large biomolecular complexes and probing their structures. Large biomolecular complexes are readily introduced into mass spectrometers as gas-phase ions using electrospray ionization (ESI); however, the ions tend to be heavily adducted with solvent and salts, which leads to mass measurement errors. Various solution clean-up approaches can reduce the degree of adduction prior to introduction to the mass spectrometer. Gas-phase activation of trapped ions can provide additional adduct reduction, and charge reduction ion/ion reactions increase charge state separation. Together, gas-phase activation and charge reduction can combine to yield spectra of well separated charge states for improved mass measurements. A simple gas-phase collisional activation technique is to apply a dipolar DC (DDC) field to opposing electrodes in an ion trap. DDC activation loses its efficacy when ions are trapped at low q values, which is true of the high m/z ions generated by charge reduction ion/ion reactions. Digital ion trapping (DIT) readily traps high m/z ions at higher q values by varying trapping frequency rather than amplitude, but the low frequencies used to trap high m/z ions also decreases the efficacy of DDC activation. We demonstrate here using ions derived from GroEL that IR activation of ions shows no discrimination against high m/z ions trapped with DIT, because they can be focused equally well to the trap center to interact with the IR laser beam. Following pump out of excess background gas, IR activation can also induce efficient dissociation of the GroEL complex. This work demonstrates that IR activation is an effective approach for ion heating in native MS over the unusually wide range of charge states accessible via gas-phase ion/ion reactions.
Collapse
Affiliation(s)
| | | | | | | | - Scott A. McLuckey
- Corresponding author. 560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA. (S.A. McLuckey)
| |
Collapse
|
23
|
Specker JT, Van Orden SL, Ridgeway ME, Prentice BM. Identification of Phosphatidylcholine Isomers in Imaging Mass Spectrometry Using Gas-Phase Charge Inversion Ion/Ion Reactions. Anal Chem 2020; 92:13192-13201. [PMID: 32845134 DOI: 10.1021/acs.analchem.0c02350] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Gas-phase ion/ion reactions have been enabled on a commercial dual source, hybrid QhFT-ICR mass spectrometer for use during imaging mass spectrometry experiments. These reactions allow for the transformation of the ion type most readily generated from the tissue surface to an ion type that gives improved chemical structural information upon tandem mass spectrometry (MS/MS) without manipulating the tissue sample. This process is demonstrated via the charge inversion reaction of phosphatidylcholine (PC) lipid cations generated from rat brain tissue via matrix-assisted laser desorption/ionization (MALDI) with 1,4-phenylenedipropionic acid (PDPA) reagent dianions generated via electrospray ionization (ESI). Collision-induced dissociation (CID) of the resulting demethylated PC product anions allows for the determination of the lipid fatty acyl tail identities and positions, which is not possible via CID of the precursor lipid cations. The abundance of lipid isomers revealed by this workflow is found to vary significantly in different regions of the brain. As each isoform may have a unique cellular function, these results underscore the importance of accurately separating and identifying the many isobaric and isomeric lipids and metabolites that can complicate image interpretation and spectral analysis.
Collapse
Affiliation(s)
- Jonathan T Specker
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Mark E Ridgeway
- Bruker Daltonics, Billerica, Massachusetts 01821, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
24
|
Foreman DJ, McLuckey SA. Recent Developments in Gas-Phase Ion/Ion Reactions for Analytical Mass Spectrometry. Anal Chem 2020; 92:252-266. [PMID: 31693342 PMCID: PMC6949396 DOI: 10.1021/acs.analchem.9b05014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- David J Foreman
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| | - Scott A McLuckey
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| |
Collapse
|
25
|
Patrick JW, Laganowsky A. Generation of Charge-Reduced Ions of Membrane Protein Complexes for Native Ion Mobility Mass Spectrometry Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:886-892. [PMID: 30887461 PMCID: PMC6504596 DOI: 10.1007/s13361-019-02187-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 05/15/2023]
Abstract
Recent advances in native mass spectrometry (MS) have enabled the elucidation of how small molecule binding to membrane proteins modulates their structure and function. The protein-stabilizing osmolyte, trimethylamine oxide (TMAO), exhibits attractive properties for native MS studies. Here, we report significant charge reduction, nearly threefold, for three membrane protein complexes in the presence of this osmolyte without compromising mass spectral resolution. TMAO improves the ability to resolve individual lipid-binding events to the ammonia channel (AmtB) by over 200% compared to typical native conditions. The generation of ions with compact structure and access to a larger number of lipid-binding events through the incorporation of TMAO increases the utility of IM-MS for structural biology studies. Graphical Abstract.
Collapse
Affiliation(s)
- John W Patrick
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
- Janssen Research & Development, 1400 Mckean Road, Spring House, PA, 19477, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA.
| |
Collapse
|
26
|
Czar MF, Marchand A, Zenobi R. A Modified Traveling Wave Ion Mobility Mass Spectrometer as a Versatile Platform for Gas-Phase Ion-Molecule Reactions. Anal Chem 2019; 91:6624-6631. [PMID: 31008583 DOI: 10.1021/acs.analchem.9b00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Taken individually, chemical labeling and mass spectrometry are two well-established tools for the structural characterization of biomolecular complexes. A way to combine their respective advantages is to perform gas-phase ion-molecule reactions (IMRs) inside the mass spectrometer. This is, however, not so well developed because of the limited range of usable chemicals and the lack of commercially available IMR devices. Here, we modified a traveling wave ion mobility mass spectrometer to enable IMRs in the trapping region of the instrument. Only one minor hardware modification is needed to allow vapors of a variety of liquid reagents to be leaked into the trap traveling wave ion guide of the instrument. A diverse set of IMRs can then readily be performed without any loss in instrument performance. We demonstrate the advantages of implementing IMR capabilities in general, and to this quadrupole-ion mobility-time-of-flight (Q-IM-TOF) mass spectrometer in particular, by exploiting the full functionality of the instrument, including mass selection, ion mobility separation, and post-mobility fragmentation. The potential to carry out gas-phase IMR kinetics experiments is also illustrated. We demonstrate the versatility of the setup using gas-phase IMRs of established utility for biological mass spectrometry, including hydrogen-deuterium exchange, ion-molecule proton transfer reactions, and covalent modification of DNA anions using trimethylsilyl chloride.
Collapse
Affiliation(s)
- Martin F Czar
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich 8093 , Switzerland
| | - Adrien Marchand
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich 8093 , Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zurich , Zurich 8093 , Switzerland
| |
Collapse
|
27
|
Gadzuk-Shea MM, Bush MF. Effects of Charge State on the Structures of Serum Albumin Ions in the Gas Phase: Insights from Cation-to-Anion Proton-Transfer Reactions, Ion Mobility, and Mass Spectrometry. J Phys Chem B 2018; 122:9947-9955. [DOI: 10.1021/acs.jpcb.8b08427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meagan M. Gadzuk-Shea
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
28
|
Gavriilidou AFM, Holding FP, Mayer D, Coyle JE, Veprintsev DB, Zenobi R. Native Mass Spectrometry Gives Insight into the Allosteric Binding Mechanism of M2 Pyruvate Kinase to Fructose-1,6-Bisphosphate. Biochemistry 2018; 57:1685-1689. [DOI: 10.1021/acs.biochem.7b01270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Agni F. M. Gavriilidou
- ETH Zurich, Department of Chemistry and Applied Biosciences, CH-8093 Zurich, Switzerland
| | - Finn P. Holding
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Daniel Mayer
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Joseph E. Coyle
- Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | | | - Renato Zenobi
- ETH Zurich, Department of Chemistry and Applied Biosciences, CH-8093 Zurich, Switzerland
| |
Collapse
|
29
|
Wang H, Yong G, Brown SL, Lee HE, Zenaidee MA, Supuran CT, Donald WA. Supercharging protein ions in native mass spectrometry using theta capillary nanoelectrospray ionization mass spectrometry and cyclic alkylcarbonates. Anal Chim Acta 2018; 1003:1-9. [DOI: 10.1016/j.aca.2017.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/25/2017] [Indexed: 12/27/2022]
|
30
|
Majuta SN, Maleki H, Kiani Karanji A, Attanyake K, Loch E, Valentine SJ. Magnifying ion mobility spectrometry-mass spectrometry measurements for biomolecular structure studies. Curr Opin Chem Biol 2018; 42:101-110. [PMID: 29241076 PMCID: PMC6500794 DOI: 10.1016/j.cbpa.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) provides information about the structures of gas-phase ions in the form of a collision cross section (CCS) with a neutral buffer gas. Indicating relative ion size, a CCS value alone is of limited utility. Although such information can be used to propose different conformer types, finer details of structure are not captured. The increased accessibility of IMS-MS measurements with commercial instrumentation in recent years has ballooned its usage in combination with separate measurements to provide enhanced data from which greater structural inferences can be drawn. This short review presents recent outstanding developments in scientific research that employs complementary measurements that when combined with IMS-MS data are used to characterize the structures of a wide range of compounds.
Collapse
Affiliation(s)
- Sandra N Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States
| | - Hossein Maleki
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States
| | - Ahmad Kiani Karanji
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States
| | - Kushani Attanyake
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States
| | - Elinore Loch
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, WV 26506, United States.
| |
Collapse
|
31
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
32
|
Chandler SA, Benesch JL. Mass spectrometry beyond the native state. Curr Opin Chem Biol 2017; 42:130-137. [PMID: 29288996 DOI: 10.1016/j.cbpa.2017.11.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/31/2022]
Abstract
Native mass spectrometry allows the study of proteins by probing in vacuum the interactions they form in solution. It is a uniquely useful approach for structural biology and biophysics due to the high resolution of separation it affords, allowing the concomitant interrogation of multiple protein components with high mass accuracy. At its most basic, native mass spectrometry reports the mass of intact proteins and the assemblies they form in solution. However, the opportunities for more detailed characterisation are extensive, enabled by the exquisite control of ion motion that is possible in vacuum. Here we describe recent developments in mass spectrometry approaches to the structural interrogation of proteins both in, and beyond, their native state.
Collapse
Affiliation(s)
- Shane A Chandler
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Justin Lp Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
33
|
Laszlo KJ, Bush MF. Interpreting the Collision Cross Sections of Native-like Protein Ions: Insights from Cation-to-Anion Proton-Transfer Reactions. Anal Chem 2017. [PMID: 28636334 DOI: 10.1021/acs.analchem.7b01474] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effects of charge state on structures of native-like cations of serum albumin, streptavidin, avidin, and alcohol dehydrogenase were probed using cation-to-anion proton-transfer reactions (CAPTR), ion mobility, mass spectrometry, and complementary energy-dependent experiments. The CAPTR products all have collision cross-section (Ω) values that are within 5.5% of the original precursor cations. The first CAPTR event for each precursor yields products that have smaller Ω values and frequently exhibit the greatest magnitude of change in Ω resulting from a single CAPTR event. To investigate how the structures of the precursors affect the structures of the products, ions were activated as a function of energy prior to CAPTR. In each case, the Ω values of the activated precursors increase with increasing energy, but the Ω values of the CAPTR products are smaller than the activated precursors. To investigate the stabilities of the CAPTR products, the products were activated immediately prior to ion mobility. These results show that additional structures with smaller or larger Ω values can be populated and that the structures and stabilities of these ions depend most strongly on the identity of the protein and the charge state of the product, rather than the charge state of the precursor or the number of CAPTR events. Together, these results indicate that the excess charges initially present on native-like ions have a modest, but sometimes statistically significant, effect on their Ω values. Therefore, potential contributions from charge state should be considered when using experimental Ω values to elucidate structures in solution.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
34
|
Laszlo KJ, Buckner JH, Munger EB, Bush MF. Native-Like and Denatured Cytochrome c Ions Yield Cation-to-Anion Proton Transfer Reaction Products with Similar Collision Cross-Sections. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1382-1391. [PMID: 28224394 PMCID: PMC5555649 DOI: 10.1007/s13361-017-1620-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 05/04/2023]
Abstract
The relationship between structures of protein ions, their charge states, and their original structures prior to ionization remains challenging to decouple. Here, we use cation-to-anion proton transfer reactions (CAPTR) to reduce the charge states of cytochrome c ions in the gas phase, and ion mobility to probe their structures. Ions were formed using a new temperature-controlled nanoelectrospray ionization source at 25 °C. Characterization of this source demonstrates that the temperature of the liquid sample is decoupled from that of the atmospheric pressure interface, which is heated during CAPTR experiments. Ionization from denaturing conditions yields 18+ to 8+ ions, which were each isolated and reacted with monoanions to generate all CAPTR products with charge states of at least 3+. The highest, intermediate, and lowest charge-state products exhibit collision cross-section distributions that are unimodal, multimodal, and unimodal, respectively. These distributions depend strongly on the charge state of the product, although those for the intermediate charge-state products also depend on that of the precursor. The distributions of the 3+ products are all similar, with averages that are less than half that of the 18+ precursor ions. Ionization of cytochrome c from native-like conditions yields 7+ and 6+ ions. The 3+ CAPTR products from these precursors have slightly more compact collision cross-section distributions that are indistinguishable from those for the 3+ CAPTR products from denaturing conditions. More broadly, these results indicate that the collision cross-sections of ions of this single domain protein depend strongly on charge state for charge states greater than ~4. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kenneth J Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - John H Buckner
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
- Department of Chemistry, Carleton College, One North College Street, Northfield, MN, 55057, USA
| | - Eleanor B Munger
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
35
|
Garimella SVB, Webb IK, Prabhakaran A, Attah IK, Ibrahim YM, Smith RD. Design of a TW-SLIM Module for Dual Polarity Confinement, Transport, and Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1442-1449. [PMID: 28560562 PMCID: PMC5551421 DOI: 10.1007/s13361-017-1680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 05/06/2023]
Abstract
Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations, and reactions in structures for lossless ion manipulations (SLIM). Previous means of ion confinement in SLIM, based upon rf-generated pseudopotentials and DC fields for lateral confinement, cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide simultaneous lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced in such SLIM cause ions of both polarities to migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) under both surfing and IM separation conditions are discussed. In surfing conditions the two polarities are transported losslessly and non-reactively in their respective potential minima (higher absolute voltage regions confine negative polarities, and lower absolute potential regions are populated by positive polarities). In separation mode, where ions roll over an overtaking traveling wave, the two polarities can interact during the rollovers. Strategies to minimize overlap of the two ion populations to prevent reactive losses during separations are presented. A theoretical treatment of the time scales over which two populations (injected into a DC field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 Torr are presented. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Aneesh Prabhakaran
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
36
|
Laszlo KJ, Munger EB, Bush MF. Effects of Solution Structure on the Folding of Lysozyme Ions in the Gas Phase. J Phys Chem B 2017; 121:2759-2766. [PMID: 28301724 PMCID: PMC5486214 DOI: 10.1021/acs.jpcb.7b00783] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The fidelity between the structures of proteins in solution and protein ions in the gas phase is critical to experiments that use gas-phase measurements to infer structures in solution. Here we generate ions of lysozyme, a 129-residue protein whose native tertiary structure contains four internal disulfide bonds, from three solutions that preserve varying extents of the original native structure. We then use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of those ions in the gas phase and ion mobility to probe their structures. The collision cross section (Ω) distributions of each CAPTR product depends to varying extents on the original solution, the charge state of the product, and the charge state of the precursor. For example, the Ω distributions of the 6+ ions depend strongly on the original solutions conditions and to a lesser extent on the charge state of the precursor. Energy-dependent experiments suggest that very different structures are accessible to disulfide-reduced and disulfide-intact ions, but similar Ω distributions are formed at high energy for disulfide-intact ions from denaturing and from aqueous conditions. The Ω distributions of the 3+ ions are all similar but exhibit subtle differences that depend more strongly on the original solutions conditions than other factors. More generally, these results suggest that specific CAPTR products may be especially sensitive to specific elements of structure in solution.
Collapse
Affiliation(s)
- Kenneth J. Laszlo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Eleanor B. Munger
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
37
|
Lermyte F, Łącki MK, Valkenborg D, Gambin A, Sobott F. Conformational Space and Stability of ETD Charge Reduction Products of Ubiquitin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:69-76. [PMID: 27495285 DOI: 10.1007/s13361-016-1444-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/11/2016] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
Owing to its versatility, electron transfer dissociation (ETD) has become one of the most commonly utilized fragmentation techniques in both native and non-native top-down mass spectrometry. However, several competing reactions-primarily different forms of charge reduction-occur under ETD conditions, as evidenced by the distorted isotope patterns usually observed. In this work, we analyze these isotope patterns to compare the stability of nondissociative electron transfer (ETnoD) products, specifically noncovalent c/z fragment complexes, across a range of ubiquitin conformational states. Using ion mobility, we find that more extended states are more prone to fragment release. We obtain evidence that for a given charge state, populations of ubiquitin ions formed either directly by electrospray ionization or through collapse of more extended states upon charge reduction, span a similar range of collision cross-sections. Products of gas-phase collapse are, however, less stabilized towards unfolding than the native conformation, indicating that the ions retain a memory of previous conformational states. Furthermore, this collapse of charge-reduced ions is promoted if the ions are 'preheated' using collisional activation, with possible implications for the kinetics of gas-phase compaction. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium
- Center for Proteomics, University of Antwerp, Antwerpen, Belgium
| | | | - Dirk Valkenborg
- Center for Proteomics, University of Antwerp, Antwerpen, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Antwerp, Belgium
| | - Anna Gambin
- Institute of Informatics, University of Warsaw, Warsaw, Poland
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
38
|
Holden DD, Brodbelt JS. Ultraviolet Photodissociation of Native Proteins Following Proton Transfer Reactions in the Gas Phase. Anal Chem 2016; 88:12354-12362. [PMID: 28193062 DOI: 10.1021/acs.analchem.6b03565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing use of mass spectrometry in the field of structural biology has catalyzed the development of many new strategies to examine intact proteins in the gas phase. Native mass spectrometry methods have further accelerated the need for methods that can manipulate proteins and protein complexes while minimizing disruption of noncovalent interactions critical for stabilizing conformations. Proton-transfer reactions (PTR) in the gas phase offer the ability to effectively modulate the charge states of proteins, allowing decongestion of mass spectra through separation of overlapping species. PTR was combined with ultraviolet photodissociation (UVPD) to probe the degree of structural changes that occur upon charge reduction reactions in the gas phase. For protein complexes myoglobin·heme (17.6 kDa) and dihydrofolate reductase·methotrexate (19.4 kDa), minor changes were found in the fragmentation patterns aside from some enhancement of fragmentation near the N- and C-terminal regions consistent with slight fraying. After finding little perturbation was caused by charge reduction using PTR, homodimeric superoxide dismutase/CuZn (31.4 kDa) was subjected to PTR in order to separate overlapping monomer and dimer species of the protein that were observed at identical m/z values.
Collapse
Affiliation(s)
- Dustin D Holden
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
39
|
Bonner JG, Hendricks NG, Julian RR. Structural Effects of Solvation by 18-Crown-6 on Gaseous Peptides and TrpCage after Electrospray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1661-1669. [PMID: 27506205 DOI: 10.1007/s13361-016-1456-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Significant effort is being employed to utilize the inherent speed and sensitivity of mass spectrometry for rapid structural determination of proteins; however, a thorough understanding of factors influencing the transition from solution to gas phase is critical for correct interpretation of the results from such experiments. It was previously shown that combined use of action excitation energy transfer (EET) and simulated annealing can reveal detailed structural information about gaseous peptide ions. Herein, we utilize this method to study microsolvation of charged groups by retention of 18-crown-6 (18C6) in the gas phase. In the case of GTP (CEGNVRVSRE LAGHTGY), solvation of the 2+ charge state leads to reduced EET, whereas the opposite result is obtained for the 3+ ion. For the mini-protein C-Trpcage, solvation by 18C6 leads to dramatic increase in EET for the 3+ ion. Examination of structural details probed by molecular dynamics calculations illustrate that solvation by 18C6 alleviates the tendency of charged side chains to seek intramolecular solvation, potentially preserving native-like structures in the gas phase. These results suggest that microsolvation may be an important tool for facilitating examination of native-like protein structures in gas phase experiments. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- James G Bonner
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Nathan G Hendricks
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
40
|
Laszlo KJ, Munger EB, Bush MF. Folding of Protein Ions in the Gas Phase after Cation-to-Anion Proton-Transfer Reactions. J Am Chem Soc 2016; 138:9581-8. [PMID: 27399988 PMCID: PMC4999245 DOI: 10.1021/jacs.6b04282] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structure and folding of a protein in solution depends on noncovalent interactions within the protein and those with surrounding ions and molecules. Decoupling these interactions in solution is challenging, which has hindered the development of accurate physics-based models for structure prediction. Investigations of proteins in the gas phase can be used to selectively decouple factors affecting the structures of proteins. Here, we use cation-to-anion proton-transfer reactions (CAPTR) to reduce the charge states of denatured ubiquitin ions in the gas phase, and ion mobility to probe their structures. In CAPTR, a precursor charge state is selected (P) and reacted with monoanions to generate charge-reduced product ions (C). Following each CAPTR event, denatured ubiquitin ions (13+ to 6+) yield products that rapidly isomerize to structures that have smaller collision cross sections (Ω). The Ω values of CAPTR product ions depend strongly on C and very weakly on P. Pre- and post-CAPTR activation was then used to probe the potential-energy surfaces of the precursor and product ions, respectively. Post-CAPTR activation showed that ions of different P fold differently and populate different regions of the potential-energy surface of that ion. Finally, pre-CAPTR activation showed that the structures of protein ions can be indirectly investigated using ion mobility of their CAPTR product ions, even for subtle structural differences that are not apparent from ion mobility characterization of the activated precursor ions. More generally, these results show that CAPTR strongly complements existing techniques for characterizing the structures and dynamics of biological molecules in the gas phase.
Collapse
Affiliation(s)
- Kenneth J. Laszlo
- University of Washington, Department of Chemistry, Box 351700 Seattle, WA 98195-1700
| | - Eleanor B. Munger
- University of Washington, Department of Chemistry, Box 351700 Seattle, WA 98195-1700
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700 Seattle, WA 98195-1700
| |
Collapse
|
41
|
Cleary SP, Thompson AM, Prell JS. Fourier Analysis Method for Analyzing Highly Congested Mass Spectra of Ion Populations with Repeated Subunits. Anal Chem 2016; 88:6205-13. [DOI: 10.1021/acs.analchem.6b01088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sean P. Cleary
- Department
of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Avery M. Thompson
- Department
of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - James S. Prell
- Department
of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
42
|
Metwally H, McAllister RG, Popa V, Konermann L. Mechanism of Protein Supercharging by Sulfolane and m-Nitrobenzyl Alcohol: Molecular Dynamics Simulations of the Electrospray Process. Anal Chem 2016; 88:5345-54. [DOI: 10.1021/acs.analchem.6b00650] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haidy Metwally
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Robert G. McAllister
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vlad Popa
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
43
|
Allen SJ, Giles K, Gilbert T, Bush MF. Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell. Analyst 2016; 141:884-91. [DOI: 10.1039/c5an02107c] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new drift cell was used to measure collision cross sections and characterize the origins of ion mobility peak broadening for biological molecules and assemblies.
Collapse
|