1
|
Al Musaimi O. Lasso peptides realm: Insights and applications. Peptides 2024; 182:171317. [PMID: 39489300 DOI: 10.1016/j.peptides.2024.171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Lasso peptides exhibit a range of bioactivities, including antiviral effects, inhibition of the glucagon receptor, blockade of the endothelin type B receptor, inhibition of myosin light chain kinase, and modulation of the atrial natriuretic factor, as well as notable antimicrobial properties. Intriguingly, lasso peptides exhibit remarkable proteolytic and thermal stability, addressing one of the key challenges that traditional peptides often face. The challenge in producing those valuable peptides remains the main hurdle in the way of producing larger quantities or even modifying them with more potent analogues. Genome mining and heterologous expression approaches have greatly facilitated the production of lasso peptides, moving beyond mere isolation techniques. This advancement not only allows for larger quantities but also enables the creation of additional analogues with improved stability and potency. This review aims to explore the unique bioactivities and stability of lasso peptides, along with recent advancements in genome mining and heterologous expression that address production challenges and open pathways for engineering potent analogues.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne UK NE1 7RU, UK; Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
2
|
Harris LA, Saad H, Shelton K, Zhu L, Guo X, Mitchell DA. Tryptophan-Centric Bioinformatics Identifies New Lasso Peptide Modifications. Biochemistry 2024; 63:865-879. [PMID: 38498885 PMCID: PMC11197979 DOI: 10.1021/acs.biochem.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) defined by a macrolactam linkage between the N-terminus and the side chain of an internal aspartic acid or glutamic acid residue. Instead of adopting a branched-cyclic conformation, lasso peptides are "threaded", with the C-terminal tail passing through the macrocycle to present a kinetically trapped rotaxane conformation. The availability of enhanced bioinformatics methods has led to a significant increase in the number of secondary modifications found on lasso peptides. To uncover new ancillary modifications in a targeted manner, a bioinformatic strategy was developed to discover lasso peptides with modifications to tryptophan. This effort identified numerous putative lasso peptide biosynthetic gene clusters with core regions of the precursor peptides enriched in tryptophan. Parsing of these tryptophan (Trp)-rich biosynthetic gene clusters uncovered several putative ancillary modifying enzymes, including halogenases and dimethylallyltransferases expected to act upon Trp. Characterization of two gene products yielded a lasso peptide with two 5-Cl-Trp modifications (chlorolassin) and another bearing 5-dimethylallyl-Trp and 2,3-didehydro-Tyr modifications (wygwalassin). Bioinformatic analysis of the requisite halogenase and dimethylallyltransferase revealed numerous other putative Trp-modified lasso peptides that remain uncharacterized. We anticipate that the Trp-centric strategy reported herein may be useful in discovering ancillary modifications for other RiPP classes and, more generally, guide the functional prediction of enzymes that act on specific amino acids.
Collapse
Affiliation(s)
- Lonnie A. Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hamada Saad
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Kyle Shelton
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lingyang Zhu
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaorui Guo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Baquero F, Beis K, Craik DJ, Li Y, Link AJ, Rebuffat S, Salomón R, Severinov K, Zirah S, Hegemann JD. The pearl jubilee of microcin J25: thirty years of research on an exceptional lasso peptide. Nat Prod Rep 2024; 41:469-511. [PMID: 38164764 DOI: 10.1039/d3np00046j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covering: 1992 up to 2023Since their discovery, lasso peptides went from peculiarities to be recognized as a major family of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that were shown to be spread throughout the bacterial kingdom. Microcin J25 was first described in 1992, making it one of the earliest known lasso peptides. No other lasso peptide has since then been studied to such an extent as microcin J25, yet, previous review articles merely skimmed over all the research done on this exceptional lasso peptide. Therefore, to commemorate the 30th anniversary of its first report, we give a comprehensive overview of all literature related to microcin J25. This review article spans the early work towards the discovery of microcin J25, its biosynthetic gene cluster, and the elucidation of its three-dimensional, threaded lasso structure. Furthermore, the current knowledge about the biosynthesis of microcin J25 and lasso peptides in general is summarized and a detailed overview is given on the biological activities associated with microcin J25, including means of self-immunity, uptake into target bacteria, inhibition of the Gram-negative RNA polymerase, and the effects of microcin J25 on mitochondria. The in vitro and in vivo models used to study the potential utility of microcin J25 in a (veterinary) medicine context are discussed and the efforts that went into employing the microcin J25 scaffold in bioengineering contexts are summed up.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Network Center for Research in Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, 4072 Brisbane, Queensland, Australia
| | - Yanyan Li
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - A James Link
- Departments of Chemical and Biological Engineering, Chemistry, and Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sylvie Rebuffat
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Raúl Salomón
- Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Konstantin Severinov
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Séverine Zirah
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), UMR 7245, Muséum National d'Histoire Naturelle (MNHN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany.
- Department of Pharmacy, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Depraz Depland A, Stroganova I, Wootton CA, Rijs AM. Developments in Trapped Ion Mobility Mass Spectrometry to Probe the Early Stages of Peptide Aggregation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:193-204. [PMID: 36633834 PMCID: PMC9896548 DOI: 10.1021/jasms.2c00253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Ion mobility mass spectrometry (IM-MS) has proven to be an excellent method to characterize the structure of amyloidogenic protein and peptide aggregates, which are formed in coincidence with the development of neurodegenerative diseases. However, it remains a challenge to obtain detailed structural information on all conformational intermediates, originating from the early onset of those pathologies, due to their complex and heterogeneous environment. One way to enhance the insights and the identification of these early stage oligomers is by employing high resolution ion mobility mass spectrometry experiments. This would allow us to enhance the mobility separation and MS characterization. Trapped ion mobility spectrometry (TIMS) is an ion mobility technique known for its inherently high resolution and has successfully been applied to the analysis of protein conformations among others. To obtain conformational information on fragile peptide aggregates, the instrumental parameters of the TIMS-Quadrupole-Time-of-Flight mass spectrometer (TIMS-qToF-MS) have to be optimized to allow the study of intact aggregates and ensure their transmission toward the detector. Here, we investigate the suitability and application of TIMS to probe the aggregation process, targeting the well-characterized M307-N319 peptide segment of the TDP-43 protein, which is involved in the development of amyotrophic lateral sclerosis. By studying the influence of key parameters over the full mass spectrometer, such as source temperature, applied voltages or RFs among others, we demonstrate that by using an optimized instrumental method TIMS can be used to probe peptide aggregation.
Collapse
Affiliation(s)
- Agathe Depraz Depland
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Iuliia Stroganova
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | | | - Anouk M. Rijs
- Division
of Bioanalytical Chemistry, Amsterdam Institute of Molecular and Life
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Carson DV, Patiño M, Elashal HE, Cartagena AJ, Zhang Y, Whitley ME, So L, Kayser-Browne AK, Earl AM, Bhattacharyya RP, Link AJ. Cloacaenodin, an Antimicrobial Lasso Peptide with Activity against Enterobacter. ACS Infect Dis 2023; 9:111-121. [PMID: 36519726 PMCID: PMC10038104 DOI: 10.1021/acsinfecdis.2c00446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Using genome mining and heterologous expression, we report the discovery and production of a new antimicrobial lasso peptide from species related to the Enterobacter cloacae complex. Using NMR and mass spectrometric analysis, we show that this lasso peptide, named cloacaenodin, employs a threaded lasso fold which imparts proteolytic resistance that its unthreaded counterpart lacks. Cloacaenodin has selective, low micromolar, antimicrobial activity against species related to the E. cloacae complex, including species implicated in nosocomial infections and against clinical isolates of carbapenem-resistant Enterobacterales. We further used site-directed mutagenesis to probe the importance of specific residues to the peptide's biosynthesis, stability, and bioactivity.
Collapse
Affiliation(s)
- Drew V. Carson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Monica Patiño
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Hader E. Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Alexis Jaramillo Cartagena
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Yi Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Megan E. Whitley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Larry So
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Angelo K. Kayser-Browne
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Roby P. Bhattacharyya
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Infectious Diseases Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022; 27:2675. [PMID: 35566025 PMCID: PMC9104849 DOI: 10.3390/molecules27092675] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature and are components of the innate immunity of almost all living things. They play an important role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active against traditional antibiotic-resistant strains and do not easily induce the development of drug resistance. Therefore, they have become a hot spot of medical research and are expected to become a new substitute for fighting microbial infection and represent a new method for treating drug-resistant bacteria. This review briefly introduces the source and structural characteristics of antimicrobial peptides and describes those that have been used against common clinical microorganisms (bacteria, fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action and clinical application prospects.
Collapse
Affiliation(s)
- Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Siyao Zuo
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, China;
| | - Bin Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| |
Collapse
|
7
|
Hegemann JD. Combined thermal and carboxypeptidase Y stability assays for probing the threaded fold of lasso peptides. Methods Enzymol 2022; 663:177-204. [PMID: 35168788 DOI: 10.1016/bs.mie.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lasso peptides are natural products belonging to the superfamily of ribosomally synthesized and post-translationally modified peptides (RiPPs). The defining characteristic of lasso peptides is their threaded structure, which is reminiscent of a lariat knot. When working with lasso peptides, it is therefore of major importance to understand and evidence their threaded folds. While the full elucidation of their three-dimensional structures via NMR spectroscopy or crystallization remains the gold standard, these methods are time-consuming, require large quantities of highly pure lasso peptides, and therefore might not always be applicable. Instead, the unique properties of lasso peptides in context of their behavior at elevated temperatures and toward carboxypeptidase Y treatment can be leveraged as a tool to investigate and evidence the threaded lasso fold using only minute amounts of compound that does not need to be purified first. This chapter will provide insights into the thermal stability properties of lasso peptides and their behavior when treated with carboxypeptidase Y in comparison to a branched-cyclic peptide with the same amino acid sequence. Furthermore, it will be described in detail how to set up a combined thermal and carboxypeptidase Y stability assay and how to analyze its outcomes.
Collapse
Affiliation(s)
- Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, Saarbrücken, Germany.
| |
Collapse
|
8
|
Borotto NB, Osho KE, Richards TK, Graham KA. Collision-Induced Unfolding of Native-like Protein Ions Within a Trapped Ion Mobility Spectrometry Device. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:83-89. [PMID: 34870999 DOI: 10.1021/jasms.1c00273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Native mass spectrometry and collision-induced unfolding (CIU) workflows continue to grow in utilization due to their ability to rapidly characterize protein conformation and stability. To perform these experiments, the instrument must be capable of collisionally activating ions prior to ion mobility spectrometry (IMS) analyses. Trapped ion mobility spectrometry (TIMS) is an ion mobility implementation that has been increasingly adopted due to its inherently high resolution and reduced instrumental footprint. In currently deployed commercial instruments, however, typical modes of collisional activation do not precede IMS analysis, and thus, the instruments are incapable of performing CIU. In this work, we expand on a recently developed method of activating protein ions within the TIMS device and explore its analytical utility toward the unfolding of native-like protein ions. We demonstrate the unfolding of native-like ions of ubiquitin, cytochrome C, β-lactoglobulin, and carbonic anhydrase. These ions undergo extensive unfolding upon collisional activation. Additionally, the improved resolution provided by the TIMS separation uncovers previously obscured unfolding complexity.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Kemi E Osho
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | | | - Katherine A Graham
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
9
|
Ramesh S, Guo X, DiCaprio AJ, De Lio AM, Harris LA, Kille BL, Pogorelov TV, Mitchell DA. Bioinformatics-Guided Expansion and Discovery of Graspetides. ACS Chem Biol 2021; 16:2787-2797. [PMID: 34766760 PMCID: PMC8688276 DOI: 10.1021/acschembio.1c00672] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Graspetides are a class of ribosomally synthesized and post-translationally modified peptide natural products featuring ATP-grasp ligase-dependent formation of macrolactones/macrolactams. These modifications arise from serine, threonine, or lysine donor residues linked to aspartate or glutamate acceptor residues. Characterized graspetides include serine protease inhibitors such as the microviridins and plesiocin. Here, we report an update to Rapid ORF Description and Evaluation Online (RODEO) for the automated detection of graspetides, which identified 3,923 high-confidence graspetide biosynthetic gene clusters. Sequence and co-occurrence analyses doubled the number of graspetide groups from 12 to 24, defined based on core consensus sequence and putative secondary modification. Bioinformatic analyses of the ATP-grasp ligase superfamily suggest that extant graspetide synthetases diverged once from an ancestral ATP-grasp ligase and later evolved to introduce a variety of ring connectivities. Furthermore, we characterized thatisin and iso-thatisin, two graspetides related by conformational stereoisomerism from Lysobacter antibioticus. Derived from a newly identified graspetide group, thatisin and iso-thatisin feature two interlocking macrolactones with identical ring connectivity, as determined by a combination of tandem mass spectrometry (MS/MS), methanolytic, and mutational analyses. NMR spectroscopy of thatisin revealed a cis conformation for a key proline residue, while molecular dynamics simulations, solvent-accessible surface area calculations, and partial methanolytic analysis coupled with MS/MS support a trans conformation for iso-thatisin at the same position. Overall, this work provides a comprehensive overview of the graspetide landscape, and the improved RODEO algorithm will accelerate future graspetide discoveries by enabling open-access analysis of existing and emerging genomes.
Collapse
Affiliation(s)
- Sangeetha Ramesh
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Xiaorui Guo
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam J. DiCaprio
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Ashley M. De Lio
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 505 South Mathews Ave, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 West Clark Street, Urbana, Illinois 61801, USA
| | - Lonnie A. Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Bryce L. Kille
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, Illinois 61801, USA
| | - Taras V. Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 505 South Mathews Ave, Urbana, Illinois 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 West Clark Street, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
10
|
Exploring structural signatures of the lanthipeptide prochlorosin 2.8 using tandem mass spectrometry and trapped ion mobility-mass spectrometry. Anal Bioanal Chem 2021; 413:4815-4824. [PMID: 34105020 DOI: 10.1007/s00216-021-03437-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Lanthipeptides are a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by intramolecular thioether cross-links formed between a dehydrated serine/threonine (dSer/dThr) and a cysteine residue. Prochlorosin 2.8 (Pcn2.8) is a class II lanthipeptide that exhibits a non-overlapping thioether ring pattern, for which no biological activity has been reported yet. The variant Pcn2.8[16RGD] has been shown to bind tightly to the αvβ3 integrin receptor. In the present work, tandem mass spectrometry, using collision-induced dissociation (CID) and electron capture dissociation (ECD), and trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) were used to investigate structural signatures for the non-overlapping thioether ring pattern of Pcn2.8. CID experiments on Pcn2.8 yielded bi and yj fragments between the thioether cross-links, evidencing the presence of a non-overlapping thioether ring pattern. ECD experiments of Pcn2.8 showed a significant increase of hydrogen migration events near the residues involved in the thioether rings with a more pronounced effect at the dehydrated residues as compared to the cysteine residues. The high-resolution mobility analysis, aided by site-directed mutagenesis ([P8A], [P11A], [P12A], [P8A/P11A], [P8A/P12A], [P11A/P12A], and [P8A/P11A/P12A] variants), demonstrated that Pcn2.8 adopts cis/trans-conformations at Pro8, Pro11, and Pro12 residues. These observations were complementary to recent NMR findings, for which only the Pro8 residue was evidenced to adopt cis/trans-orientations. This study highlights the analytical power of the TIMS-MS/MS workflow for the structural characterization of lanthipeptides and could be a useful tool in our understanding of the biologically important structural elements that drive the thioether cyclization process.
Collapse
|
11
|
Moyer TB, Parsley NC, Sadecki PW, Schug WJ, Hicks LM. Leveraging orthogonal mass spectrometry based strategies for comprehensive sequencing and characterization of ribosomal antimicrobial peptide natural products. Nat Prod Rep 2021; 38:489-509. [PMID: 32929442 PMCID: PMC7956910 DOI: 10.1039/d0np00046a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: Up to July 2020Ribosomal antimicrobial peptide (AMP) natural products, also known as ribosomally synthesized and post-translationally modified peptides (RiPPs) or host defense peptides, demonstrate potent bioactivities and impressive complexity that complicate molecular and biological characterization. Tandem mass spectrometry (MS) has rapidly accelerated bioactive peptide sequencing efforts, yet standard workflows insufficiently address intrinsic AMP diversity. Herein, orthogonal approaches to accelerate comprehensive and accurate molecular characterization without the need for prior isolation are reviewed. Chemical derivatization, proteolysis (enzymatic and chemical cleavage), multistage MS fragmentation, and separation (liquid chromatography and ion mobility) strategies can provide complementary amino acid composition and post-translational modification data to constrain sequence solutions. Examination of two complex case studies, gomesin and styelin D, highlights the practical implementation of the proposed approaches. Finally, we emphasize the importance of heterogeneous AMP peptidoforms that confer varying biological function, an area that warrants significant further development.
Collapse
Affiliation(s)
- Tessa B Moyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | |
Collapse
|
12
|
Hegemann JD. Factors Governing the Thermal Stability of Lasso Peptides. Chembiochem 2019; 21:7-18. [DOI: 10.1002/cbic.201900364] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Julian D. Hegemann
- Technische Universität BerlinInstitute of Chemistry Strasse des 17. Juni 124/TC2 10623 Berlin Germany
| |
Collapse
|