1
|
Malarvannan M, Ravichandiran V, Paul D. Advances in analytical technologies for emerging drug modalities and their separation challenges in LC-MS systems. J Chromatogr A 2024; 1732:465226. [PMID: 39111181 DOI: 10.1016/j.chroma.2024.465226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The last few years have seen a rise in the identification and development of bio-therapeutics through the use of cutting-edge delivery methods or bio-formulations, which has created bio-analytical difficulties. Every year, new bio-pharmaceutical product innovations come out, but the analytical development of these products is challenging. Quantifying the products and components of conjugated molecular structures is essential for preclinical and clinical research in order to guide therapeutic development, given their intrinsic complexity. Furthermore, a significant amount of information is needed for the measurement of these unique modalities by LC-MS techniques. Numerous LC-MS based methods have been developed, including AEX-HPLC-MS, RP-IP-LCMS, HILIC-MS, LCHRMS, Microflow-LC-MS, ASMS, Hybrid LBA/LC-MS, and more. However, these methods continue to face problems, prompting the development of alternative approaches. Therefore, developing bio-molecules that are this complicated and, low in concentration requires a skilled LC-MS based approach and knowledgeable personnel. This review covers general novel modalities classifications, sample preparation techniques, current status and bio-analytical strategies for analyzing various novel modalities, including gene bio-therapeutics, oligonucleotides, antibody-drug conjugates, monoclonal antibodies and PROTACs. It also covers how these strategies have been used in the past and how they are being used now to address challenges in the development of LC-MS based methods, as well as improvement strategies, current advancements and recent developed methods. We additionally covered on the benefits and drawbacks of different LC-MS based techniques for the examination of bio-pharmaceutical products and the future perspectives.
Collapse
Affiliation(s)
- M Malarvannan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - V Ravichandiran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India
| | - David Paul
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Maniktala, Kolkata, West Bengal 700054, India.
| |
Collapse
|
2
|
Watts E, Bashyal A, Dunham SD, Crittenden CM, Brodbelt JS. Enhanced Characterization of Lysine-Linked Antibody Drug Conjugates Enabled by Middle-Down Mass Spectrometry and Higher-Energy Collisional Dissociation-Triggered Electron-Transfer/Higher-Energy Collisional Dissociation and Ultraviolet Photodissociation. Antibodies (Basel) 2024; 13:30. [PMID: 38651410 PMCID: PMC11036284 DOI: 10.3390/antib13020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
As the development of new biotherapeutics advances, increasingly sophisticated tandem mass spectrometry methods are needed to characterize the most complex molecules, including antibody drug conjugates (ADCs). Lysine-linked ADCs, such as trastuzumab-emtansine (T-DM1), are among the most heterogeneous biotherapeutics. Here, we implement a workflow that combines limited proteolysis with HCD-triggered EThcD and UVPD mass spectrometry for the characterization of the resulting middle-down large-sized peptides of T-DM1. Fifty-three payload-containing peptides were identified, ranging in mass from 1.8 to 16.9 kDa, and leading to the unambiguous identification of 46 out of 92 possible conjugation sites. In addition, seven peptides were identified containing multiple payloads. The characterization of these types of heterogeneous peptides represents an important step in unraveling the combinatorial nature of lysine-conjugated ADCs.
Collapse
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | - Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | - Sean D. Dunham
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; (E.W.); (A.B.)
| |
Collapse
|
3
|
Wei B, Lantz C, Loo RRO, Campuzano IDG, Loo JA. Internal Fragments Enhance Middle-Down Mass Spectrometry Structural Characterization of Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2024; 96:2491-2499. [PMID: 38294207 PMCID: PMC11001303 DOI: 10.1021/acs.analchem.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are important large biotherapeutics (∼150 kDa) and high structural complexity that require extensive sequence and structure characterization. Middle-down mass spectrometry (MD-MS) is an emerging technique that sequences and maps subunits larger than those released by trypsinolysis. It avoids potentially introducing artifactual modifications that may occur in bottom-up MS while achieving higher sequence coverage compared to top-down MS. However, returning complete sequence information by MD-MS is still challenging. Here, we show that assigning internal fragments in direct infusion MD-MS of a mAb and an ADC substantially improves their structural characterization. For MD-MS of the reduced NIST mAb, including internal fragments recovers nearly 100% of the sequence by accessing the middle sequence region that is inaccessible by terminal fragments. The identification of important glycosylations can also be improved after the inclusion of internal fragments. For the reduced lysine-linked IgG1-DM1 ADC, we show that considering internal fragments increases the DM1 conjugation sites coverage to 80%, comparable to the reported 83% coverage achieved by peptide mapping on the same ADC (Luo et al. Anal. Chem. 2016, 88, 695-702). This study expands our work on the application of internal fragment assignments in top-down MS of mAbs and ADCs and can be extended to other heterogeneous therapeutic molecules such as multispecifics and fusion proteins for more widespread applications.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Iain D. G. Campuzano
- Center for Research Acceleration by Digital Innovation, Molecular Analytics, Amgen Research, Thousand Oaks, CA, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Dhenin J, Lafont V, Dupré M, Krick A, Mauriac C, Chamot-Rooke J. Monitoring mAb proteoforms in mouse plasma using an automated immunocapture combined with top-down and middle-down mass spectrometry. Proteomics 2024; 24:e2300069. [PMID: 37480175 DOI: 10.1002/pmic.202300069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. Once the developability of a mAb drug candidate has been assessed, an important step is to check its in vivo stability through pharmacokinetics (PK) studies. The gold standard is ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) performed at the peptide level (bottom-up approach). However, these analytical techniques do not allow to address the different mAb proteoforms that can arise from biotransformation. In recent years, top-down and middle-down mass spectrometry approaches have gained popularity to characterize proteins at the proteoform level but are not yet widely used for PK studies. We propose here a workflow based on an automated immunocapture followed by top-down and middle-down liquid chromatography-tandem mass spectrometry (LC-MS/MS) approaches to characterize mAb proteoforms spiked in mouse plasma. We demonstrate the applicability of our workflow on a large concentration range using pembrolizumab as a model. We also compare the performance of two state-of-the-art Orbitrap platforms (Tribrid Eclipse and Exploris 480) for these studies. The added value of our workflow for an accurate and sensitive characterization of mAb proteoforms in mouse plasma is highlighted.
Collapse
Affiliation(s)
- Jonathan Dhenin
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
- Université Paris Cité, Sorbonne Paris Cité, Paris, France
- DMPK, Sanofi R&D, Chilly-Mazarin, France
| | | | | | | | | | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Mass Spectrometry for Biology, Paris, France
| |
Collapse
|
5
|
Beaumal C, Deslignière E, Diemer H, Carapito C, Cianférani S, Hernandez-Alba O. Improved characterization of trastuzumab deruxtecan with PTCR and internal fragments implemented in middle-down MS workflows. Anal Bioanal Chem 2024; 416:519-532. [PMID: 38008785 DOI: 10.1007/s00216-023-05059-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Antibody-drug conjugates (ADCs) are highly complex proteins mainly due to the structural microvariability of the mAb, along with the additional heterogeneity afforded by the bioconjugation process. Top-down (TD) and middle-down (MD) strategies allow the straightforward fragmentation of proteins to elucidate the conjugated amino acid residues. Nevertheless, these spectra are very crowded with multiple overlapping and unassigned ion fragments. Here we report on the use of dedicated software (ClipsMS) and application of proton transfer charge reduction (PTCR), to respectively expand the fragment ion search space to internal fragments and improve the separation of overlapping fragment ions for a more comprehensive characterization of a recently approved ADC, trastuzumab deruxtecan (T-DXd). Subunit fragmentation allowed between 70 and 90% of sequence coverage to be obtained. Upon addition of internal fragment assignment, the three subunits were fully sequenced, although internal fragments did not contribute significantly to the localization of the payloads. Finally, the use of PTCR after subunit fragmentation provided a moderate sequence coverage increase between 2 and 13%. The reaction efficiently decluttered the fragmentation spectra allowing increasing the number of fragment ions characteristic of the conjugation site by 1.5- to 2.5-fold. Altogether, these results show the interest in the implementation of internal fragment ion searches and more particularly the use of PTCR reactions to increase the number of signature ions to elucidate the conjugation sites and enhance the overall sequence coverage of ADCs, making this approach particularly appealing for its implementation in R&D laboratories.
Collapse
Affiliation(s)
- Corentin Beaumal
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Evolène Deslignière
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio Organique, IPHC UMR 7178, CNRS, Université de Strasbourg, 67087, Strasbourg, France.
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France.
| |
Collapse
|
6
|
Castel J, Delaux S, Hernandez-Alba O, Cianférani S. Recent advances in structural mass spectrometry methods in the context of biosimilarity assessment: from sequence heterogeneities to higher order structures. J Pharm Biomed Anal 2023; 236:115696. [PMID: 37713983 DOI: 10.1016/j.jpba.2023.115696] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.
Collapse
Affiliation(s)
- Jérôme Castel
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Delaux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France.
| |
Collapse
|
7
|
Kline JT, Melani RD, Fornelli L. Mass spectrometry characterization of antibodies at the intact and subunit levels: from targeted to large-scale analysis. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2023; 492:117117. [PMID: 38855125 PMCID: PMC11160972 DOI: 10.1016/j.ijms.2023.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Antibodies are one of the most formidable molecular weapons available to our immune system. Their high specificity against a target (antigen) and capability of triggering different immune responses (e.g., complement system activation and antibody-dependent cell-mediated cytotoxicity) make them ideal drugs to fight many different human diseases. Currently, both monoclonal antibodies and more complex molecules based on the antibody scaffold are used as biologics. Naturally, such highly heterogeneous molecules require dedicated analytical methodologies for their accurate characterization. Mass spectrometry (MS) can define the presence and relative abundance of multiple features of antibodies, including critical quality attributes. The combination of small and large variations within a single molecule can only be determined by analyzing intact antibodies or their large (25 to 100 kDa) subunits. Hence, top-down (TD) and middle-down (MD) MS approaches have gained popularity over the last decade. In this Young Scientist Feature we discuss the evolution of TD and MD MS analysis of antibodies, including the new frontiers that go beyond biopharma applications. We will show how this field is now moving from the "quality control" analysis of a known, single antibody to the high-throughput investigation of complex antibody repertoires isolated from clinical samples, where the ultimate goal is represented by the complete gas-phase sequencing of antibody molecules without the need of any a priori knowledge.
Collapse
Affiliation(s)
- Jake T. Kline
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Rafael D. Melani
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
8
|
Wei B, Lantz C, Liu W, Viner R, Loo RRO, Campuzano IDG, Loo JA. Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates. Anal Chem 2023; 95:9347-9356. [PMID: 37278738 PMCID: PMC10954349 DOI: 10.1021/acs.analchem.3c01426] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are two of the most important therapeutic drug classes that require extensive characterization, whereas their large size and structural complexity make them challenging to characterize and demand the use of advanced analytical methods. Top-down mass spectrometry (TD-MS) is an emerging technique that minimizes sample preparation and preserves endogenous post-translational modifications (PTMs); however, TD-MS of large proteins suffers from low fragmentation efficiency, limiting the sequence and structure information that can be obtained. Here, we show that including the assignment of internal fragments in native TD-MS of an intact mAb and an ADC can improve their molecular characterization. For the NIST mAb, internal fragments can access the sequence region constrained by disulfide bonds to increase the TD-MS sequence coverage to over 75%. Important PTM information, including intrachain disulfide connectivity and N-glycosylation sites, can be revealed after including internal fragments. For a heterogeneous lysine-linked ADC, we show that assigning internal fragments improves the identification of drug conjugation sites to achieve a coverage of 58% of all putative conjugation sites. This proof-of-principle study demonstrates the potential value of including internal fragments in native TD-MS of intact mAbs and ADCs, and this analytical strategy can be extended to bottom-up and middle-down MS approaches to achieve even more comprehensive characterization of important therapeutic molecules.
Collapse
Affiliation(s)
- Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
| | - Weijing Liu
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rosa Viner
- Thermo Fisher Scientific, San Jose, CA, 95134 USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| | - Iain D. G. Campuzano
- Amgen Research, Center for Research Acceleration and Digital Innovation, Molecular Analytics, Thousand Oaks, CA, 91320 USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles-Los Angeles, CA, 90095 USA
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- UCLA-DOE Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, 90095 USA
| |
Collapse
|
9
|
de Bever L, Popal S, van Schaik J, Rubahamya B, van Delft FL, Thurber GM, van Berkel SS. Generation of DAR1 Antibody-Drug Conjugates for Ultrapotent Payloads Using Tailored GlycoConnect Technology. Bioconjug Chem 2023; 34:538-548. [PMID: 36857521 PMCID: PMC10020967 DOI: 10.1021/acs.bioconjchem.2c00611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Indexed: 03/03/2023]
Abstract
GlycoConnect technology can be readily adapted to provide different drug-to-antibody ratios (DARs) and is currently also evaluated in various clinical programs, including ADCT-601 (DAR2), MRG004a (DAR4), and XMT-1660 (DAR6). While antibody-drug conjugates (ADCs) typically feature a DAR2-8, it has become clear that ADCs with ultrapotent payloads (e.g., PBD dimers and calicheamicin) can only be administered to patients at low doses (<0.5 mg/kg), which may compromise effective biodistribution and may be insufficient to reach target receptor saturation in the tumor. Here, we show that GlycoConnect technology can be readily extended to DAR1 ADCs without the need of antibody re-engineering. We demonstrate that various ultrapotent, cytotoxic payloads are amenable to this methodology. In a follow-up experiment, HCC-1954 tumor spheroids were treated with either an AlexaFluor647-labeled DAR1 or DAR2 PBD-based ADC to study the effect on tumor penetration. Significant improvement of tumor spheroid penetration was observed for the DAR1 ADC compared to the DAR2 ADC at an equal payload dose, underlining the potential of a lower DAR for ADCs bearing ultrapotent payloads.
Collapse
Affiliation(s)
| | - Sorraya Popal
- Synaffix
BV, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | | | - Baron Rubahamya
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Greg M. Thurber
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
10
|
Fujii T, Matsuda Y, Seki T, Shikida N, Iwai Y, Ooba Y, Takahashi K, Isokawa M, Kawaguchi S, Hatada N, Watanabe T, Takasugi R, Nakayama A, Shimbo K, Mendelsohn BA, Okuzumi T, Yamada K. AJICAP Second Generation: Improved Chemical Site-Specific Conjugation Technology for Antibody-Drug Conjugate Production. Bioconjug Chem 2023. [PMID: 36894324 PMCID: PMC10119932 DOI: 10.1021/acs.bioconjchem.3c00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The site-directed chemical conjugation of antibodies remains an area of great interest and active efforts within the antibody-drug conjugate (ADC) community. We previously reported a unique site modification using a class of immunoglobulin-G (IgG) Fc-affinity reagents to establish a versatile, streamlined, and site-selective conjugation of native antibodies to enhance the therapeutic index of the resultant ADCs. This methodology, termed "AJICAP", successfully modified Lys248 of native antibodies to produce site-specific ADC with a wider therapeutic index than the Food and Drug Administration-approved ADC, Kadcyla. However, the long reaction sequences, including the reduction-oxidation (redox) treatment, increased the aggregation level. In this manuscript, we aimed to present an updated Fc-affinity-mediated site-specific conjugation technology named "AJICAP second generation" without redox treatment utilizing a "one-pot" antibody modification reaction. The stability of Fc affinity reagents was improved owing to structural optimization, enabling the production of various ADCs without aggregation. In addition to Lys248 conjugation, Lys288 conjugated ADCs with homogeneous drug-to-antibody ratio of 2 were produced using different Fc affinity peptide reagent possessing a proper spacer linkage. These two conjugation technologies were used to produce over 20 ADCs from several combinations of antibodies and drug linkers. The in vivo profile of Lys248 and Lys288 conjugated ADCs was also compared. Furthermore, nontraditional ADC production, such as antibody-protein conjugates and antibody-oligonucleotide conjugates, were achieved. These results strongly indicate that this Fc affinity conjugation approach is a promising strategy for manufacturing site-specific antibody conjugates without antibody engineering.
Collapse
Affiliation(s)
- Tomohiro Fujii
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yutaka Matsuda
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Takuya Seki
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Natsuki Shikida
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yusuke Iwai
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yuri Ooba
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutoshi Takahashi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Muneki Isokawa
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Sayaka Kawaguchi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Noriko Hatada
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Tomohiro Watanabe
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Rika Takasugi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Akira Nakayama
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutaka Shimbo
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Brian A Mendelsohn
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Tatsuya Okuzumi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kei Yamada
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| |
Collapse
|
11
|
Escobar EE, Wang S, Goswami R, Lanzillotti MB, Li L, McLellan JS, Brodbelt JS. Analysis of Viral Spike Protein N-Glycosylation Using Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:5776-5784. [PMID: 35388686 PMCID: PMC9272412 DOI: 10.1021/acs.analchem.1c04874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Characterization of protein glycosylation by tandem mass spectrometry remains challenging owing to the vast diversity of oligosaccharides bound to proteins, the variation in monosaccharide linkage patterns, and the lability of the linkage between the glycan and protein. Here, we have adapted an HCD-triggered-ultraviolet photodissociation (UVPD) approach for the simultaneous localization of glycosites and full characterization of both glycan compositions and intersaccharide linkages, the latter provided by extensive cross-ring cleavages enabled by UVPD. The method is applied to study glycan compositions based on analysis of glycopeptides from proteolytic digestion of recombinant human coronaviruse spike proteins from SARS-CoV-2 and HKU1. UVPD reveals unique intersaccharide linkage information and is leveraged to localize N-linked glycoforms with confidence.
Collapse
Affiliation(s)
- Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Shuaishuai Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Michael B Lanzillotti
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Liu T, Tao Y, Xia X, Zhang Y, Deng R, Wang Y. Analytical tools for antibody–drug conjugates: from in vitro to in vivo. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Larson EJ, Roberts DS, Melby JA, Buck KM, Zhu Y, Zhou S, Han L, Zhang Q, Ge Y. High-Throughput Multi-attribute Analysis of Antibody-Drug Conjugates Enabled by Trapped Ion Mobility Spectrometry and Top-Down Mass Spectrometry. Anal Chem 2021; 93:10013-10021. [PMID: 34258999 PMCID: PMC8319120 DOI: 10.1021/acs.analchem.1c00150] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest growing classes of anticancer therapies. Combining the high targeting specificity of monoclonal antibodies (mAbs) with cytotoxic small molecule drugs, ADCs are complex molecular entities that are intrinsically heterogeneous. Primary sequence variants, varied drug-to-antibody ratio (DAR) species, and conformational changes in the starting mAb structure upon drug conjugation must be monitored to ensure the safety and efficacy of ADCs. Herein, we have developed a high-throughput method for the analysis of cysteine-linked ADCs using trapped ion mobility spectrometry (TIMS) combined with top-down mass spectrometry (MS) on a Bruker timsTOF Pro. This method can analyze ADCs (∼150 kDa) by TIMS followed by a three-tiered top-down MS characterization strategy for multi-attribute analysis. First, the charge state distribution and DAR value of the ADC are monitored (MS1). Second, the intact mass of subunits dissociated from the ADC by low-energy collision-induced dissociation (CID) is determined (MS2). Third, the primary sequence for the dissociated subunits is characterized by CID fragmentation using elevated collisional energies (MS3). We further automate this workflow by directly injecting the ADC and using MS segmentation to obtain all three tiers of MS information in a single 3-min run. Overall, this work highlights a multi-attribute top-down MS characterization method that possesses unparalleled speed for high-throughput characterization of ADCs.
Collapse
Affiliation(s)
- Eli J Larson
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jake A Melby
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kevin M Buck
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
| | - Shiyue Zhou
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Linjie Han
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Qunying Zhang
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin - Madison, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin, 1111 Highland Avenue., Madison, Wisconsin 53705, United States
| |
Collapse
|
14
|
Lucas AT, Moody A, Schorzman AN, Zamboni WC. Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist's Perspective. Antibodies (Basel) 2021; 10:30. [PMID: 34449544 PMCID: PMC8395454 DOI: 10.3390/antib10030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) appear to be in a developmental boom, with five FDA approvals in the last two years and a projected market value of over $4 billion by 2024. Major advancements in the engineering of these novel cytotoxic drug carriers have provided a few early success stories. Although the use of these immunoconjugate agents are still in their infancy, valuable lessons in the engineering of these agents have been learned from both preclinical and clinical failures. It is essential to appreciate how the various mechanisms used to engineer changes in ADCs can alter the complex pharmacology of these agents and allow the ADCs to navigate the modern-day therapeutic challenges within oncology. This review provides a global overview of ADC characteristics which can be engineered to alter the interaction with the immune system, pharmacokinetic and pharmacodynamic profiles, and therapeutic index of ADCs. In addition, this review will highlight some of the engineering approaches being explored in the creation of the next generation of ADCs.
Collapse
Affiliation(s)
- Andrew T. Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Amber Moody
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Allison N. Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
| | - William C. Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Glolytics, LLC, Chapel Hill, NC 27517, USA
| |
Collapse
|
15
|
Zenaidee MA, Wei B, Lantz C, Wu HT, Lambeth TR, Diedrich JK, Loo RRO, Julian RR, Loo JA. Internal Fragments Generated from Different Top-Down Mass Spectrometry Fragmentation Methods Extend Protein Sequence Coverage. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1752-1758. [PMID: 34101447 PMCID: PMC9090460 DOI: 10.1021/jasms.1c00113] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Top-down mass spectrometry (TD-MS) of intact proteins results in fragment ions that can be correlated to the protein primary sequence. Fragments generated can either be terminal fragments that contain the N- or C-terminus or internal fragments that contain neither termini. Traditionally in TD-MS experiments, the generation of internal fragments has been avoided because of ambiguity in assigning these fragments. Here, we demonstrate that in TD-MS experiments internal fragments can be formed and assigned in collision-based, electron-based, and photon-based fragmentation methods and are rich with sequence information, allowing for a greater extent of the primary protein sequence to be explained. For the three test proteins cytochrome c, myoglobin, and carbonic anhydrase II, the inclusion of internal fragments in the analysis resulted in approximately 15-20% more sequence coverage, with no less than 85% sequence coverage obtained. Combining terminal fragment and internal fragment assignments results in near complete protein sequence coverage. Hence, by including both terminal and internal fragment assignments in TD-MS analysis, deep protein sequence analysis, allowing for the localization of modification sites more reliably, can be possible.
Collapse
Affiliation(s)
- Muhammad A. Zenaidee
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
| | - Benqian Wei
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
| | - Carter Lantz
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
| | - Hoi Ting Wu
- Department of Chemistry, University of California Riverside, Riverside, CA 92521
| | - Tyler R. Lambeth
- Department of Chemistry, University of California Riverside, Riverside, CA 92521
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
| | - Ryan R. Julian
- Department of Chemistry, University of California Riverside, Riverside, CA 92521
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
16
|
Cejkov M, Greer T, Johnson RO, Zheng X, Li N. Electron Transfer Dissociation Parameter Optimization Using Design of Experiments Increases Sequence Coverage of Monoclonal Antibodies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:762-771. [PMID: 33596068 DOI: 10.1021/jasms.0c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Middle-down analysis of monoclonal antibodies (mAbs) by tandem mass spectrometry (MS2) can provide detailed insight into their primary structure with minimal sample preparation. The middle-down approach uses an enzyme to cleave mAbs into Fc/2, LC, and Fd subunits that are then analyzed by reversed phase liquid chromatography tandem mass spectrometry (RPLC-MS2). As maximum sequence coverage is desired to obtain meaningful structural information at the subunit level, a host of dissociation methods have been developed, and sometimes combined, to bolster fragmentation and increase the number of identified fragments. Here, we present a design of experiments (DOE) approach to optimize MS2 parameters, in particular those that may influence electron transfer dissociation (ETD) efficiency to increase the sequence coverage of antibody subunits. Applying this approach to the NIST monoclonal antibody standard (NISTmAb) using three RPLC-MS2 runs resulted in high sequence coverages of 67%, 67%, and 52% for Fc/2, LC, and Fd subunits, respectively. In addition, we apply this DOE strategy to model the parameters required to maximize the number of fragments produced in "low", "medium", and "high" mass ranges, which ultimately resulted in even higher sequence coverages of NISTmAb subunits (75%, 78%, and 64% for Fc/2, LC, and Fd subunits, respectively). The DOE approach provides high sequence coverage percentages utilizing only one fragmentation method, ETD, and could be extended to other state-of-the-art techniques that combine multiple fragmentation mechanisms to increase coverage.
Collapse
Affiliation(s)
- Milos Cejkov
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Tyler Greer
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Reid O'Brien Johnson
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaojing Zheng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
17
|
Larson EJ, Zhu Y, Wu Z, Chen B, Zhang Z, Zhou S, Han L, Zhang Q, Ge Y. Rapid Analysis of Reduced Antibody Drug Conjugate by Online LC-MS/MS with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2020; 92:15096-15103. [PMID: 33108180 DOI: 10.1021/acs.analchem.0c03152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antibody drug conjugates (ADCs), which harness the high targeting specificity of monoclonal antibodies (mAb) with the potency of small molecule therapeutics, are one of the fastest growing pharmaceutical classes. Nevertheless, ADC conjugation techniques and processes may introduce intrinsic heterogeneity including primary sequence variants, varied drug-to-antibody ratio (DAR) species, and drug positional isomers, which must be monitored to ensure the safety and efficacy of ADCs. Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for characterization of ADCs. However, the conventional bottom-up MS analysis workflows require an enzymatic digestion step which can be time consuming and may introduce artifactual modifications. Herein, we develop an online LC-MS/MS method for rapid analysis of reduced ADCs without digestion, enabling determination of DAR, characterization of the primary sequence, and localization of the drug conjugation site of the ADC using high-resolution Fourier transform ion cyclotron resonance (FTICR) MS. Specifically, a model cysteine-linked ADC was reduced to generate six unique subunits: light chain (Lc) without drug (Lc0), Lc with 1 drug (Lc1), heavy chain (Hc) without drug (Hc0), and Hc with 1-3 drugs (Hc1-3, respectively). A concurrent reduction strategy is applied to assess ADC subunits in both the partially reduced (intrachain disulfide bonds remain intact) and fully reduced (all disulfide bonds are cleaved) forms. The entire procedure including the sample preparation and LC-MS/MS takes less than 55 min, enabling rapid multiattribute analysis of ADCs.
Collapse
Affiliation(s)
- Eli J Larson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wisconsin 53706, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, United States
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wisconsin 53706, United States
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wisconsin 53706, United States
| | - Zhaorui Zhang
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Shiyue Zhou
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Linjie Han
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Qunying Zhang
- Analytical R&D, AbbVie Inc., 1 Waukegan Rd., North Chicago, Illinois 60064, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave. Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin 53705, United States
| |
Collapse
|
18
|
Srzentić K, Fornelli L, Tsybin YO, Loo JA, Seckler H, Agar JN, Anderson LC, Bai DL, Beck A, Brodbelt JS, van der Burgt YEM, Chamot-Rooke J, Chatterjee S, Chen Y, Clarke DJ, Danis PO, Diedrich JK, D'Ippolito RA, Dupré M, Gasilova N, Ge Y, Goo YA, Goodlett DR, Greer S, Haselmann KF, He L, Hendrickson CL, Hinkle JD, Holt MV, Hughes S, Hunt DF, Kelleher NL, Kozhinov AN, Lin Z, Malosse C, Marshall AG, Menin L, Millikin RJ, Nagornov KO, Nicolardi S, Paša-Tolić L, Pengelley S, Quebbemann NR, Resemann A, Sandoval W, Sarin R, Schmitt ND, Shabanowitz J, Shaw JB, Shortreed MR, Smith LM, Sobott F, Suckau D, Toby T, Weisbrod CR, Wildburger NC, Yates JR, Yoon SH, Young NL, Zhou M. Interlaboratory Study for Characterizing Monoclonal Antibodies by Top-Down and Middle-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1783-1802. [PMID: 32812765 PMCID: PMC7539639 DOI: 10.1021/jasms.0c00036] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Consortium for Top-Down Proteomics (www.topdownproteomics.org) launched the present study to assess the current state of top-down mass spectrometry (TD MS) and middle-down mass spectrometry (MD MS) for characterizing monoclonal antibody (mAb) primary structures, including their modifications. To meet the needs of the rapidly growing therapeutic antibody market, it is important to develop analytical strategies to characterize the heterogeneity of a therapeutic product's primary structure accurately and reproducibly. The major objective of the present study is to determine whether current TD/MD MS technologies and protocols can add value to the more commonly employed bottom-up (BU) approaches with regard to confirming protein integrity, sequencing variable domains, avoiding artifacts, and revealing modifications and their locations. We also aim to gather information on the common TD/MD MS methods and practices in the field. A panel of three mAbs was selected and centrally provided to 20 laboratories worldwide for the analysis: Sigma mAb standard (SiLuLite), NIST mAb standard, and the therapeutic mAb Herceptin (trastuzumab). Various MS instrument platforms and ion dissociation techniques were employed. The present study confirms that TD/MD MS tools are available in laboratories worldwide and provide complementary information to the BU approach that can be crucial for comprehensive mAb characterization. The current limitations, as well as possible solutions to overcome them, are also outlined. A primary limitation revealed by the results of the present study is that the expert knowledge in both experiment and data analysis is indispensable to practice TD/MD MS.
Collapse
Affiliation(s)
- Kristina Srzentić
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Luca Fornelli
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Joseph A Loo
- University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Henrique Seckler
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Jeffrey N Agar
- Northeastern University, Boston, Massachusetts 02115, United States
| | - Lissa C Anderson
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Dina L Bai
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Alain Beck
- Centre d'immunologie Pierre Fabre, 74160 Saint-Julien-en-Genevois, France
| | | | | | | | | | - Yunqiu Chen
- Biogen, Inc., Cambridge, Massachusetts 02142-1031, United States
| | - David J Clarke
- The University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | - Paul O Danis
- Consortium for Top-Down Proteomics, Cambridge, Massachusetts 02142, United States
| | - Jolene K Diedrich
- The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ying Ge
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Young Ah Goo
- University of Maryland, Baltimore, Maryland 21201, United States
| | - David R Goodlett
- University of Maryland, Baltimore, Maryland 21201, United States
| | - Sylvester Greer
- University of Texas at Austin, Austin, Texas 78712-1224, United States
| | | | - Lidong He
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | | | - Joshua D Hinkle
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Matthew V Holt
- Baylor College of Medicine, Houston, Texas 77030-3411, United States
| | - Sam Hughes
- The University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | - Donald F Hunt
- University of Virginia, Charlottesville, Virginia 22901, United States
| | - Neil L Kelleher
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Anton N Kozhinov
- Spectroswiss, EPFL Innovation Park, Building I, 1015 Lausanne, Switzerland
| | - Ziqing Lin
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Alan G Marshall
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Florida State University, Tallahassee, Florida 32310-4005, United States
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Robert J Millikin
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Simone Nicolardi
- Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Neil R Quebbemann
- University of California-Los Angeles, Los Angeles, California 90095, United States
| | | | - Wendy Sandoval
- Genentech, Inc., South San Francisco, California 94080-4990, United States
| | - Richa Sarin
- Biogen, Inc., Cambridge, Massachusetts 02142-1031, United States
| | | | | | - Jared B Shaw
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Lloyd M Smith
- University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Frank Sobott
- University of Antwerp, 2000 Antwerp, Belgium
- University of Leeds, LS2 9JT Leeds, United Kingdom
| | | | - Timothy Toby
- Northwestern University, Evanston, Illinois 60208-0001, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Norelle C Wildburger
- Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John R Yates
- The Scripps Research Institute, La Jolla, California 92037, United States
| | - Sung Hwan Yoon
- University of Maryland, Baltimore, Maryland 21201, United States
| | - Nicolas L Young
- Baylor College of Medicine, Houston, Texas 77030-3411, United States
| | - Mowei Zhou
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
19
|
Watts E, Williams JD, Miesbauer LJ, Bruncko M, Brodbelt JS. Comprehensive Middle-Down Mass Spectrometry Characterization of an Antibody–Drug Conjugate by Combined Ion Activation Methods. Anal Chem 2020; 92:9790-9798. [DOI: 10.1021/acs.analchem.0c01232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Eleanor Watts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | | | | | - Milan Bruncko
- AbbVie, North Chicago, Illinois 60064-1802, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
20
|
Zhao B, Reilly CP, Davis C, Matouschek A, Reilly JP. Use of Multiple Ion Fragmentation Methods to Identify Protein Cross-Links and Facilitate Comparison of Data Interpretation Algorithms. J Proteome Res 2020; 19:2758-2771. [PMID: 32496805 DOI: 10.1021/acs.jproteome.0c00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple ion fragmentation methods involving collision-induced dissociation (CID), higher-energy collisional dissociation (HCD) with regular and very high energy settings, and electron-transfer dissociation with supplementary HCD (EThcD) are implemented to improve the confidence of cross-link identifications. Three different S. cerevisiae proteasome samples cross-linked by diethyl suberthioimidate (DEST) or bis(sulfosuccinimidyl)suberate (BS3) are analyzed. Two approaches are introduced to combine interpretations from the above four methods. Working with cleavable cross-linkers such as DEST, the first approach searches for cross-link diagnostic ions and consistency among the best interpretations derived from all four MS2 spectra associated with each precursor ion. Better agreement leads to a more definitive identification. Compatible with both cleavable and noncleavable cross-linkers such as BS3, the second approach multiplies scoring metrics from a number of fragmentation experiments to derive an overall best match. This significantly increases the scoring gap between the target and decoy matches. The validity of cross-links fragmented by HCD alone and identified by Kojak, MeroX, pLink, and Xi was evaluated using multiple fragmentation data. Possible ways to improve the identification credibility are discussed. Data are available via ProteomeXchange with identifier PXD018310.
Collapse
Affiliation(s)
- Bingqing Zhao
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Colin P Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Caroline Davis
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James P Reilly
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
21
|
Zhu X, Huo S, Xue C, An B, Qu J. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. J Pharm Anal 2020; 10:209-220. [PMID: 32612867 PMCID: PMC7322744 DOI: 10.1016/j.jpha.2020.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/28/2023] Open
Abstract
The past few years have witnessed enormous progresses in the development of antibody-drug conjugates (ADCs). Consequently, comprehensive analysis of ADCs in biological systems is critical in supporting discovery, development and evaluation of these agents. Liquid chromatography-mass spectrometry (LC-MS) has emerged as a promising and versatile tool for ADC analysis across a wide range of scenarios, owing to its multiplexing ability, rapid method development, as well as the capability of analyzing a variety of targets ranging from small-molecule payloads to the intact protein with a high, molecular resolution. However, despite this tremendous potential, challenges persist due to the high complexity in both the ADC molecules and the related biological systems. This review summarizes the up-to-date LC-MS-based strategies in ADC analysis and discusses the challenges and opportunities in this rapidly-evolving field.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Shihan Huo
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Chao Xue
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
- Department of Chemical and Biological Engineering, School of Engineering and Applied Science, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Bo An
- Exploratory Biomarker, In-vitro/In-vivo Translation, R&D Research, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Rd, Collegeville, PA, 19426, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| |
Collapse
|
22
|
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics 2020; 17:17. [PMID: 32489335 PMCID: PMC7247207 DOI: 10.1186/s12014-020-09283-w] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer biomarkers have transformed current practices in the oncology clinic. Continued discovery and validation are crucial for improving early diagnosis, risk stratification, and monitoring patient response to treatment. Profiling of the tumour genome and transcriptome are now established tools for the discovery of novel biomarkers, but alterations in proteome expression are more likely to reflect changes in tumour pathophysiology. In the past, clinical diagnostics have strongly relied on antibody-based detection strategies, but these methods carry certain limitations. Mass spectrometry (MS) is a powerful method that enables increasingly comprehensive insights into changes of the proteome to advance personalized medicine. In this review, recent improvements in MS-based clinical proteomics are highlighted with a focus on oncology. We will provide a detailed overview of clinically relevant samples types, as well as, consideration for sample preparation methods, protein quantitation strategies, MS configurations, and data analysis pipelines currently available to researchers. Critical consideration of each step is necessary to address the pressing clinical questions that advance cancer patient diagnosis and prognosis. While the majority of studies focus on the discovery of clinically-relevant biomarkers, there is a growing demand for rigorous biomarker validation. These studies focus on high-throughput targeted MS assays and multi-centre studies with standardized protocols. Additionally, improvements in MS sensitivity are opening the door to new classes of tumour-specific proteoforms including post-translational modifications and variants originating from genomic aberrations. Overlaying proteomic data to complement genomic and transcriptomic datasets forges the growing field of proteogenomics, which shows great potential to improve our understanding of cancer biology. Overall, these advancements not only solidify MS-based clinical proteomics' integral position in cancer research, but also accelerate the shift towards becoming a regular component of routine analysis and clinical practice.
Collapse
Affiliation(s)
- Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Proof of site-specificity of antibody-drug conjugates produced by chemical conjugation technology: AJICAP first generation. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1140:121981. [DOI: 10.1016/j.jchromb.2020.121981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
|
24
|
Kotapati S, Passmore D, Yamazoe S, Sanku RKK, Cong Q, Poudel YB, Chowdari NS, Gangwar S, Rao C, Rangan VS, Cardarelli PM, Deshpande S, Strop P, Dollinger G, Rajpal A. Universal Affinity Capture Liquid Chromatography-Mass Spectrometry Assay for Evaluation of Biotransformation of Site-Specific Antibody Drug Conjugates in Preclinical Studies. Anal Chem 2019; 92:2065-2073. [DOI: 10.1021/acs.analchem.9b04572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|