1
|
Arora S, Satija S, Mittal A, Solanki S, Mohanty SK, Srivastava V, Sengupta D, Rout D, Arul Murugan N, Borkar RM, Ahuja G. Unlocking The Mysteries of DNA Adducts with Artificial Intelligence. Chembiochem 2024; 25:e202300577. [PMID: 37874183 DOI: 10.1002/cbic.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Cellular genome is considered a dynamic blueprint of a cell since it encodes genetic information that gets temporally altered due to various endogenous and exogenous insults. Largely, the extent of genomic dynamicity is controlled by the trade-off between DNA repair processes and the genotoxic potential of the causative agent (genotoxins or potential carcinogens). A subset of genotoxins form DNA adducts by covalently binding to the cellular DNA, triggering structural or functional changes that lead to significant alterations in cellular processes via genetic (e. g., mutations) or non-genetic (e. g., epigenome) routes. Identification, quantification, and characterization of DNA adducts are indispensable for their comprehensive understanding and could expedite the ongoing efforts in predicting carcinogenicity and their mode of action. In this review, we elaborate on using Artificial Intelligence (AI)-based modeling in adducts biology and present multiple computational strategies to gain advancements in decoding DNA adducts. The proposed AI-based strategies encompass predictive modeling for adduct formation via metabolic activation, novel adducts' identification, prediction of biochemical routes for adduct formation, adducts' half-life predictions within biological ecosystems, and, establishing methods to predict the link between adducts chemistry and its location within the genomic DNA. In summary, we discuss some futuristic AI-based approaches in DNA adduct biology.
Collapse
Affiliation(s)
- Sakshi Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Shiva Satija
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Aayushi Mittal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Saveena Solanki
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Sanjay Kumar Mohanty
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry CBH School, Royal Institute of Technology (KTH) AlbaNova University Center, 10691, Stockholm, Sweden
| | - Debarka Sengupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Diptiranjan Rout
- Department of Transfusion Medicine National Cancer Institute, AIIMS, New Delhi, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110608, India
| | - Natarajan Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur Halugurisuk P.O.: Changsari, Dist, Guwahati, Assam, 781101, India
| | - Gaurav Ahuja
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT-Delhi) Okhla, Phase III, New Delhi, 110020, India
| |
Collapse
|
2
|
Stochastic dynamic quantitative and 3D structural matrix assisted laser desorption/ionization mass spectrometric analyses of mixture of nucleosides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
La Barbera G, Nommesen KD, Cuparencu C, Stanstrup J, Dragsted LO. A Comprehensive Database for DNA Adductomics. Front Chem 2022; 10:908572. [PMID: 35692690 PMCID: PMC9184683 DOI: 10.3389/fchem.2022.908572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
The exposure of human DNA to genotoxic compounds induces the formation of covalent DNA adducts, which may contribute to the initiation of carcinogenesis. Liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS) is a powerful tool for DNA adductomics, a new research field aiming at screening known and unknown DNA adducts in biological samples. The lack of databases and bioinformatics tool in this field limits the applicability of DNA adductomics. Establishing a comprehensive database will make the identification process faster and more efficient and will provide new insight into the occurrence of DNA modification from a wide range of genotoxicants. In this paper, we present a four-step approach used to compile and curate a database for the annotation of DNA adducts in biological samples. The first step included a literature search, selecting only DNA adducts that were unequivocally identified by either comparison with reference standards or with nuclear magnetic resonance (NMR), and tentatively identified by tandem HRMS/MS. The second step consisted in harmonizing structures, molecular formulas, and names, for building a systematic database of 279 DNA adducts. The source, the study design and the technique used for DNA adduct identification were reported. The third step consisted in implementing the database with 303 new potential DNA adducts coming from different combinations of genotoxicants with nucleobases, and reporting monoisotopic masses, chemical formulas, .cdxml files, .mol files, SMILES, InChI, InChIKey and IUPAC nomenclature. In the fourth step, a preliminary spectral library was built by acquiring experimental MS/MS spectra of 15 reference standards, generating in silico MS/MS fragments for all the adducts, and reporting both experimental and predicted fragments into interactive web datatables. The database, including 582 entries, is publicly available (https://gitlab.com/nexs-metabolomics/projects/dna_adductomics_database). This database is a powerful tool for the annotation of DNA adducts measured in (HR)MS. The inclusion of metadata indicating the source of DNA adducts, the study design and technique used, allows for prioritization of the DNA adducts of interests and/or to enhance the annotation confidence. DNA adducts identification can be further improved by integrating the present database with the generation of authentic MS/MS spectra, and with user-friendly bioinformatics tools.
Collapse
|
4
|
Pandit S, Singh P, Parthasarathi R. Computational risk assessment framework for the hazard analysis of bisphenols and quinone metabolites. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128031. [PMID: 34933259 DOI: 10.1016/j.jhazmat.2021.128031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA) is a widely used chemical in plastics but its proven harmful effects has led to the replacement and production of its analogs that might also induce hazard as well as associated risks. To elucidate the adverse impact of the BPA analogs, a comprehensive computational framework is developed which applies toxicogenomics aligned with Density Functional Theory (DFT) and Molecular Dynamics (MD) based approaches to understand the toxic potential of quinone metabolites of Bisphenol F (BPF) and 3,3'-dimethylbisphenol A (DMBPA). The obtained results indicate a similar chemical reactivity profile for these metabolites of bisphenols to BPA metabolite. MD simulation revealed that the quinone metabolites tend to interact with the DNA comprising hydrogen bonding, van der Waals forces, and electrostatic interactions as an onset for covalent binding to adduct formation. Structural analysis suggests that interactions with DC9, DG10, DG16, DA17, DA18, and DT19 play a crucial role in stabilizing the quinone metabolite in the interactive pocket of DNA. These observations are demonstrating that BPF and DMBPA have the potential to impose genotoxicity via forming the quinone metabolite adducts. Combination of DFT and MD-based computational approaches providing a structure-activity-toxicity spectrum of chemicals can serve for the purpose of risk assessment.
Collapse
Affiliation(s)
- Shraddha Pandit
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prakrity Singh
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Perez-Mellor AF, Spezia R. Determination of kinetic properties in unimolecular dissociation of complex systems from graph theory based analysis of an ensemble of reactive trajectories. J Chem Phys 2021; 155:124103. [PMID: 34598552 DOI: 10.1063/5.0058382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this paper, we report how graph theory can be used to analyze an ensemble of independent molecular trajectories, which can react during the simulation time-length, and obtain structural and kinetic information. This method is totally general and here is applied to the prototypical case of gas phase fragmentation of protonated cyclo-di-glycine. This methodology allows us to analyze the whole set of trajectories in an automatic computer-based way without the need of visual inspection but by getting all the needed information. In particular, we not only determine the appearance of different products and intermediates but also characterize the corresponding kinetics. The use of colored graph and canonical labeling allows for the correct characterization of the chemical species involved. In the present case, the simulations consist of an ensemble of unimolecular fragmentation trajectories at constant energy such that from the rate constants at different energies, the threshold energy can also be obtained for both global and specific pathways. This approach allows for the characterization of ion-molecule complexes, likely through a roaming mechanism, by properly taking into account the elusive nature of such species. Finally, it is possible to directly obtain the theoretical mass spectrum of the fragmenting species if the reacting system is an ion as in the specific example.
Collapse
Affiliation(s)
- Ariel F Perez-Mellor
- LAMBE UMR8587, Université d'Evry Val d'Essonne, CNRS, CEA, Université Paris-Saclay, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, 91025 Evry, France
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
6
|
Koopman J, Grimme S. From QCEIMS to QCxMS: A Tool to Routinely Calculate CID Mass Spectra Using Molecular Dynamics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1735-1751. [PMID: 34080847 DOI: 10.1021/jasms.1c00098] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry (MS) is a powerful tool in chemical research and substance identification. For the computational modeling of electron ionization MS, we have developed the quantum-chemical electron ionization mass spectra (QCEIMS) program. Here, we present an extension of QCEIMS to calculate collision-induced dissociation (CID) spectra. The more general applicability is accounted for by the new name QCxMS, where "x" refers to EI or CID. To this end, fragmentation and rearrangement reactions are computed "on-the-fly" in Born-Oppenheimer molecular dynamics (MD) simulations with the semiempirical GFN2-xTB Hamiltonian, which provides an efficient quantum mechanical description of all elements up to Z = 86 (Rn). Through the explicit modeling of multicollision processes between precursor ions and neutral gas atoms as well as temperature-induced decomposition reactions, QCxMS provides detailed insight into the collision kinetics and fragmentation pathways. In combination with the CREST program to determine the preferential protonation sites, QCxMS becomes the first standalone MD-based program that can predict mass spectra based solely on molecular structures as input. We demonstrate this for six organic molecules with masses ranging from 159 to 296 Da, for which QCxMS yields CID spectra in reasonable agreement with experiments.
Collapse
Affiliation(s)
- Jeroen Koopman
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
7
|
Borges R, Colby SM, Das S, Edison AS, Fiehn O, Kind T, Lee J, Merrill AT, Merz KM, Metz TO, Nunez JR, Tantillo DJ, Wang LP, Wang S, Renslow RS. Quantum Chemistry Calculations for Metabolomics. Chem Rev 2021; 121:5633-5670. [PMID: 33979149 PMCID: PMC8161423 DOI: 10.1021/acs.chemrev.0c00901] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 02/07/2023]
Abstract
A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials ("standards"), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for "standards-free" identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.
Collapse
Affiliation(s)
- Ricardo
M. Borges
- Walter
Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Sean M. Colby
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Susanta Das
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arthur S. Edison
- Departments
of Genetics and Biochemistry and Molecular Biology, Complex Carbohydrate
Research Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, United States
| | - Oliver Fiehn
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Tobias Kind
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Jesi Lee
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Amy T. Merrill
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Thomas O. Metz
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Jamie R. Nunez
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Shunyang Wang
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ryan S. Renslow
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
8
|
Krettler CA, Thallinger GG. A map of mass spectrometry-based in silico fragmentation prediction and compound identification in metabolomics. Brief Bioinform 2021; 22:6184408. [PMID: 33758925 DOI: 10.1093/bib/bbab073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Metabolomics, the comprehensive study of the metabolome, and lipidomics-the large-scale study of pathways and networks of cellular lipids-are major driving forces in enabling personalized medicine. Complicated and error-prone data analysis still remains a bottleneck, however, especially for identifying novel metabolites. Comparing experimental mass spectra to curated databases containing reference spectra has been the gold standard for identification of compounds, but constructing such databases is a costly and time-demanding task. Many software applications try to circumvent this process by utilizing cutting-edge advances in computational methods-including quantum chemistry and machine learning-and simulate mass spectra by performing theoretical, so called in silico fragmentations of compounds. Other solutions concentrate directly on experimental spectra and try to identify structural properties by investigating reoccurring patterns and the relationships between them. The considerable progress made in the field allows recent approaches to provide valuable clues to expedite annotation of experimental mass spectra. This review sheds light on individual strengths and weaknesses of these tools, and attempts to evaluate them-especially in view of lipidomics, when considering complex mixtures found in biological samples as well as mass spectrometer inter-instrument variability.
Collapse
Affiliation(s)
- Christoph A Krettler
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, 8010, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
| | - Gerhard G Thallinger
- Institute of Biomedical Informatics, Graz University of Technology, Stremayrgasse 16/I, 8010, Graz, Austria.,Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
| |
Collapse
|
9
|
Carrà A, Spezia R. In Silico
Tandem Mass Spectrometer: an Analytical and Fundamental Tool. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/cmtd.202000071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Andrea Carrà
- Agilent Technologies Italia Via Piero Gobetti 2/C 20063 Cernusco SN, Milano Italy
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique Sorbonne Université, UMR 7616 CNRS 4, Place Jussieu 75005 Paris France
| |
Collapse
|