1
|
Daldaban F, Karaca Bekdik İ, Aslan Ö, Akyüz B, Akçay A, Arslan K. Investigation of TLR1-9 genes and miR-155 expression in dogs infected with canine distemper. Comp Immunol Microbiol Infect Dis 2021; 79:101711. [PMID: 34601173 DOI: 10.1016/j.cimid.2021.101711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
This study aimed to determine the relationship of toll-like receptor (TLR) 1-9 genes and microRNA (miR) -155 expression levels with hematologic parameters in dogs diagnosed with canine distemper. In the study, two groups were used pre-treatment and post-treatment. Infected dogs were diagnosed with canine distemper with the help of a rapid test kit and Real Time-Polymerase Chain Reaction (RT-PCR). Based on the correlation coefficients between the expression levels of the genes examined within the scope of the study and hematologic values, a positive correlation was found between the TLR2 gene and the monocyte (MON) value and between the TLR4 gene and the platelet (PLT) value in the pre-treatment group. A strong positive correlation was identified between TLR3 and TLR9 genes and erythrocyte (RBC) and hemoglobin (HGB) values; between TLR5 gene and RBC, HGB and hematocrit (HCT) values and between TLR9 gene and RBC and HGB values in the post-treatment group, on the other hand, a positive correlation was found between TLR1 gene and MON and neutrophil (GRAN) values; between TLR3 gene and HCT value and between TLR9 gene and MON and HCT values. The study concluded that miR-155 and TLR8 gene were upregulated at a statistically significant level (P < 0.05) Post-treatment in dogs infected with canine distemper and there was a positive correlation between the upregulation of miR-155 and the upregulation of TLR8 in the same period. This result suggests that the upregulated miR-155 expression post-treatment increased TLR8 gene expression. In the light of these findings, it miR-155 may have the potential to be used in clinical practice in the treatment or prognosis of dogs infected with canine distemper.
Collapse
Affiliation(s)
- Fadime Daldaban
- Erciyes University, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey.
| | - İlknur Karaca Bekdik
- Erciyes University, Faculty of Veterinary Medicine, Department of Internal Medicine, Kayseri, Turkey.
| | - Öznur Aslan
- Erciyes University, Faculty of Veterinary Medicine, Department of Internal Medicine, Kayseri, Turkey.
| | - Bilal Akyüz
- Erciyes University, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey.
| | - Aytaç Akçay
- Ankara University, Faculty of Veterinary Medicine, Department of Biostatistics, Ankara, Turkey.
| | - Korhan Arslan
- Erciyes University, Faculty of Veterinary Medicine, Department of Genetics, Kayseri, Turkey.
| |
Collapse
|
2
|
DA SILVA DG, de CARVALHO ILQ, TOSCANO ECDB, SANTOS BÁDSS, OLIVEIRA BDS, CAMPOS MA, da FONSECA FG, CAMARGOS QM, de SOUSA GF, CALIARI MV, TEIXEIRA AL, de MIRANDA AS, RACHID MA. Brain-derived neurotrophic factor is down regulated after bovine alpha-herpesvirus 5 infection in both wild-type and TLR3/7/9 deficient mice. J Vet Med Sci 2021; 83:180-186. [PMID: 33281142 PMCID: PMC7972877 DOI: 10.1292/jvms.20-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022] Open
Abstract
Neurotrophic factors have been implicated in the control of neuronal survival and plasticity in different brain diseases. Meningoencephalitis caused by bovine alpha-herpesvirus 5 (BoHV-5) infection is a frequent neurological disease of young cattle, being the involvement of apoptosis in the development of neuropathological changes frequently discussed in the literature. It's well known that Toll-like receptors (TLRs) can activate neuroinflammatory response and consequently lead to neuronal loss. However, there are no studies evaluating the expression of neurotrophic factors and their association with brain pathology and TLRs during the infection by BoHV-5. The current study aimed to analyze brain levels of neurotrophic factors along with neuropathological changes during acute infection by BoHV-5 in wild-type (WT) and TLR3/7/9 (TLR3/7/9-/-) deficiency mice. The infection was induced by intracranial inoculation of 1 × 104 TCID50 of BoHV-5. Infected animals presented similar degrees of clinical signs and neuropathological changes. Both infected groups had meningoencephalitis and neuronal damage in CA regions from hippocampus. BoHV-5 infection promoted the proliferation of Iba-1 positive cells throughout the neuropil, mainly located in the frontal cortex. Moreover, significant lower levels of brain-derived neurotrophic factor (BDNF) were detected in both BoHV-5 infected WT and TLR3/7/9 deficient mice, compared with non-infected animals. Our study showed that BDNF down regulation was associated with brain inflammation, reactive microgliosis and neuronal loss after bovine alpha-herpesvirus 5 infection in mice. Moreover, we demonstrated that combined TLR3/7/9 deficiency does not alter those parameters.
Collapse
Affiliation(s)
- Daniele Gonçalves DA SILVA
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Iracema Luisa Quintino de CARVALHO
- Department of Microbiology, Biological Science Institute,
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Eliana Cristina de Brito TOSCANO
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Beatriz Álvares da Silva Senra SANTOS
- Laboratory of Animal Virology, Department of Preventive
Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo
Horizonte, Minas Gerais, 31270-901, Brazil
| | - Bruna da Silva OLIVEIRA
- Department of Morphology, Biological Science Institute,
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marco Antônio CAMPOS
- René Rachou Institute, Fiocruz Minas, Belo Horizonte, Minas
Gerais, 30190-002, Brazil
| | - Flávio Guimarães da FONSECA
- Department of Microbiology, Biological Science Institute,
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Quezya Mendes CAMARGOS
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Gabriela Ferreira de SOUSA
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marcelo Vidigal CALIARI
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Antônio Lúcio TEIXEIRA
- Neuropsychiatry Program, Department of Psychiatry and
Behavioral Sciences, School of Medicine, University of Texas Health Science Center at
Houston, TX, 77054, USA
| | - Aline Silva de MIRANDA
- Department of Morphology, Biological Science Institute,
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Milene Alvarenga RACHID
- Laboratory of Cellular and Molecular Pathology, Department
of General Pathology, Biological Science Institute, Federal University of Minas Gerais,
Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
3
|
Yin L, Cai W, Liang Y, Yao J, Wang X, Shen J. In situ self-assembly of Au-antimiR-155 nanocomplexes mediates TLR3-dependent apoptosis in hepatocellular carcinoma cells. Aging (Albany NY) 2020; 13:241-261. [PMID: 33173017 PMCID: PMC7834998 DOI: 10.18632/aging.103799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
MicroRNA 155 (miRNA-155) is frequently dysregulated in hepatocellular carcinoma (HCC) and other cancer types. Toll-like receptor 3 (TLR3), a putative miR-155 target, plays a key role in liver pathophysiology, and its downregulation in HCC cells is associated with apoptosis evasion and poor outcomes. Herein, we examined the ability of in situ self-assembled Au-antimiR-155 nanocomplexes (Au-antimiRNA NCs) to activate TLR3 signaling in HCC cells. Gene expression analysis confirmed an inverse relationship between miR-155 and TLR3 expression in HCC samples, and marked upregulation of miR-155 was observed in HCC cells but not in normal L02 hepatocytes. RNA immunoprecipitation confirmed physical interaction between miR-155 and TLR3, while negative regulation of TLR3 expression by miR-155 was demonstrated by luciferase reporter assays. Au-antimiR-155 NCs were self-assembled within HepG2 HCC cells, but not within control L02 cells. They efficiently silenced miR-155, thereby inhibiting proliferation and migration and inducing apoptosis in HepG2 cells. Molecular analyses suggested these effects are secondary to TLR3 signaling mediating NF-κB transcription, caspase-8 activation, and interleukin-1β (IL-1β) release. Our results provide a basis for future studies examining the in vivo applicability of this novel Au-antimiRNA NCs delivery system to halt HCC progression by activating pro-apoptotic TLR3 signaling.
Collapse
Affiliation(s)
- Liang Yin
- Department of Endocrinology, Shunde Hospital of Southern Medical University, The First People's Hospital of Shunde Foshan, Shunde 528300, P. R. China
| | - Weijuan Cai
- State Key Laboratory of Bioelectronics, Chien-Shiung Wu Lab, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yongqian Liang
- Department of Endocrinology, Shunde Hospital of Southern Medical University, The First People's Hospital of Shunde Foshan, Shunde 528300, P. R. China
| | - Jie Yao
- Central Laboratory, Shunde Hospital of Southern Medical University, The First People's Hospital of Shunde Foshan, Shunde 528300, P. R. China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, Chien-Shiung Wu Lab, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Jie Shen
- Department of Endocrinology, Shunde Hospital of Southern Medical University, The First People's Hospital of Shunde Foshan, Shunde 528300, P. R. China
| |
Collapse
|
4
|
Wu F, Lu F, Fan X, Chao J, Liu C, Pan Q, Sun H, Zhang X. Immune-related miRNA-mRNA regulation network in the livers of DHAV-3-infected ducklings. BMC Genomics 2020; 21:123. [PMID: 32019511 PMCID: PMC7001231 DOI: 10.1186/s12864-020-6539-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Background Duck hepatitis A virus type 3 (DHAV-3) is one of the most harmful pathogens in the duck industry. However, the molecular mechanism underlying DHAV-3 infection in ducklings remains poorly understood. To study the genetic regulatory network for miRNA-mRNA and the signaling pathways involved in DHAV-3 infection in ducklings, we conducted global miRNA and mRNA expression profiling of duckling liver tissues infected with lethal DHAV-3 by high-throughput sequencing. Results We found 156 differentially expressed miRNAs (DEMs) and 7717 differentially expressed genes (DEGs) in livers of mock-infected and DHAV-3-infected duckling. A total of 19,606 miRNA-mRNA pairs with negatively correlated expression patterns were identified in miRNA-mRNA networks constructed on the basis of these DEMs and DEGs. Moreover, immune-related pathways, including the cytokine-cytokine receptor interaction, apoptosis, Toll-like receptor, Jak-STAT, and RIG-I-like receptor signaling pathway, were significantly enriched through analyzing functions of mRNAs in the network in response to DHAV-3 infection. Furthermore, apl-miR-32-5p, apl-miR-125-5p, apl-miR-128-3p, apl-miR-460-5p, and novel-m0012-3p were identified as potential regulators in the immune-related signaling pathways during DHAV-3 infection. And some host miRNAs were predicted to target the DHAV-3 genome. Conclusions This is the first integrated analysis of miRNA and mRNA in DHAV-3-infected ducklings. The results indicated the important roles of miRNAs in regulating immune response genes and revealed the immune related miRNA-mRNA regulation network in the DHAV-3-infected duckling liver. These findings increase our knowledge of the roles of miRNAs and their target genes in DHAV-3 replication and pathogenesis. They also aid in the understanding of host-virus interactions.
Collapse
Affiliation(s)
- Fengyao Wu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Fengying Lu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Xin Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China.,Academy of Animal Sciences, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Province, China
| | - Jin Chao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Qunxing Pan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Huawei Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Xiaofei Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province, China. .,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Marin M, Burucúa M, Rensetti D, Rosales JJ, Odeón A, Pérez S. Distinctive features of bovine alphaherpesvirus types 1 and 5 and the virus-host interactions that might influence clinical outcomes. Arch Virol 2019; 165:285-301. [PMID: 31845150 DOI: 10.1007/s00705-019-04494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are two closely related alphaherpesviruses. BoHV-1 causes several syndromes in cattle, including respiratory disease and sporadic cases of encephalitis, whereas BoHV-5 is responsible for meningoencephalitis in calves. Although both viruses are neurotropic, they differ in their neuropathogenic potential. This review summarizes the findings on the specific mechanisms and pathways known to modulate the pathogenesis of BoHV-1 and BoHV-5, particularly in relation to respiratory and neurological syndromes, which characterize BoHV-1 and BoHV-5 infections, respectively.
Collapse
Affiliation(s)
- Maia Marin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Mercedes Burucúa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Daniel Rensetti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Juan José Rosales
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Anselmo Odeón
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Sandra Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina. .,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.
| |
Collapse
|
6
|
Ying Z, Li X, Dang H, Yin N, Gao C. Molecular immune mechanisms of HPV-infected HaCaT cells in vitro based on toll-like receptors signaling pathway. J Clin Lab Anal 2019; 34:e23101. [PMID: 31785031 PMCID: PMC7083446 DOI: 10.1002/jcla.23101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To explore the molecular immune mechanism of HPV-infected HaCaT cells in vitro based on TLRs signaling pathway by analyzing the effects of interfering TLRs on inflammatory and immune factors in the signaling pathway. METHODS FCM was used to analyze the proportion of Th1, Th2, Th17, and Treg cells in blood samples. HPV-infected HaCaT cells were divided into five groups: A, B, C, D, and E. Group A added TLR3 antagonist, group B added TLR9 antagonist, group C added equivalent saline, group D added IRF3 agonist, and group E added IRF3 inhibitor. Immunohistochemistry was used to analyze the expression of TLR3 and TLR9 in HaCaT cell model; ELISA was used to analyze the expression of inflammatory factors IL-2, TNF-a, and IFN-beta; WB was used to analyze the expression of TRAF3, IKK epsilon, and TBK1; RT-PCR was used to analyze the expression of IRF3 and IRF7 in each cell model. RESULTS The proportion of blood immune cells in patients with HPV infection was Th1, Th17, Th2, and Treg, with statistical significance (P < .05); the expression of TLR3 and TLR9 in HPV-infected cells was higher than that in negative control group, with statistical significance (P < .05); TLR3 was higher than TLR9, with no significant difference (P > .05); the expression of IL-2, TNF-alpha, IFN-beta in each group, TLR3, and TLR9 was higher than that in negative control group (P < .05). The expression of TRAF3, IKK epsilon, and TBK1 in the control group was higher than that in the TLR3 and TLR9 inhibitor groups, and the expression of IRF3 and IRF7 in the TLR9 inhibitor group was higher than that in the TLR3 inhibitor group (P < .05); the expression of IRF3 and IRF7 in the TLR3i and TLR9i inhibitor groups was lower than that in the TLR3 inhibitor group (P < .05). Compared with the control group, IRF3a group was higher than the control group, IRF3i group was lower than the control group, the difference was statistically significant (P < .05). CONCLUSION TLR3 and TLR9, the key factors of TLRs, are highly expressed in HaCaT cells infected with HPV. Through TLRs-IKK-e-IRFs-IFN signaling pathway, they can induce high expression of inflammatory factors, IKK-e, IRFs, and IFN, and improve immunity.
Collapse
Affiliation(s)
- Zuolin Ying
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojie Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Dang
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Yin
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuang Gao
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Wu J, Gu J, Shen L, Fang D, Zou X, Cao Y, Wang S, Mao L. Exosomal MicroRNA-155 Inhibits Enterovirus A71 Infection by Targeting PICALM. Int J Biol Sci 2019; 15:2925-2935. [PMID: 31853228 PMCID: PMC6909958 DOI: 10.7150/ijbs.36388] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Enterovirus A71 (EV-A71) causes hand, foot, and mouth disease (HFMD) that is associated with neurological complications. Researchers have shown that exosomes containing host cellular microRNA (miRNA) can modulate the recipient's cellular response during viral infection. However, it is unclear how exosomal miRNAs regulate this response during EV-A71 infection. In this study, we used an exosomal miRNA chip to show that microRNA-155 (miR-155) was markedly enriched in exosomes after EV-A71 infection. Moreover, exosomal miR-155 efficaciously inhibited EV-A71 infection by targeting phosphatidylinositol clathrin assembly protein (PICALM) in recipient cells. Importantly, we confirmed that exosomal miR-155 reduced EV-A71 infection severity in vivo. Additionally, miR-155 levels in throat swabs from EV-A71-infected patients were higher than in those from healthy individuals. Collectively, our findings provide evidence that exosomal miR-155 plays a role in host-pathogen interactions by mediating EV-A71 infection via the repression of PICALM; these results provide insights into the regulatory mechanisms of viral infection.
Collapse
Affiliation(s)
- Jing Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Shen
- Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Daihua Fang
- Clinical Laboratory, Xuzhou Children's Hospital, Xuzhou, China
| | - Xinran Zou
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuwen Cao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Wang J, Li D, Hou J, Lei H. Protective effects of geniposide and ginsenoside Rg1 combination treatment on rats following cerebral ischemia are mediated via microglial microRNA‑155‑5p inhibition. Mol Med Rep 2017; 17:3186-3193. [PMID: 29257264 DOI: 10.3892/mmr.2017.8221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/02/2017] [Indexed: 11/06/2022] Open
Abstract
Geniposide, an active component of Gardenia, has been reported to protect against cerebral ischemia in animals. Ginsenoside Rg1, a component of Panax notoginseng, is usually administered in combination with Gardenia for the treatment of acute ischemic stroke; however, there are unknown effects of ginsenoside Rg1 that require further investigation. In the present study, the effects of geniposide and ginsensoide Rg1 combination treatment on focal cerebral ischemic stroke were investigated. For in vivo analysis, male rats were separated into three groups, including the (control), model and geniposide + ginsenoside Rg1 groups (n=8 per group). A middle cerebral artery occlusion model was established as the model group. The treatment group was treated with geniposide (30 mg/kg, tail vein injection) + ginsenoside Rg1 (6 mg/kg, tail vein injection), and the model group received saline instead. Neurobehavioral deficits, infarct volume, brain edema, and the expression of microRNA (miR)‑155‑5p and CD11b by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and immunohistochemistry, were assessed following 24 h of ischemia. For in vitro analysis, BV2 mouse microglial cells were cultured and exposed to geniposide (40 µg/ml) + ginsenoside Rg1 (8 µg/ml) during various durations of oxygen‑glucose deprivation (OGD). The expression levels of miR‑155‑5p, pri‑miR‑155 and pre‑miR‑155 were detected by RT‑qPCR. The results demonstrated that increases in brain infarct volume, edema volume, CD11b‑positive cells and miR‑155‑5p levels were alleviated following geniposide + ginsenoside administration in rats exposed to ischemia. Furthermore, geniposide + ginsenoside Rg1 treatment suppressed the miR‑155‑5p, pri‑miR‑155 and pre‑miR‑155 expression levels in OGD‑injured BV2 microglial cells. The results of the present study demonstrated that tail vein administration of geniposide in combination with ginsenoside Rg1 protected against focal cerebral ischemia in rats through inhibition of microglial miR‑155‑5p following ischemic injury, which may serve as a novel therapeutic agent for the treatment of strokes.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Dan Li
- Jingjinji United Innovation Pharmaceutical Research Company, Beijing 100083, P.R. China
| | - Jincai Hou
- Jingjinji United Innovation Pharmaceutical Research Company, Beijing 100083, P.R. China
| | - Hongtao Lei
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|