1
|
Li L, Zhou R, Sun L. Application of Theiler's murine encephalomyelitis virus in treatment of multiple sclerosis. Front Microbiol 2024; 15:1415365. [PMID: 38989030 PMCID: PMC11233754 DOI: 10.3389/fmicb.2024.1415365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infected mice have been often used as an animal model for Multiple sclerosis (MS) due to their similar pathology in the central nervous system (CNS). So far, there has been no effective treatment or medicine to cure MS completely. The drugs used in the clinic can only reduce the symptoms of MS, delay its recurrence, and increase the interval between relapses. MS can be caused by many factors, and clinically MS drugs are used to treat MS regardless of what factors are caused rather than MS caused by a specific factor. This can lead to inappropriate medicine, which may be one of the reasons why MS has not been completely cured. Therefore, this review summarized the drugs investigated in the TMEV-induced disease (TMEV-IDD) model of MS, so as to provide medication guidance and theoretical basis for the treatment of virus-induced MS.
Collapse
Affiliation(s)
- Lin Li
- Third Hospital of Shanxi Medical University, Shanxi Medical University,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Rui Zhou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lin Sun
- Third Hospital of Shanxi Medical University, Shanxi Medical University,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
2
|
Linzey M, DiSano K, Welsh N, Ford JC, Gilli F, Wishart H, Pachner A. High throughput method for detecting murine brain atrophy using a clinical 3T MRI. BMC Med Imaging 2023; 23:183. [PMID: 37957588 PMCID: PMC10641942 DOI: 10.1186/s12880-023-01124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND There is a lack of understanding of the mechanisms by which the CNS is injured in multiple sclerosis (MS). Since Theiler's murine encephalomyelitis virus (TMEV) infection in SJL/J mice is an established model of progressive disability in MS, and CNS atrophy correlates with progressive disability in MS, we used in vivo MRI to quantify total ventricular volume in TMEV infection. We then sought to identify immunological and virological biomarkers that correlated with increased ventricular size. METHODS Mice, both infected and control, were followed for 6 months. Cerebral ventricular volumes were determined by MRI, and disability was assessed by Rotarod. A range of immunological and virological measures was obtained using standard techniques. RESULTS Disability was present in infected mice with enlarged ventricles, while infected mice without enlarged ventricles had Rotarod performance similar to sham mice. Ventricular enlargement was detected as soon as 1 month after infection. None of the immunological and virological measures correlated with the development of ventricular enlargement. CONCLUSIONS These results support TMEV infection with brain MRI monitoring as a useful model for exploring the biology of disability progression in MS, but they did not identify an immunological or virological correlate with ventricular enlargement.
Collapse
Affiliation(s)
- Michael Linzey
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, US.
| | - Krista DiSano
- Department of Veterans Affairs Medical Center, White River Junction, Vermont, US
| | - Nora Welsh
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, US
| | - James C Ford
- Department of Psychiatry at Dartmouth Hitchcock Medical Center, New Hampshire, US
| | - Francesca Gilli
- Integrative Neuroscience at Dartmouth, Dartmouth College, Hanover, NH, US
- Department of Veterans Affairs Medical Center, White River Junction, Vermont, US
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon New Hampshire, US
| | - Heather Wishart
- Department of Psychiatry at Dartmouth Hitchcock Medical Center, New Hampshire, US
| | - Andrew Pachner
- Department of Neurology at Dartmouth Hitchcock Medical Center, Lebanon New Hampshire, US
| |
Collapse
|
3
|
Domínguez-Mozo MI, González-Suárez I, Villar LM, Costa-Frossard L, Villarrubia N, Aladro Y, Pilo B, Montalbán X, Comabella M, Casanova-Peño I, Martínez-Ginés ML, García-Domínguez JM, García-Martínez MÁ, Arroyo R, Álvarez-Lafuente R. Teriflunomide and Epstein-Barr virus in a Spanish multiple sclerosis cohort: in vivo antiviral activity and clinical response. Front Immunol 2023; 14:1248182. [PMID: 37841253 PMCID: PMC10570817 DOI: 10.3389/fimmu.2023.1248182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV-6) have been associated with multiple sclerosis (MS). Teriflunomide is an oral disease-modifying therapy approved for treatment of relapsing forms of MS. In the preclinical Theiler's murine encephalitis virus model of MS, the drug demonstrated an increased rate of viral clearance versus the vehicle placebo. Furthermore, teriflunomide inhibits lytic EBV infection in vitro. Objective 1. To evaluate the humoral response against EBV and HHV-6 prior to teriflunomide treatment and 6 months later. 2. To correlate the variation in the humoral response against EBV and HHV-6 with the clinical and radiological response after 24 months of treatment with teriflunomide. 3. To analyze the utility of different demographic, clinical, radiological, and environmental data to identify early biomarkers of response to teriflunomide. Methods A total of 101 MS patients (62 women; mean age: 43.4 years) with one serum prior to teriflunomide onset and another serum sample 6 months later were recruited. A total of 80 had been treated for at least 24 months, 13 had stopped teriflunomide before 24 months, and 8 were currently under teriflunomide therapy but with less than 24 months of follow-up. We analyzed the levels of the viral antibodies titers abovementioned in serum samples with ELISA commercial kits, and the levels of serum neurofilament light chain (Nf-L). Results Antiviral antibody titers decreased for EBNA-1 IgG (74.3%), VCA IgG (69%), HHV-6 IgG (60.4%), and HHV-6 IgM (73.3%) after 6 months of teriflunomide. VCA IgG titers at baseline correlated with Nf-L levels measured at the same time (r = 0.221; p = 0.028) and 6 months later (r = 0.240; p = 0.017). We found that higher EBNA-1 titers (p = 0.001) and a higher age (p = 0.04) at baseline were associated with NEDA-3 conditions. Thus, 77.8% of patients with EBNA-1 >23.0 AU and >42.8 years (P50 values) were NEDA-3. Conclusion Treatment with teriflunomide was associated with a reduction of the levels of IgG antibody titers against EBV and HHV-6. Furthermore, higher EBNA-1 IgG titers prior to teriflunomide initiation were associated with a better clinical response.
Collapse
Affiliation(s)
- María Inmaculada Domínguez-Mozo
- Grupo de Investigación de Factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Inés González-Suárez
- Unidad de Enfermedades Desmielinizantes, Hospital Álvaro Cunqueiro, Red de Enfermedades Inflamatorias (REI), Vigo, Spain
| | - Luisa María Villar
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Lucienne Costa-Frossard
- Servicio de Neurología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Noelia Villarrubia
- Servicio de Inmunología, Hospital Universitario Ramón y Cajal, Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Yolanda Aladro
- Servicio de Neurología, Hospital Universitario de Getafe, Getafe, Spain
| | - Belén Pilo
- Servicio de Neurología, Hospital Universitario de Getafe, Getafe, Spain
| | - Xavier Montalbán
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Casanova-Peño
- Servicio de Neurología, Hospital Universitario de Torrejón, Torrejón de Ardoz, Spain
| | - María Luisa Martínez-Ginés
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón/Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Jose Manuel García-Domínguez
- Servicio de Neurología, Hospital General Universitario Gregorio Marañón/Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - María Ángel García-Martínez
- Grupo de Investigación de Factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Rafael Arroyo
- Departamento de Neurología, Hospital Universitario Quironsalud Madrid, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Grupo de Investigación de Factores ambientales en enfermedades degenerativas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Red de Enfermedades Inflamatorias (REI), Madrid, Spain
| |
Collapse
|
4
|
Rayilla RSR, Naidu M, Babu PP. Surgically Induced Demyelination in Rat Sciatic Nerve. Brain Sci 2023; 13:brainsci13050754. [PMID: 37239226 DOI: 10.3390/brainsci13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Demyelination is a common sign of peripheral nerve injuries (PNIs) caused by damage to the myelin sheath surrounding axons in the sciatic nerve. There are not many methods to induce demyelination in the peripheral nervous system (PNS) using animal models. This study describes a surgical approach using a single partial sciatic nerve suture to induce demyelination in young male Sprague Dawley (SD) rats. After the post-sciatic nerve injury (p-SNI) to the sciatic nerve, histology and immunostaining show demyelination or myelin loss in early to severe phases with no self-recovery. The rotarod test confirms the loss of motor function in nerve-damaged rats. Transmission electron microscopic (TEM) imaging of nerve-damaged rats reveals axonal atrophy and inter-axonal gaps. Further, administration of Teriflunomide (TF) to p-SNI rats resulted in the restoration of motor function, repair of axonal atrophies with inter-axonal spaces, and myelin secretion or remyelination. Taken together, our findings demonstrate a surgical procedure that can induce demyelination in the rat sciatic nerve, which is then remyelinated after TF treatment.
Collapse
Affiliation(s)
- Rahul Shankar Rao Rayilla
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Mur Naidu
- Department of Pharmacology and Therapeutics, Nizam Institute of Medical Sciences, Hyderabad 500082, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
5
|
Abbadessa G, Lavorgna L, Trojsi F, Coppola C, Bonavita S. Understanding and managing the impact of the Covid-19 pandemic and lockdown on patients with multiple sclerosis. Expert Rev Neurother 2021; 21:731-743. [PMID: 34278928 DOI: 10.1080/14737175.2021.1957673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Covid-19 has been sweeping over the world for more than a year. People with Multiple Sclerosis (MS) might be particularly vulnerable either for the disease iteself or for the ongoing immune treatment. The aim of this review is to understand the impact of the Covid-19 pandemic and lockdown on patients with MS and to provide evidence-based advice to ensure them a high standard of care even during the pandemic. AREAS COVERED Literature search was conducted in the Scopus, Web of Science, Pubmed electronic databases, and articles reference lists to investigate the effect of Covid-19 on MS patients' treatment, access to health-care services and mental-health.The search terms 'multiple sclerosis' AND 'Covid-19' were combined with each of the following term 'disease modifying treatment,' 'steroids,' 'vaccination,' 'mental health,' 'stress,' 'quality of life,' 'management,' 'impact,' 'recommendations,'. EXPERT OPINION To ensure MS control during the pandemic, minimizing the risk of Covid-19 contagion, face-to-face visits may be implemented with televisits. Management of relapses and DMTs schedule should be adapted based on the specific benefit/risk ratio for each patient, considering disease activity, disability, comorbidities. Vaccination should be strongly recommended. Telerehabilitation and online psychological support programs should be encouraged to preserve motor performances and mental health.
Collapse
Affiliation(s)
- Gianmarco Abbadessa
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Lavorgna
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cinzia Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Neurological Institute for Diagnosis and Care "Hermitage Capodimonte", Naples, Italy
| |
Collapse
|
6
|
Simões JLB, de Araújo JB, Bagatini MD. Anti-inflammatory Therapy by Cholinergic and Purinergic Modulation in Multiple Sclerosis Associated with SARS-CoV-2 Infection. Mol Neurobiol 2021; 58:5090-5111. [PMID: 34247339 PMCID: PMC8272687 DOI: 10.1007/s12035-021-02464-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The virus "acute respiratory syndrome coronavirus 2" (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19), initially responsible for an outbreak of pneumonia in Wuhan, China, which, due to the high level of contagion and dissemination, has become a pandemic. The clinical picture varies from mild to critical cases; however, all of these signs already show neurological problems, from sensory loss to neurological diseases. Thus, patients with multiple sclerosis (MS) infected with the new coronavirus are more likely to develop severe conditions; in addition to worsening the disease, this is due to the high level of pro-inflammatory cytokines, which is closely associated with increased mortality both in COVID-19 and MS. This increase is uncontrolled and exaggerated, characterizing the cytokine storm, so a possible therapy for this neuronal inflammation is the modulation of the cholinergic anti-inflammatory pathway, since acetylcholine (ACh) acts to reduce pro-inflammatory cytokines and acts directly on the brain for being released by cholinergic neurons, as well as acting on other cells such as immune and blood cells. In addition, due to tissue damage, there is an exacerbated release of adenosine triphosphate (ATP), potentiating the inflammatory process and activating purinergic receptors which act directly on neuroinflammation and positively modulate the inflammatory cycle. Associated with this, in neurological pathologies, there is greater expression of P2X7 in the cells of the microglia, which positively activates the immune inflammatory response. Thus, the administration of blockers of this receptor can act in conjunction with the action of ACh in the anticholinergic inflammatory pathway. Finally, there will be a reduction in the cytokine storm and triggered hyperinflammation, as well as the level of mortality in patients with multiple sclerosis infected with SARS-CoV-2 and the development of possible neurological damage.
Collapse
|
7
|
Diaz de la Fe A, Peláez Suárez AA, Fuentes Campos M, Cabrera Hernández MN, Goncalves CA, Schultz S, Siniscalco D, Robinson-Agramonte MA. SARS-CoV-2 Infection and Risk Management in Multiple Sclerosis. Diseases 2021; 9:diseases9020032. [PMID: 33921878 PMCID: PMC8167598 DOI: 10.3390/diseases9020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
The novel coronavirus can cause a severe respiratory disease with impact on the central nervous system, as has been reported by several medical health services. In the COVID-19 pandemic caused by the SARS-CoV-2 neurotrophic virus, neurologists have focused their attention on the early identification of suggestive manifestations of the neurological impact of the disease. In this context, they are exploring related chronic disease and the possibility of achieving a more effective understanding of symptoms derived from COVID-19 infection and those derived from the course of preexisting neurological disease. The present review summarizes evidence from the infection with SARS-CoV-2 and the management of the risks of multiple sclerosis and how it is related to the risks of general comorbidities associated with COVID-19. In addition, we reviewed other factors characteristic of MS, such as relapses, and the maximum tolerated dose of treatment medications from clinical and experimental evidence.
Collapse
Affiliation(s)
- Amado Diaz de la Fe
- Neuromuscular Diseases Clinic, International Center for Neurological Restoration, Habana 11300, Cuba; (A.D.d.l.F.); (A.A.P.S.)
| | - Alejandro Armando Peláez Suárez
- Neuromuscular Diseases Clinic, International Center for Neurological Restoration, Habana 11300, Cuba; (A.D.d.l.F.); (A.A.P.S.)
| | - Marinet Fuentes Campos
- Departamento de Medicina Familiar y Comunitaria Policlínico 28 de Enero, Habana 11300, Cuba;
| | | | - Carlos-Alberto Goncalves
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 90040-060, Brazil;
| | - Stephen Schultz
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas (UT) Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Dario Siniscalco
- Department of Experimental Medicine, University of Campania, 80138 Naples, Italy;
| | - Maria Angeles Robinson-Agramonte
- Neuroimmunology Department, Research Center, International Center for Neurological Restoration, Habana 11300, Cuba
- Correspondence:
| |
Collapse
|
8
|
Alborghetti M, Bellucci G, Gentile A, Calderoni C, Nicoletti F, Capra R, Salvetti M, Centonze D. Drugs used in the treatment of multiple sclerosis during COVID-19 pandemic: a critical viewpoint. Curr Neuropharmacol 2021; 20:107-125. [PMID: 33784961 PMCID: PMC9199540 DOI: 10.2174/1570159x19666210330094017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/22/2022] Open
Abstract
Since COVID-19 has emerged as a word public health problem, attention has been focused on how immune-suppressive drugs used for the treatment of autoimmune disorders influence the risk for SARS-CoV-2 infection and the development of acute respiratory distress syndrome (ARDS). Here, we discuss the disease-modifying agents approved for the treatment of multiple sclerosis (MS) within this context. Interferon (IFN)-β1a and -1b, which display antiviral activity, could be protective in the early stage of COVID-19 infection, although SARS-CoV-2 may have developed resistance to IFNs. However, in the hyperinflammation stage, IFNs may become detrimental by facilitating macrophage invasion in the lung and other organs. Glatiramer acetate and its analogues should not interfere with the development of COVID-19 and may be considered safe. Teriflunomide, a first-line oral drug used in the treatment of relapsing-remitting MS (RRMS), may display antiviral activity by depleting cellular nucleotides necessary for viral replication. The other first-line drug, dimethyl fumarate, may afford protection against SARS-CoV-2 by activating the Nrf-2 pathway and reinforcing the cellular defenses against oxidative stress. Concern has been raised regarding the use of second-line treatments for MS during the COVID-19 pandemic. However, this concern is not always justified. For example, fingolimod might be highly beneficial during the hyperinflammatory stage of COVID-19 for a number of mechanisms, including the reinforcement of the endothelial barrier. Caution is suggested for the use of natalizumab, cladribine, alemtuzumab, and ocrelizumab, although MS disease recurrence after discontinuation of these drugs may overcome a potential risk for COVID-19 infection.
Collapse
Affiliation(s)
- Marika Alborghetti
- Departments of Neuroscience Mental Health and Sensory Organs (NESMOS), University Sapienza of Rome. Italy
| | - Gianmarco Bellucci
- Departments of Neuroscience Mental Health and Sensory Organs (NESMOS), University Sapienza of Rome. Italy
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome. Italy
| | - Chiara Calderoni
- Departments of Physiology and Pharmacology, University Sapienza of Rome. Italy
| | | | - Ruggero Capra
- Multiple Sclerosis Center, ASST Ospedali Civili, Brescia. Italy
| | - Marco Salvetti
- Departments of Neuroscience Mental Health and Sensory Organs (NESMOS),University Sapienza of Rome. Italy
| | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, 00133 Rome. Italy
| |
Collapse
|
9
|
Zivadinov R, Schweser F, Dwyer MG, Pol S. Detection of Monocyte/Macrophage and Microglia Activation in the TMEV Model of Chronic Demyelination Using USPIO-Enhanced Ultrahigh-Field Imaging. J Neuroimaging 2020; 30:769-778. [PMID: 32866329 DOI: 10.1111/jon.12768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Blood-derived monocytes/macrophages can be labeled with ultrasmall superparamagnetic iron oxides (USPIO) at periphery and subsequently migrate into areas of inflammation in the brain. We investigated temporal pattern of migration of peripheral immune cells in Theiler's murine encephalomyelitis virus (TMEV) model of chronic demyelination by USPIO-enhanced imaging. METHODS Fifteen SJL mice (Envigo, Indianapolis, IN) were injected with TMEV (n = 12) or saline (n = 3) at 7 weeks of age. Brain MRI of 9.4 T was performed at 3 months postinfection (mpi) (the peak of inflammatory phase), at 4, 5, and 7 mpi (throughout neurodegenerative phase) using T2*-weighted gradient echo MRI, and performed 24 hours after USPIO injection. Contrast enhancing lesion (CEL) number and volume were measured and development of brain atrophy was assessed across serial time points. Clinical disability scale and rotarod score assessed disease progression. RESULTS CEL was detected in a total of eight (66.7%) TMEV-infected animals and none of the Controls. The CEL was present in four (33.3%) TMEV-infected animals at 3 mpi, two (16.7%) at 4 mpi, six (54.5%) at 5 mpi, and four (44.4%) at 7 mpi, respectively. In TMEV-infected animals, the CEL number and volume increased significantly from 3 to 7 mpi (P < .01 for both). The correlation between total CEL number and volume with clinical and MRI outcomes was trending (P < .05). On histopathology analysis, CEL showed increased density of Iba1 staining for microglia activity. CONCLUSIONS Serial USPIO imaging is a promising biomarker for investigating the effect of therapeutic interventions on monocytes/macrophages and microglia activation and neurodegeneration in TMEV-infected animals.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, NY
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, NY
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
- Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, NY
| | - Suyog Pol
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| |
Collapse
|
10
|
Maguire C, Frohman T, Zamvil SS, Frohman E, Melamed E. Should interferons take front stage as an essential MS disease-modifying therapy in the era of coronavirus disease 2019? NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/5/e811. [PMID: 32527763 PMCID: PMC7309524 DOI: 10.1212/nxi.0000000000000811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Cole Maguire
- From the Department of Neurology (C.M., T.F., E.F., E.M.), Dell Medical School, Austin, TX; and Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco, CA
| | - Teresa Frohman
- From the Department of Neurology (C.M., T.F., E.F., E.M.), Dell Medical School, Austin, TX; and Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco, CA
| | - Scott S Zamvil
- From the Department of Neurology (C.M., T.F., E.F., E.M.), Dell Medical School, Austin, TX; and Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco, CA
| | - Elliot Frohman
- From the Department of Neurology (C.M., T.F., E.F., E.M.), Dell Medical School, Austin, TX; and Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco, CA
| | - Esther Melamed
- From the Department of Neurology (C.M., T.F., E.F., E.M.), Dell Medical School, Austin, TX; and Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco, CA.
| |
Collapse
|
11
|
Maghzi AH, Houtchens MK, Preziosa P, Ionete C, Beretich BD, Stankiewicz JM, Tauhid S, Cabot A, Berriosmorales I, Schwartz THW, Sloane JA, Freedman MS, Filippi M, Weiner HL, Bakshi R. COVID-19 in teriflunomide-treated patients with multiple sclerosis. J Neurol 2020; 267:2790-2796. [PMID: 32494856 PMCID: PMC7268971 DOI: 10.1007/s00415-020-09944-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
The outbreak of a severe acute respiratory syndrome caused by a novel coronavirus (COVID-19), has raised health concerns for patients with multiple sclerosis (MS) who are commonly on long-term immunotherapies. Managing MS during the pandemic remains challenging with little published experience and no evidence-based guidelines. We present five teriflunomide-treated patients with MS who subsequently developed active COVID-19 infection. The patients continued teriflunomide therapy and had self-limiting infection, without relapse of their MS. These observations have implications for the management of MS in the setting of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Amir Hadi Maghzi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Mailbox 9002L, Boston, MA, 02115, USA
| | - Maria K Houtchens
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Mailbox 9002L, Boston, MA, 02115, USA
| | - Paolo Preziosa
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carolina Ionete
- Department of Neurology, University of Massachusetts, Worcester, MA, USA
| | | | - James M Stankiewicz
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Mailbox 9002L, Boston, MA, 02115, USA
| | - Shahamat Tauhid
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Mailbox 9002L, Boston, MA, 02115, USA
| | - Ann Cabot
- Department of Neurology, Concord Hospital, Concord, NH, USA
| | | | | | - Jacob A Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark S Freedman
- University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Howard L Weiner
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Mailbox 9002L, Boston, MA, 02115, USA
| | - Rohit Bakshi
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Mailbox 9002L, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Möhn N, Pul R, Kleinschnitz C, Prüss H, Witte T, Stangel M, Skripuletz T. Implications of COVID-19 Outbreak on Immune Therapies in Multiple Sclerosis Patients-Lessons Learned From SARS and MERS. Front Immunol 2020; 11:1059. [PMID: 32477373 PMCID: PMC7235419 DOI: 10.3389/fimmu.2020.01059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic keeps the world in suspense. In addition to the fundamental challenges for the health care system, the individual departments must decide how to deal with patients at risk. Neurologists are confronted with the question, how they should advise their patients regarding immunosuppressive treatment. In particular, the large number of different disease-modifying therapies (DMTs) in the treatment of neuroimmunological diseases such as multiple sclerosis poses a challenge. To a limited extent, it might be useful to transfer knowledge from previous SARS- and Middle East respiratory syndrome (MERS) coronavirus outbreaks in 2002/2003 and 2012 to the current situation. Overall, immunosuppressive therapy does neither seem to have a major impact on infection with SARS- and MERS-CoV nor does it seem to lead to a severe disease course in many cases. Considering the immunological responses against infections with novel coronaviruses in humans, interferons, glatiramer acetate, and teriflunomide appear to be safe. As lymphopenia seems to be associated with a more severe disease course, all DMTs causing lymphopenia, such as cladribine, alemtuzumab, and dimethyl fumarate, need to be reviewed more thoroughly. As they are, in general, associated with a higher risk of infection, depleting anti-CD20 antibodies may be problematic drugs. However, it has to be differentiated between the depletion phase and the phase of immune reconstitution. In summary, previous coronavirus outbreaks have not shown an increased risk for immunocompromised patients. Patients with severe neuroimmunological diseases should be kept from hasty discontinuation of immunotherapy.
Collapse
Affiliation(s)
- Nora Möhn
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Refik Pul
- Department of Neurology, University Hospital Essen, Essen, Germany
| | | | - Harald Prüss
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
| | - Martin Stangel
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | | |
Collapse
|
13
|
Zheng C, Kar I, Chen CK, Sau C, Woodson S, Serra A, Abboud H. Multiple Sclerosis Disease-Modifying Therapy and the COVID-19 Pandemic: Implications on the Risk of Infection and Future Vaccination. CNS Drugs 2020; 34:879-896. [PMID: 32780300 PMCID: PMC7417850 DOI: 10.1007/s40263-020-00756-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The coronavirus 2019 (COVID-19) pandemic is expected to linger. Decisions regarding initiation or continuation of disease-modifying therapy for multiple sclerosis have to consider the potential relevance to the pandemic. Understanding the mechanism of action and the possible idiosyncratic effects of each therapeutic agent on the immune system is imperative during this special time. The infectious side-effect profile as well as the route and frequency of administration of each therapeutic agent should be carefully considered when selecting a new treatment or deciding on risk mitigation strategies for existing therapy. More importantly, the impact of each agent on the future severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) vaccine should be carefully considered in treatment decisions. Moreover, some multiple sclerosis therapies may have beneficial antiviral effects against SARS-CoV-2 while others may have beneficial immune-modulating effects against the cytokine storm and hyperinflammatory phase of the disease. Conventional injectables have a favorable immune profile without an increased exposure risk and therefore may be suitable for mild multiple sclerosis during the pandemic. However, moderate and highly active multiple sclerosis will continue to require treatment with oral or intravenous high-potency agents but a number of risk mitigation strategies may have to be implemented. Immune-modulating therapies such as the fumerates, sphinogosine-1P modulators, and natalizumab may be anecdotally preferred over cell-depleting immunosuppressants during the pandemic from the immune profile standpoint. Within the cell-depleting agents, selective (ocrelizumab) or preferential (cladribine) depletion of B cells may be relatively safer than non-selective depletion of lymphocytes and innate immune cells (alemtuzumab). Patients who develop severe iatrogenic or idiosyncratic lymphopenia should be advised to maintain social distancing even in areas where lockdown has been removed or ameliorated. Patients with iatrogenic hypogammaglobulinemia may require prophylactic intravenous immunoglobulin therapy in certain situations. When the future SARS-CoV-2 vaccine becomes available, patients with multiple sclerosis should be advised that certain therapies may interfere with mounting a protective immune response to the vaccine and that serological confirmation of a response may be required after vaccination. They should also be aware that most multiple sclerosis therapies are incompatible with live vaccines if a live SARS-CoV-2 vaccine is developed. In this article, we review and compare disease-modifying therapies in terms of their effect on the immune system, published infection rates, potential impact on SARS-CoV-2 susceptibility, and vaccine-related implications. We propose risk mitigation strategies and practical approaches to disease-modifying therapy during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Crystal Zheng
- Raabe College of Pharmacy, Ohio Northern University, Ada, OH USA
| | - Indrani Kar
- System Pharmacy Services, University Hospitals of Cleveland, Cleveland, OH USA
| | - Claire Kaori Chen
- Specialty Pharmacy, University Hospitals of Cleveland, Cleveland, OH USA
| | - Crystal Sau
- Specialty Pharmacy, University Hospitals of Cleveland, Cleveland, OH USA ,Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland Medical Center, Bolwell, 5th Floor, 11100 Euclid Avenue, Cleveland, OH 44106 USA
| | - Sophia Woodson
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland Medical Center, Bolwell, 5th Floor, 11100 Euclid Avenue, Cleveland, OH 44106 USA
| | - Alessandro Serra
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland Medical Center, Bolwell, 5th Floor, 11100 Euclid Avenue, Cleveland, OH 44106 USA ,VA Multiple Sclerosis Center of Excellence, Cleveland VA Medical Center, Cleveland, OH USA
| | - Hesham Abboud
- Multiple Sclerosis and Neuroimmunology Program, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland Medical Center, Bolwell, 5th Floor, 11100 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
14
|
Teriflunomide's effect on humoral response to Epstein-Barr virus and development of cortical gray matter pathology in multiple sclerosis. Mult Scler Relat Disord 2019; 36:101388. [PMID: 31525628 DOI: 10.1016/j.msard.2019.101388] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/16/2019] [Accepted: 09/07/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Teriflunomide has been shown to slow cortical gray matter (GM) atrophy in patients with multiple sclerosis (MS). Previous work showed that higher levels of Epstein-Barr virus (EBV) are associated with greater development of cortical pathology in MS. OBJECTIVES To investigate whether the effect of teriflunomide on cortical volume loss in relapsing MS patients may be associated with the change in humoral response to EBV. METHODS This was a prospective, observational, single-blinded, longitudinal study of 30 relapsing MS patients, who started treatment with teriflunomide, and 20 age- and sex-matched healthy controls (HCs). Subjects were assessed at baseline, 6 and 12 months with clinical, MRI and EBV examinations. MRI outcomes included percent changes in cortical, GM, deep GM and whole brain volumes. Serum samples were analyzed for IgG antibodies titers against EBV viral capsid antigen (VCA) and nuclear antigen-1 (EBNA-1). RESULTS There were no significant differences in anti-VCA and anti-EBNA-1 IgG titers between MS patients and HC at baseline. However, over the 12-month follow-up, MS patients experienced a greater decrease in anti-EBNA-1 (-35.1, p = .003) and anti-VCA (-15.9, p = .05) IgG titers, whereas no significant changes were observed in HCs (-3.7 and -1.6, respectively). MS patients who showed the highest decrease in anti-EBV VCA and EBNA-1 IgG titers from baseline to follow-up, developed less cortical (p < .001 and p = .02) and GM volume loss (p = .004 for both), respectively. CONCLUSIONS Teriflunomide's effect on slowing cortical and GM volume loss may be mediated by its effect on altering humoral response to EBV.
Collapse
|
15
|
Mei-Jiao G, Shi-Fang L, Yan-Yan C, Jun-Jun S, Yue-Feng S, Ting-Ting R, Yong-Guang Z, Hui-Yun C. Antiviral effects of selected IMPDH and DHODH inhibitors against foot and mouth disease virus. Biomed Pharmacother 2019; 118:109305. [PMID: 31545264 DOI: 10.1016/j.biopha.2019.109305] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 01/26/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is an important pathogen that affects livestock breeding and causes huge economic losses worldwide. Currently, the development of antiviral agents to combat FMDV infection at the early stages is being explored. As viral replication critically depends on the host for nucleoside supply, host enzymes involved in nucleotides biosynthesis may represent potential targets for the development of antiviral agents. In the present study, the effects of IMP dehydrogenase (AVN-944 and mycophenolate mofetil) and dihydroorotate dehydrogenase (teriflunomide) inhibitors were evaluated both in vitro and in vivo. The results revealed that these compounds were effective in suppressing FMDV (O/MY98/BY/2010 and A/GD/MM/2013) infection. With regard to the antiviral mechanism, time-of-addition experiments revealed that these compounds were effective when added at the early stages of viral lifecycle (0-8 h post infection). However, exogenous guanosine/uridine eliminated the antiviral activity of these compounds. Importantly, treatment AVN-944 and teriflunomide significantly improved the survival of mice that were subcutaneously treated with FMDV. Together, the results of the present study indicate the broad-spectrum activities of anti-FMDV agents targeting IMP dehydrogenase or dihydroorotate dehydrogenase, which could be useful in developing strategies to prevent FMD.
Collapse
Affiliation(s)
- Gong Mei-Jiao
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Li Shi-Fang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Chang Yan-Yan
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Shao Jun-Jun
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Sun Yue-Feng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Ren Ting-Ting
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Zhang Yong-Guang
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China
| | - Chang Hui-Yun
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, China.
| |
Collapse
|
16
|
DiSano KD, Linzey MR, Royce DB, Pachner AR, Gilli F. Differential neuro-immune patterns in two clinically relevant murine models of multiple sclerosis. J Neuroinflammation 2019; 16:109. [PMID: 31118079 PMCID: PMC6532235 DOI: 10.1186/s12974-019-1501-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/06/2019] [Indexed: 01/12/2023] Open
Abstract
Background The mechanisms driving multiple sclerosis (MS), the most common cause of non-traumatic disability in young adults, remain unknown despite extensive research. Especially puzzling are the underlying molecular processes behind the two major disease patterns of MS: relapsing-remitting and progressive. The relapsing-remitting course is exemplified by acute inflammatory attacks, whereas progressive MS is characterized by neurodegeneration on a background of mild-moderate inflammation. The molecular and cellular features differentiating the two patterns are still unclear, and the role of inflammation during progressive disease is a subject of active debate. Methods We performed a comprehensive analysis of the intrathecal inflammation in two clinically distinct mouse models of MS: the PLP139-151-induced relapsing experimental autoimmune encephalomyelitis (R-EAE) and the chronic progressive, Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Microarray technology was first used to examine global gene expression changes in the spinal cord. Inflammation in the spinal cord was further assessed by immunohistochemical image analysis and flow cytometry. Levels of serum and cerebrospinal fluid (CSF) immunoglobulin (Ig) isotypes and chemokines were quantitated using Luminex Multiplex technology, whereas a capture ELISA was used to measure serum and CSF albumin levels. Finally, an intrathecal Ig synthesis index was established with the ratio of CSF and serum test results corrected as a ratio of their albumin concentrations. Results Microarray analysis identified an enrichment of B cell- and Ig-related genes upregulated in TMEV-IDD mice. We also demonstrated an increased level of intrathecal Ig synthesis as well as a marked infiltration of late differentiated B cells, including antibody secreting cells (ASC), in the spinal cord of TMEV-IDD, but not R-EAE mice. An intact blood-brain barrier in TMEV-IDD mice along with higher CSF levels of CXCL13, CXCL12, and CCL19 provides evidence for an intrathecal synthesis of chemokines mediating B cell localization to the central nervous system (CNS). Conclusions Overall, these findings, showing increased concentrations of intrathecally produced Igs, substantial infiltration of ASC, and the presence of B cell supporting chemokines in the CNS of TMEV-IDD mice, but not R-EAE mice, suggest a potentially important role for Igs and ASC in the chronic progressive phase of demyelinating diseases. Electronic supplementary material The online version of this article (10.1186/s12974-019-1501-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krista D DiSano
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Michael R Linzey
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03756, USA.,Program in Experimental and Molecular Medicine, Dartmouth College, Hanover, NH, USA
| | - Darlene B Royce
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Andrew R Pachner
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03756, USA
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
17
|
Pachner AR, DiSano K, Royce DB, Gilli F. Clinical utility of a molecular signature in inflammatory demyelinating disease. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 6:e520. [PMID: 30568998 PMCID: PMC6278854 DOI: 10.1212/nxi.0000000000000520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022]
Abstract
Objective We sought to develop molecular biomarkers of intrathecal inflammation to assist neurologists in identifying patients most likely to benefit from a range of immune therapies. Methods We used Luminex technology and index determination to search for an inflammatory activity molecular signature (IAMS) in patients with inflammatory demyelinating disease (IDD), other neuroinflammatory diagnoses, and noninflammatory controls. We then followed the clinical characteristics of these patients to find how the presence of the signature might assist in diagnosis and prognosis. Results A CSF molecular signature consisting of elevated CXCL13, elevated immunoglobulins, normal albumin CSF/serum ratio (Qalbumin), and minimal elevation of cytokines other than CXCL13 provided diagnostic and prognostic value; absence of the signature in IDD predicted lack of subsequent inflammatory events. The signature outperformed oligoclonal bands, which were frequently false positive for active neuroinflammation. Conclusions A CSF IAMS may prove useful in the diagnosis and management of patients with IDD and other neuroinflammatory syndromes. Classification of evidence This study provides Class IV evidence that a CSF IAMS identifies patients with IDD.
Collapse
Affiliation(s)
- Andrew R Pachner
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Krista DiSano
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Darlene B Royce
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| | - Francesca Gilli
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH
| |
Collapse
|
18
|
Pol S, Sveinsson M, Sudyn M, Babek N, Siebert D, Bertolino N, Modica CM, Preda M, Schweser F, Zivadinov R. Teriflunomide's Effect on Glia in Experimental Demyelinating Disease: A Neuroimaging and Histologic Study. J Neuroimaging 2018; 29:52-61. [PMID: 30232810 DOI: 10.1111/jon.12561] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Teriflunomide reduces disability progression and brain atrophy in multiple sclerosis patients. The exact mechanism of action by which teriflunomide exerts these effects is currently unknown. We assessed the effect of teriflunomide on brain glial cells in the Theiler's murine encephalomyelitis virus (TMEV) by using a histological approach in combination with neuroimaging. METHODS Forty-eight SJL female mice received an intracerebral injection of TMEV at 6-8 weeks of age and were then treated with teriflunomide (n = 24) or placebo (n = 24) for 9 months. They were examined with MRI and behavioral testing at 2, 6, and 9 months postinduction (mPI). Of those, 18 teriflunomide-treated and 17 controls mice were analyzed histologically at 9 mPI to sample from different brain regions for myelination status, microglial density, and oligodendroglial lineage. The histological and MRI outcomes were correlated. RESULTS Corpus callosum microglial density was numerically lower in the teriflunomide-treated mice compared to the control group (141.1 ± 21.7 SEM vs. 214.74 ± 34.79 SEM, Iba1+ cells/mm2 , P = .087). Basal ganglia (BG) microglial density in the teriflunomide group exhibited a negative correlation with fractional anisotropy (P = .021) and a positive correlation with mean diffusivity (P = .034), indicating less inflammation and axonal damage. Oligodendroglial lineage cell and myelin density were not significantly different between treatment groups. However, a significant positive correlation between BG oligodendrocytes and BG volume (P = .027), and with N-acetyl aspartate concentration (P = .008), was found in the teriflunomide group, indicating less axonal loss. CONCLUSION Teriflunomide altered microglia density and oligodendrocytes differentiation, which was associated with less evident microstructural damage on MRI.
Collapse
Affiliation(s)
- Suyog Pol
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Michele Sveinsson
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Michelle Sudyn
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Natan Babek
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Danielle Siebert
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Nicola Bertolino
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Claire M Modica
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY
| | - Marilena Preda
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY
| |
Collapse
|