1
|
Carreiro-Martins P, Paixão P, Caires I, Matias P, Gamboa H, Soares F, Gomez P, Sousa J, Neuparth N. Acoustic and Clinical Data Analysis of Vocal Recordings: Pandemic Insights and Lessons. Diagnostics (Basel) 2024; 14:2273. [PMID: 39451596 PMCID: PMC11507201 DOI: 10.3390/diagnostics14202273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: The interest in processing human speech and other human-generated audio signals as a diagnostic tool has increased due to the COVID-19 pandemic. The project OSCAR (vOice Screening of CoronA viRus) aimed to develop an algorithm to screen for COVID-19 using a dataset of Portuguese participants with voice recordings and clinical data. Methods: This cross-sectional study aimed to characterise the pattern of sounds produced by the vocal apparatus in patients with SARS-CoV-2 infection documented by a positive RT-PCR test, and to develop and validate a screening algorithm. In Phase II, the algorithm developed in Phase I was tested in a real-world setting. Results: In Phase I, after filtering, the training group consisted of 166 subjects who were effectively available to train the classification model (34.3% SARS-CoV-2 positive/65.7% SARS-CoV-2 negative). Phase II enrolled 58 participants (69.0% SARS-CoV-2 positive/31.0% SARS-CoV-2 negative). The final model achieved a sensitivity of 85%, a specificity of 88.9%, and an F1-score of 84.7%, suggesting voice screening algorithms as an attractive strategy for COVID-19 diagnosis. Conclusions: Our findings highlight the potential of a voice-based detection strategy as an alternative method for respiratory tract screening.
Collapse
Affiliation(s)
- Pedro Carreiro-Martins
- Comprehensive Health Research Center (CHRC), LA-REAL, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal (N.N.)
- Serviço de Imunoalergologia, Hospital de Dona Estefânia, ULS São José, Rua Jacinta Marto, 1169-045 Lisbon, Portugal
| | - Paulo Paixão
- Comprehensive Health Research Center (CHRC), LA-REAL, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal (N.N.)
| | - Iolanda Caires
- Comprehensive Health Research Center (CHRC), LA-REAL, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal (N.N.)
| | - Pedro Matias
- Fraunhofer Portugal AICOS, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal (F.S.)
| | - Hugo Gamboa
- Fraunhofer Portugal AICOS, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal (F.S.)
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys), Faculdade de Ciências e Tecnologia, NOVA University of Lisbon, Caparica, 2820-001 Lisbon, Portugal
| | - Filipe Soares
- Fraunhofer Portugal AICOS, Rua Alfredo Allen 455/461, 4200-135 Porto, Portugal (F.S.)
| | - Pedro Gomez
- NeuSpeLab, CTB, Universidad Politécnica de Madrid, Campus de Montegancedo, s/n, 28223 Madrid, Spain;
| | - Joana Sousa
- NOS Inovação, Rua Actor António Silva, 9–6° Piso, Campo Grande, 1600-404 Lisboa, Portugal
| | - Nuno Neuparth
- Comprehensive Health Research Center (CHRC), LA-REAL, NOVA Medical School, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal (N.N.)
- Serviço de Imunoalergologia, Hospital de Dona Estefânia, ULS São José, Rua Jacinta Marto, 1169-045 Lisbon, Portugal
| |
Collapse
|
2
|
Anibal JT, Landa AJ, Hang NTT, Song MJ, Peltekian AK, Shin A, Huth HB, Hazen LA, Christou AS, Rivera J, Morhard RA, Bagci U, Li M, Bensoussan Y, Clifton DA, Wood BJ. Omicron detection with large language models and YouTube audio data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2022.09.13.22279673. [PMID: 36172131 PMCID: PMC9516853 DOI: 10.1101/2022.09.13.22279673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Publicly available audio data presents a unique opportunity for the development of digital health technologies with large language models (LLMs). In this study, YouTube was mined to collect audio data from individuals with self-declared positive COVID-19 tests as well as those with other upper respiratory infections (URI) and healthy subjects discussing a diverse range of topics. The resulting dataset was transcribed with the Whisper model and used to assess the capacity of LLMs for detecting self-reported COVID-19 cases and performing variant classification. Following prompt optimization, LLMs achieved accuracies of 0.89, 0.97, respectively, in the tasks of identifying self-reported COVID-19 cases and other respiratory illnesses. The model also obtained a mean accuracy of 0.77 at identifying the variant of self-reported COVID-19 cases using only symptoms and other health-related factors described in the YouTube videos. In comparison with past studies, which used scripted, standardized voice samples to capture biomarkers, this study focused on extracting meaningful information from public online audio data. This work introduced novel design paradigms for pandemic management tools, showing the potential of audio data in clinical and public health applications.
Collapse
Affiliation(s)
- James T Anibal
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Dr, Building 10, Room 1C341, MSC 1182, Bethesda, MD 20892-1182 USA
- Computational Health Informatics Lab, Oxford Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, United Kingdom
| | - Adam J Landa
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Dr, Building 10, Room 1C341, MSC 1182, Bethesda, MD 20892-1182 USA
| | - Nguyen T T Hang
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam
| | - Miranda J Song
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Dr, Building 10, Room 1C341, MSC 1182, Bethesda, MD 20892-1182 USA
| | - Alec K Peltekian
- Department of Computer Science, McCormick School of Engineering, Northwestern University, Mudd Hall, 2233 Tech Drive, Third Floor, Evanston, IL, 60208 USA
| | - Ashley Shin
- National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894
| | - Hannah B Huth
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Dr, Building 10, Room 1C341, MSC 1182, Bethesda, MD 20892-1182 USA
| | - Lindsey A Hazen
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Dr, Building 10, Room 1C341, MSC 1182, Bethesda, MD 20892-1182 USA
| | - Anna S Christou
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Dr, Building 10, Room 1C341, MSC 1182, Bethesda, MD 20892-1182 USA
| | - Jocelyne Rivera
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Dr, Building 10, Room 1C341, MSC 1182, Bethesda, MD 20892-1182 USA
| | - Robert A Morhard
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Dr, Building 10, Room 1C341, MSC 1182, Bethesda, MD 20892-1182 USA
| | - Ulas Bagci
- Feinberg School of Medicine, Northwestern University, 420 E Superior St, Chicago, IL 60611 USA
| | - Ming Li
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Dr, Building 10, Room 1C341, MSC 1182, Bethesda, MD 20892-1182 USA
| | - Yael Bensoussan
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - David A Clifton
- Computational Health Informatics Lab, Oxford Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, United Kingdom
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, NIH Clinical Center, National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 10 Center Dr, Building 10, Room 1C341, MSC 1182, Bethesda, MD 20892-1182 USA
| |
Collapse
|
3
|
Gheisari M, Ghaderzadeh M, Li H, Taami T, Fernández-Campusano C, Sadeghsalehi H, Afzaal Abbasi A. Mobile Apps for COVID-19 Detection and Diagnosis for Future Pandemic Control: Multidimensional Systematic Review. JMIR Mhealth Uhealth 2024; 12:e44406. [PMID: 38231538 PMCID: PMC10896318 DOI: 10.2196/44406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 08/18/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND In the modern world, mobile apps are essential for human advancement, and pandemic control is no exception. The use of mobile apps and technology for the detection and diagnosis of COVID-19 has been the subject of numerous investigations, although no thorough analysis of COVID-19 pandemic prevention has been conducted using mobile apps, creating a gap. OBJECTIVE With the intention of helping software companies and clinical researchers, this study provides comprehensive information regarding the different fields in which mobile apps were used to diagnose COVID-19 during the pandemic. METHODS In this systematic review, 535 studies were found after searching 5 major research databases (ScienceDirect, Scopus, PubMed, Web of Science, and IEEE). Of these, only 42 (7.9%) studies concerned with diagnosing and detecting COVID-19 were chosen after applying inclusion and exclusion criteria using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol. RESULTS Mobile apps were categorized into 6 areas based on the content of these 42 studies: contact tracing, data gathering, data visualization, artificial intelligence (AI)-based diagnosis, rule- and guideline-based diagnosis, and data transformation. Patients with COVID-19 were identified via mobile apps using a variety of clinical, geographic, demographic, radiological, serological, and laboratory data. Most studies concentrated on using AI methods to identify people who might have COVID-19. Additionally, symptoms, cough sounds, and radiological images were used more frequently compared to other data types. Deep learning techniques, such as convolutional neural networks, performed comparatively better in the processing of health care data than other types of AI techniques, which improved the diagnosis of COVID-19. CONCLUSIONS Mobile apps could soon play a significant role as a powerful tool for data collection, epidemic health data analysis, and the early identification of suspected cases. These technologies can work with the internet of things, cloud storage, 5th-generation technology, and cloud computing. Processing pipelines can be moved to mobile device processing cores using new deep learning methods, such as lightweight neural networks. In the event of future pandemics, mobile apps will play a critical role in rapid diagnosis using various image data and clinical symptoms. Consequently, the rapid diagnosis of these diseases can improve the management of their effects and obtain excellent results in treating patients.
Collapse
Affiliation(s)
- Mehdi Gheisari
- Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China
- Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mustafa Ghaderzadeh
- School of Nursing and Health Sciences of Boukan, Urmia University of Medical Sciences, Urmia, Iran
| | - Huxiong Li
- Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China
| | - Tania Taami
- Florida State University, Tallahassee, FL, United States
| | | | | | - Aaqif Afzaal Abbasi
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Kapetanidis P, Kalioras F, Tsakonas C, Tzamalis P, Kontogiannis G, Karamanidou T, Stavropoulos TG, Nikoletseas S. Respiratory Diseases Diagnosis Using Audio Analysis and Artificial Intelligence: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:1173. [PMID: 38400330 PMCID: PMC10893010 DOI: 10.3390/s24041173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Respiratory diseases represent a significant global burden, necessitating efficient diagnostic methods for timely intervention. Digital biomarkers based on audio, acoustics, and sound from the upper and lower respiratory system, as well as the voice, have emerged as valuable indicators of respiratory functionality. Recent advancements in machine learning (ML) algorithms offer promising avenues for the identification and diagnosis of respiratory diseases through the analysis and processing of such audio-based biomarkers. An ever-increasing number of studies employ ML techniques to extract meaningful information from audio biomarkers. Beyond disease identification, these studies explore diverse aspects such as the recognition of cough sounds amidst environmental noise, the analysis of respiratory sounds to detect respiratory symptoms like wheezes and crackles, as well as the analysis of the voice/speech for the evaluation of human voice abnormalities. To provide a more in-depth analysis, this review examines 75 relevant audio analysis studies across three distinct areas of concern based on respiratory diseases' symptoms: (a) cough detection, (b) lower respiratory symptoms identification, and (c) diagnostics from the voice and speech. Furthermore, publicly available datasets commonly utilized in this domain are presented. It is observed that research trends are influenced by the pandemic, with a surge in studies on COVID-19 diagnosis, mobile data acquisition, and remote diagnosis systems.
Collapse
Affiliation(s)
- Panagiotis Kapetanidis
- Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece (C.T.); (G.K.); (S.N.)
| | - Fotios Kalioras
- Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece (C.T.); (G.K.); (S.N.)
| | - Constantinos Tsakonas
- Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece (C.T.); (G.K.); (S.N.)
| | - Pantelis Tzamalis
- Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece (C.T.); (G.K.); (S.N.)
| | - George Kontogiannis
- Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece (C.T.); (G.K.); (S.N.)
| | - Theodora Karamanidou
- Pfizer Center for Digital Innovation, 55535 Thessaloniki, Greece; (T.K.); (T.G.S.)
| | | | - Sotiris Nikoletseas
- Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece (C.T.); (G.K.); (S.N.)
| |
Collapse
|
5
|
Idrisoglu A, Dallora AL, Anderberg P, Berglund JS. Applied Machine Learning Techniques to Diagnose Voice-Affecting Conditions and Disorders: Systematic Literature Review. J Med Internet Res 2023; 25:e46105. [PMID: 37467031 PMCID: PMC10398366 DOI: 10.2196/46105] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Normal voice production depends on the synchronized cooperation of multiple physiological systems, which makes the voice sensitive to changes. Any systematic, neurological, and aerodigestive distortion is prone to affect voice production through reduced cognitive, pulmonary, and muscular functionality. This sensitivity inspired using voice as a biomarker to examine disorders that affect the voice. Technological improvements and emerging machine learning (ML) technologies have enabled possibilities of extracting digital vocal features from the voice for automated diagnosis and monitoring systems. OBJECTIVE This study aims to summarize a comprehensive view of research on voice-affecting disorders that uses ML techniques for diagnosis and monitoring through voice samples where systematic conditions, nonlaryngeal aerodigestive disorders, and neurological disorders are specifically of interest. METHODS This systematic literature review (SLR) investigated the state of the art of voice-based diagnostic and monitoring systems with ML technologies, targeting voice-affecting disorders without direct relation to the voice box from the point of view of applied health technology. Through a comprehensive search string, studies published from 2012 to 2022 from the databases Scopus, PubMed, and Web of Science were scanned and collected for assessment. To minimize bias, retrieval of the relevant references in other studies in the field was ensured, and 2 authors assessed the collected studies. Low-quality studies were removed through a quality assessment and relevant data were extracted through summary tables for analysis. The articles were checked for similarities between author groups to prevent cumulative redundancy bias during the screening process, where only 1 article was included from the same author group. RESULTS In the analysis of the 145 included studies, support vector machines were the most utilized ML technique (51/145, 35.2%), with the most studied disease being Parkinson disease (PD; reported in 87/145, 60%, studies). After 2017, 16 additional voice-affecting disorders were examined, in contrast to the 3 investigated previously. Furthermore, an upsurge in the use of artificial neural network-based architectures was observed after 2017. Almost half of the included studies were published in last 2 years (2021 and 2022). A broad interest from many countries was observed. Notably, nearly one-half (n=75) of the studies relied on 10 distinct data sets, and 11/145 (7.6%) used demographic data as an input for ML models. CONCLUSIONS This SLR revealed considerable interest across multiple countries in using ML techniques for diagnosing and monitoring voice-affecting disorders, with PD being the most studied disorder. However, the review identified several gaps, including limited and unbalanced data set usage in studies, and a focus on diagnostic test rather than disorder-specific monitoring. Despite the limitations of being constrained by only peer-reviewed publications written in English, the SLR provides valuable insights into the current state of research on ML-based voice-affecting disorder diagnosis and monitoring and highlighting areas to address in future research.
Collapse
Affiliation(s)
- Alper Idrisoglu
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
| | - Ana Luiza Dallora
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
| | - Peter Anderberg
- Department of Health, Blekinge Institute of Technology, Karslkrona, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | | |
Collapse
|
6
|
Aleixandre JG, Elgendi M, Menon C. The Use of Audio Signals for Detecting COVID-19: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8114. [PMID: 36365811 PMCID: PMC9653621 DOI: 10.3390/s22218114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
A systematic review on the topic of automatic detection of COVID-19 using audio signals was performed. A total of 48 papers were obtained after screening 659 records identified in the PubMed, IEEE Xplore, Embase, and Google Scholar databases. The reviewed studies employ a mixture of open-access and self-collected datasets. Because COVID-19 has only recently been investigated, there is a limited amount of available data. Most of the data are crowdsourced, which motivated a detailed study of the various pre-processing techniques used by the reviewed studies. Although 13 of the 48 identified papers show promising results, several have been performed with small-scale datasets (<200). Among those papers, convolutional neural networks and support vector machine algorithms were the best-performing methods. The analysis of the extracted features showed that Mel-frequency cepstral coefficients and zero-crossing rate continue to be the most popular choices. Less common alternatives, such as non-linear features, have also been proven to be effective. The reported values for sensitivity range from 65.0% to 99.8% and those for accuracy from 59.0% to 99.8%.
Collapse
Affiliation(s)
- José Gómez Aleixandre
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, Switzerland
- Department of Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology Lab, ETH Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
7
|
Tang A, Woldemariam S, Roger J, Sirota M. Translational Bioinformatics to Enable Precision Medicine for All: Elevating Equity across Molecular, Clinical, and Digital Realms. Yearb Med Inform 2022; 31:106-115. [PMID: 36463867 PMCID: PMC9719766 DOI: 10.1055/s-0042-1742513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
OBJECTIVES Over the past few years, challenges from the pandemic have led to an explosion of data sharing and algorithmic development efforts in the areas of molecular measurements, clinical data, and digital health. We aim to characterize and describe recent advanced computational approaches in translational bioinformatics across these domains in the context of issues or progress related to equity and inclusion. METHODS We conducted a literature assessment of the trends and approaches in translational bioinformatics in the past few years. RESULTS We present a review of recent computational approaches across molecular, clinical, and digital realms. We discuss applications of phenotyping, disease subtype characterization, predictive modeling, biomarker discovery, and treatment selection. We consider these methods and applications through the lens of equity and inclusion in biomedicine. CONCLUSION Equity and inclusion should be incorporated at every step of translational bioinformatics projects, including project design, data collection, model creation, and clinical implementation. These considerations, coupled with the exciting breakthroughs in big data and machine learning, are pivotal to reach the goals of precision medicine for all.
Collapse
Affiliation(s)
- Alice Tang
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Graduate Program in Bioengineering, UCSF, San Francisco, CA, USA
- School of Medicine, UCSF, San Francisco, CA, USA
| | - Sarah Woldemariam
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- School of Medicine, UCSF, San Francisco, CA, USA
| | - Jacquelyn Roger
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Graduate Program in Biological and Medical Informatics, UCSF, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| |
Collapse
|