1
|
Malik S, Sikander M, Bell N, Zubieta D, Bell MC, Yallapu MM, Chauhan SC. Emerging role of mucins in antibody drug conjugates for ovarian cancer therapy. J Ovarian Res 2024; 17:161. [PMID: 39118097 PMCID: PMC11308542 DOI: 10.1186/s13048-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Ovarian cancer stands as the deadliest gynecologic malignancy, responsible for nearly 65% of all gynecologic cancer-related deaths. The challenges in early detection and diagnosis, coupled with the widespread intraperitoneal spread of cancer cells and resistance to chemotherapy, contribute significantly to the high mortality rate of this disease. Due to the absence of specific symptoms and the lack of effective screening methods, most ovarian cancer cases are diagnosed at advanced stages. While chemotherapy is a common treatment, it often leads to tumor recurrence, necessitating further interventions. In recent years, antibody-drug conjugates (ADCs) have emerged as a valuable tool in targeted cancer therapy. These complex biotherapeutics combine an antibody that specifically targets tumor specific/associated antigen(s) with a high potency anti-cancer drug through a linker, offering a promising approach for ovarian cancer treatment. The identification of molecular targets in various human tumors has paved the way for the development of targeted therapies, with ADCs being at the forefront of this innovation. By delivering cytotoxic agents directly to tumors and metastatic lesions, ADCs show potential in managing chemo-resistant ovarian cancers. Mucins such as MUC16, MUC13, and MUC1 have shown significantly higher expression in ovarian tumors as compared to normal and/or benign samples, thus have become promising targets for ADC generation. While traditional markers are limited by their elevated levels in non-cancerous conditions, mucins offer a new possibility for targeted treatment in ovarian cancer. This review comprehensively described the potential of mucins for the generation of ADC therapy, highlighting their importance in the quest to improve the outcome of ovarian cancer patients.
Collapse
Affiliation(s)
- Shabnam Malik
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Mohammed Sikander
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Natasha Bell
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Daniel Zubieta
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Maria C Bell
- Sanford Health, Sanford Gynecologic Oncology Clinic, Sioux Falls, SD, 57104, USA
| | - Murali M Yallapu
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA
| | - Subhash C Chauhan
- Division of Cancer Immunology and Microbiology, Medicine and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research (ST-CECR), McAllen, TX, 78504, USA.
| |
Collapse
|
2
|
Yan R, Zeng S, Gao F, Li L, Xiao X. CircUBE2D2 regulates HMGB1 through miR-885-5p to promote ovarian cancer malignancy. Clinics (Sao Paulo) 2024; 79:100391. [PMID: 38848634 PMCID: PMC11214364 DOI: 10.1016/j.clinsp.2024.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The newly discovered CircUBE2D2 has been shown to abnormally upregulate and promote cancer progression in a variety of cancers. The present study explored circUBE2D2 (hsa_circ_0005728) in Ovarian Cancer (OC) progression. METHODS CircUBE2D2, miR-885-5p, and HMGB1 were examined by RT-qPCR or WB. SKOV-3 cell functions (including cell viability, apoptosis, migration, and invasion) were validated using the CCK-8, flow cytometry, scratch assay, and transwell assay, respectively. The direct relationship between miR-885-5p and circUBE2D2 or HMGB1 was confirmed by a dual-luciferase reporter and RNA pull-down analysis. circUBE2D2's role in vivo tumor xenograft experiment was further probed. RESULTS OC tissue and cell lines had higher circUBE2D2 and HMGB1 and lower miR-885-5p. Mechanically, CircUBE2D2 shared a binding relation with miR-885-5p, while miR-885-5p can directly target HMGB1. Eliminating circUBE2D2 or miR-885-5p induction inhibited OC cell activities. However, these functions were relieved by down-regulating miR-885-5p or HMGB1 induction. Furthermore, circUBE2D2 knockout reduced tumor growth. CONCLUSION CircUBE2D2 regulates the expression of HMGB1 by acting as a sponge of ceRNA as miR-885-5p, thereby promoting the control of OC cell proliferation and migration and inhibiting cell apoptosis. Targeting CircUBE2D2 could serve as a new potential treatment strategy for OC.
Collapse
Affiliation(s)
- RuiXue Yan
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China.
| | - SaiTian Zeng
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - FangYuan Gao
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - LingLing Li
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| | - XiYun Xiao
- Department of Gynecology I, Cangzhou Central Hospital, Cangzhou City, Hebei Province, China
| |
Collapse
|
3
|
Malgundkar SH, Tamimi Y. The pivotal role of long non-coding RNAs as potential biomarkers and modulators of chemoresistance in ovarian cancer (OC). Hum Genet 2024; 143:107-124. [PMID: 38276976 DOI: 10.1007/s00439-023-02635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological disease that is often diagnosed at later stages due to its asymptomatic nature and the absence of efficient early-stage biomarkers. Previous studies have identified genes with abnormal expression in OC that couldn't be explained by methylation or mutation, indicating alternative mechanisms of gene regulation. Recent advances in human transcriptome studies have led to research on non-coding RNAs (ncRNAs) as regulators of cancer gene expression. Long non-coding RNAs (lncRNAs), a class of ncRNAs with a length greater than 200 nucleotides, have been identified as crucial regulators of physiological processes and human diseases, including cancer. Dysregulated lncRNA expression has also been found to play a crucial role in ovarian carcinogenesis, indicating their potential as novel and non-invasive biomarkers for improving OC management. However, despite the discovery of several thousand lncRNAs, only one has been approved for clinical use as a biomarker in cancer, highlighting the importance of further research in this field. In addition to their potential as biomarkers, lncRNAs have been implicated in modulating chemoresistance, a major problem in OC. Several studies have identified altered lncRNA expression upon drug treatment, further emphasizing their potential to modulate chemoresistance. In this review, we highlight the characteristics of lncRNAs, their function, and their potential to serve as tumor markers in OC. We also discuss a few databases providing detailed information on lncRNAs in various cancer types. Despite the promising potential of lncRNAs, further research is necessary to fully understand their role in cancer and develop effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman.
| |
Collapse
|
4
|
Walther F, Berther JL, Lalos A, Ramser M, Eichelberger S, Mechera R, Soysal S, Muenst S, Posabella A, Güth U, Stadlmann S, Terracciano L, Droeser RA, Zeindler J, Singer G. High ratio of pCXCR4/CXCR4 tumor infiltrating immune cells in primary high grade ovarian cancer is indicative for response to chemotherapy. BMC Cancer 2022; 22:376. [PMID: 35397601 PMCID: PMC8994232 DOI: 10.1186/s12885-022-09374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ovarian cancer (OC) is the fifth most common malignant female cancer with a high mortality, mainly because of aggressive high-grade serous carcinomas (HGSOC), but also due to absence of specific early symptoms and effective detection strategies. The CXCL12-CXCR4 axis is considered to have a prognostic impact and to serve as potential therapeutic target. Therefore we investigated the role of pCXCR4 and CXCR4 expression of the tumor cells and of tumor infiltrating immune cells (TIC) in high-grade serous OC and their association with the recurrence-free (RFS) and overall survival (OS).
Methods
A tissue microarray of 47 primary high grade ovarian serous carcinomas and their recurrences was stained with primary antibodies directed against CXCR4 and pCXCR4. Beside the evaluation of the absolute tumor as well as TIC expression in primary and recurrent cancer biopsies the corresponding ratios for pCXCR4 and CXCR4 were generated and analyzed. The clinical endpoints were response to chemotherapy, OS as well as RFS.
Results
Patients with a high pCXCR4/CXCR4 TIC ratio in primary cancer biopsies showed a significant longer RFS during the first two years (p = 0.025). However, this effect was lost in the long-term analysis including a follow-up period of 5 years (p = 0.128). Interestingly, the Multivariate Cox regression analysis showed that a high pCXCR4/CXCR4 TIC ratio in primary cancer independently predicts longer RFS (HR 0.33; 95CI 0.13 - 0.81; p = 0.015). Furthermore a high dichotomized distribution of CXCR4 positive tumor expression in recurrent cancer biopsies showed a significantly longer 6-month RFS rate (p = 0.018) in comparison to patients with low CXCR4 positive tumor expression. However, this effect was not independent of known risk factors in a Multivariate Cox regression (HR 0.57; 95CI 0.24 - 1.33; p = 0.193).
Conclusions
To the best of our knowledge we show for the first time that a high pCXCR4/CXCR4 TIC ratio in primary HGSOC biopsies is indicative for better RFS and response to chemotherapy.
Highlights
• We observed a significant association between high pCXCR4/CXCR4 TIC ratio and better RFS in primary cancer biopsies, especially during the early postoperative follow-up and independent of known risk factors for recurrence.
• High CXCR4 tumor expression in recurrent HGSOC biopsies might be indicative for sensitivity to chemotherapy. We found evidence that at the beginning of the disease (early follow-up) the role of the immune response seems to be the most crucial factor for progression. On the other hand in recurrent/progressive disease the biology of the tumor itself becomes more important for prognosis.
• We explored for the first time the predictive and prognostic role of pCXCR4/CXCR4 TIC ratio in high-grade serous ovarian cancer.
Collapse
|
5
|
Eroglu EC, Kucukgoz Gulec U, Vardar MA, Paydas S. GC-MS based metabolite fingerprinting of serous ovarian carcinoma and benign ovarian tumor. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2022; 28:12-24. [PMID: 35503418 DOI: 10.1177/14690667221098520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of this study is to identify urinary metabolomic profile of benign and malign ovarian tumors patients. Samples were analyzed using gas chromatography-mass spectrometry (GC-MS) and metabolomic tools to define biomarkers that cause differentiation between groups. 7 metabolites were found to be different in patients with ovarian cancer (OC) and benign tumors (BT). R2Y and Q2 values were found to be 0.670 and 0.459, respectively. L-tyrosine, glycine, stearic acid, turanose and L-threonine metabolites were defined as prominent biomarkers. The sensitivity of the model was calculated as 90.72% and the specificity as 82.09%. In the pathway analysis, glutathione metabolism, aminoacyl-tRNA biosynthesis, glycine serine and threonine metabolic pathway, primary bile acid biosynthesis pathways were found to be important. According to the t-test, 29 metabolites were found to be significant in urine samples of OC patients and healthy controls (HC). R2Y and Q2 values were found to be 0.8170 and 0.749, respectively. These results showed that the model has high compatibility and predictive power. Benzoic acid, L-threonine, L-pyroglutamic acid, creatinine and 3,4-dihydroxyphenylacetic acid metabolites were determined as prominent biomarkers. The sensitivity of the model was calculated as 93.81% and the specificity as 98.59%. Glycine serine and threonine metabolic pathway, glutathione metabolism and aminoacyl-tRNA biosynthesis pathways were determined important in OC patients and HC. The R2Y, Q2, sensitivity and specificity values in the urine samples of BT patients and HC were found to be 0.869, 0.794, 91.75, 97.01% and 97.18%, respectively. L-threonine, L-pyroglutamic acid, benzoic acid, creatinine and pentadecanol metabolites were determined as prominent biomarkers. Valine, leucine and isoleucine biosynthesis and aminoacyl-tRNA biosynthesis were significant. In this study, thanks to the untargeted metabolomic approach and chemometric methods, every group was differentiated from the others and prominent biomarkers were determined.
Collapse
Affiliation(s)
| | - Umran Kucukgoz Gulec
- Medical Faculty, Department of Gynecological Oncology, 63988Cukurova University, Adana, Turkey
| | - Mehmet Ali Vardar
- Medical Faculty, Department of Gynecological Oncology, 63988Cukurova University, Adana, Turkey
| | - Semra Paydas
- Medical Faculty, Department of Oncology, 63988Cukurova University, Adana, Turkey
| |
Collapse
|
6
|
Eroglu EC, Tunug S, Geckil OF, Gulec UK, Vardar MA, Paydas S. Discovery of metabolomic biomarkers for discriminating platinum-sensitive and platinum-resistant ovarian cancer by using GC-MS. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:235-248. [PMID: 34806450 DOI: 10.1177/14690667211057996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aims to determine ovarian cancer (OC) patients with platinum resistance for alternative treatment protocols by using metabolomic methodologies. Urine and serum samples of platinum-resistant and platinum-sensitive OC were analyzed using GC-MS. After data processing of GC-MS raw data, multivariate analyses were performed to interpret complex data for biologically meaningful information and to identify the biomarkers that cause differences between two groups. The biomarkers were verified after univariate, multivariate, and ROC analysis. Finally, metabolomic pathways related to group separations were specified. The results of biomarker analysis showed that 3,4-dihydroxyphenylacetic acid, 4-hydroxybutyric acid, L-threonine, D- mannose, and sorbitol metabolites were potential biomarkers in urine samples. In serum samples, L-arginine, linoleic acid, L-glutamine, and hypoxanthine were identified as important biomarkers. R2Y, Q2, AUC, sensitivity and specificity values of platinum-resistant and sensitive OC patients' urine and serum samples were 0.85, 0.545, 0.844, 91.30%, 81.08 and 0.570, 0.206, 0.743, 77.78%, 74.28%, respectively. In metabolic pathway analysis of urine samples, tyrosine metabolism and fructose and mannose metabolism were found to be statistically significant (p < 0.05) for the discrimination of the two groups. While 3,4-dihydroxyphenylacetic acid, L-tyrosine, and fumaric acid metabolites were effective in tyrosine metabolism. D-sorbitol and D-mannose metabolites were significantly important in fructose and mannose metabolism. However, seven metabolomic pathways were significant (p < 0.05) in serum samples. In terms of p-value, L-glutamine in the nitrogen metabolic pathway from the first three pathways; L-glutamine and pyroglutamic acid metabolites in D-glutamine and D-glutamate metabolism. In the arginine and proline metabolic pathway, L-arginine, L-proline, and L-ornithine metabolites differed significantly between the two groups.
Collapse
Affiliation(s)
- Evren C Eroglu
- Department of Biotechnology, 37506Cukurova University, Adana, Turkey
- Alata Horticultural Research Institute, Mersin, Turkey
| | - Sule Tunug
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | - Omer Faruk Geckil
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | | | - Mehmet Ali Vardar
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | - Semra Paydas
- Department of Oncology, 37506Cukurova University, Adana, Turkey
| |
Collapse
|
7
|
El Bairi K, Al Jarroudi O, Afqir S. Revisiting antibody-drug conjugates and their predictive biomarkers in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:42-55. [PMID: 33812984 DOI: 10.1016/j.semcancer.2021.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/07/2021] [Accepted: 03/27/2021] [Indexed: 02/05/2023]
Abstract
Until to date, platinum derived drugs are still the backbone of treating ovarian cancer (OC). Most patients treated with platinum-based chemotherapy develop resistance during the course of their management. The treatment of platinum-resistant ovarian cancer (PROC) is challenging. Few therapeutic options are available for patients with this aggressive disease. Besides, there are liminal advances regarding new anticancer drugs as well as validated predictive biomarkers of clinical outcomes in this setting. The enrollment of PROC patients in interventional studies is limited as compared to newly launched clinical trials for platinum-sensitive OC. Enthusiastically, the emergence of antibody-drug conjugates (ADCs) has provided promising findings for further clinical development in PROC. ADCs have the advantage to selectively deliver cytotoxic drugs to cancer cells expressing several of antigens using specific monoclonal antibodies based on the concept of immune bioconjugation. This innovative class of therapeutics showed encouraging early signs of clinical efficacy in PROC particularly mirvetuximab soravtansine that has been successfully introduced into three randomized and controlled phase III studies. In this review, the evidence from clinical trials supporting the development of ADCs targeting folate receptor alpha, sodium-dependent phosphate transporter 2B, dipeptidase 3, mesothelin, mucin 16, and tissue factor using various cytotoxic payloads in PROC is reviewed.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco; Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco.
| | - Ouissam Al Jarroudi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco; Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco; Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
8
|
High Density of CD16+ Tumor-Infiltrating Immune Cells in Recurrent Ovarian Cancer Is Associated with Enhanced Responsiveness to Chemotherapy and Prolonged Overall Survival. Cancers (Basel) 2021; 13:cancers13225783. [PMID: 34830938 PMCID: PMC8616362 DOI: 10.3390/cancers13225783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The late—and in most cases at an advanced stage—diagnosis of patients with ovarian cancer (OC) and the high recurrence rate make this malignant disease the most lethal among gynecological cancers. With a mortality-to-incidence ratio of 0.74, OC is a tumor with the fifth most frequent progression after esophageal cancer, liver cancer, pancreatic cancer, and brain tumors. The updated FIGO staging system is the gold standard in the clinic and includes surgical, radiologic, and pathologic elements to describe the extent of OC. This system is used to describe tumor extent, plan further therapy, and predict prognosis. However, it is consistently observed that patients with identical stages and treatments have a completely different outcome in terms of survival and recurrence. This fact indicates that this classification alone is not sufficient for the prognosis of OC in the vast majority of cases. Over the last two decades, many studies have demonstrated the critical role of the tumor microenvironment in tumorigenesis, progression, prognosis, and response to chemotherapy. In the current study, we investigate the role of CD16 expression in OC. Abstract Background: Ovarian cancer (OC) is the most aggressive and fatal malignancy of the female reproductive system. Debulking surgery with adjuvant chemotherapy represents the standard treatment, but recurrence rates are particularly high. Over the past decades, the association between the immune system and cancer progression has been extensively investigated. However, the interaction between chemotherapy and cancer immune infiltration is still unclear. In this study, we examined the prognostic role of CD16 expression in OC, as related to the effectiveness of standard adjuvant chemotherapy treatment. Methods: We analyzed the infiltration by immune cells expressing CD16, a well-characterized natural killer (NK) and myeloid cell marker, in a tissue microarray (TMA) of 47 patient specimens of primary OCs and their matching recurrences by immunohistochemistry (IHC). We analyzed our data first in the whole cohort, then in the primary tumors, and finally in recurrences. We focused on recurrence-free survival (RFS), overall survival (OS), and chemosensitivity. Chemosensitivity was defined as RFS of more than 6 months. Results: There was no significant correlation between CD16 expression and prognosis in primary carcinomas. However, interestingly, a high density of CD16-expressing tumor-infiltrating immune cells (TICs) in recurrent carcinoma was associated with better RFS (p = 0.008) and OS (p = 0.029). Moreover, high CD16 cell density in recurrent ovarian carcinoma showed a significant association with chemosensitivity (p = 0.034). Univariate Cox regression analysis revealed that the high expression of CD16+ TIC in recurrent cancer biopsies is significantly associated with an increased RFS (HR = 0.49; 95% CI 0.24–0.99; p = 0.047) and OS (HR = 0.28; 95% CI 0.10–0.77; p = 0.013). However, this was not independent of known prognostic factors such as age, FIGO stage, resection status, and the number of chemotherapy cycles. Conclusions: The high density of CD16-expressing TICs in recurrent ovarian cancer is associated with a better RFS and OS, thereby suggesting a previously unsuspected interaction between standard OC chemotherapy and immune cell infiltration.
Collapse
|
9
|
El Bairi K, Al Jarroudi O, Afqir S. Ovarian cancer in Morocco: Time to act is now. Gynecol Oncol Rep 2021; 37:100857. [PMID: 34541276 PMCID: PMC8436074 DOI: 10.1016/j.gore.2021.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
•Ovarian cancer seems is a neglected cancer in Morocco.•No publications that impact clinical practice were published in the last decade.•In this editorial, we provide our vision to develop this ignored area of gynecologic oncology.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University , Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed I University, Oujda, Morocco
| | - Ouissam Al Jarroudi
- Department of Medical Oncology, Mohammed VI University , Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed I University, Oujda, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University , Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed I University, Oujda, Morocco
| |
Collapse
|
10
|
El Bairi K, Al Jarroudi O, Afqir S. Tracing ovarian cancer research in Morocco: A bibliometric analysis. Gynecol Oncol Rep 2021; 37:100777. [PMID: 34150972 PMCID: PMC8192560 DOI: 10.1016/j.gore.2021.100777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The burden of ovarian cancer (OC) in low-income countries continues to increase annually. This gynecological cancer, known for its poor survival outcomes, has not attracted much interest in medical research as compared to other women's malignancies such as breast cancer. This bibliometric study was conducted to better depict the global map and the future directions of scientific productivity in the area of OC research in Morocco. METHODS Publication trends on OC were retrospectively analyzed using a number of bibliometric parameters based on the Pubmed database and other resources. RESULTS During the time period (1900-2018), a total number of 74 publications responding to the inclusion criteria were found and incorporated in the bibliometric analysis. This was dominated by case reports and case series on rare ovarian tumors (n = 60). In the core cluster, only 10 original studies and 3 reviews on OC were published by Moroccan researchers. After full-text appraisal for study population, only two clinical original articles included OC patients. The other clinical studies included breast cancer patients only or were suggestive of inherited OC. In addition, 3 preclinical in vitro studies were found during the literature search. The majority of these publications were covered by Pubmed and Web of Science core collection and all published in English language. The H-index of top 10 Moroccan scientists in this area didn't exceed 10. Importantly, research and review articles were frequently published in influential journals. However, the number of publications as compared to other African countries was very low. Moreover, a similar trend in terms of article per each newly diagnosed OC case, GDP per capita and per million was also noticed. For gender distribution, female scientists were first authors in the majority of these papers but less represented as leading last authors. In the complementary cluster of other article types on rare ovarian tumors, 70% of the items were published in French and approximately 60% were indexed on Pubmed. During the last five years, a marked acceleration of publishing this research category with little impact in the evidence-based practice was noticed. CONCLUSIONS This research area in gynecologic oncology seems to be neglected and needs to be prioritized in future research projects in Morocco particularly given the aggressive behavior of this women's cancer and the few available therapeutic options. There is an unmet need for studies on OC in all fields particularly epidemiology, clinic-pathological characteristics, and survival outcomes.
Collapse
Affiliation(s)
- Khalid El Bairi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
- Corresponding author at: Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco.
| | - Ouissam Al Jarroudi
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
11
|
Wide-Targeted Metabolome Analysis Identifies Potential Biomarkers for Prognosis Prediction of Epithelial Ovarian Cancer. Toxins (Basel) 2021; 13:toxins13070461. [PMID: 34209281 PMCID: PMC8309959 DOI: 10.3390/toxins13070461] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a fatal gynecologic cancer, and its poor prognosis is mainly due to delayed diagnosis. Therefore, biomarker identification and prognosis prediction are crucial in EOC. Altered cell metabolism is a characteristic feature of cancers, and metabolomics reflects an individual’s current phenotype. In particular, plasma metabolome analyses can be useful for biomarker identification. In this study, we analyzed 624 metabolites, including uremic toxins (UTx) in plasma derived from 80 patients with EOC using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Compared with the healthy control, we detected 77 significantly increased metabolites and 114 significantly decreased metabolites in EOC patients. Especially, decreased concentrations of lysophosphatidylcholines and phosphatidylcholines and increased concentrations of triglycerides were observed, indicating a metabolic profile characteristic of EOC patients. After calculating the parameters of each metabolic index, we found that higher ratios of kynurenine to tryptophan correlates with worse prognosis in EOC patients. Kynurenine, one of the UTx, can affect the prognosis of EOC. Our results demonstrated that plasma metabolome analysis is useful not only for the diagnosis of EOC, but also for predicting prognosis with the variation of UTx and evaluating response to chemotherapy.
Collapse
|
12
|
Saorin A, Di Gregorio E, Miolo G, Steffan A, Corona G. Emerging Role of Metabolomics in Ovarian Cancer Diagnosis. Metabolites 2020; 10:E419. [PMID: 33086611 PMCID: PMC7603269 DOI: 10.3390/metabo10100419] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/20/2023] Open
Abstract
Ovarian cancer is considered a silent killer due to the lack of clear symptoms and efficient diagnostic tools that often lead to late diagnoses. Over recent years, the impelling need for proficient biomarkers has led researchers to consider metabolomics, an emerging omics science that deals with analyses of the entire set of small-molecules (≤1.5 kDa) present in biological systems. Metabolomics profiles, as a mirror of tumor-host interactions, have been found to be useful for the analysis and identification of specific cancer phenotypes. Cancer may cause significant metabolic alterations to sustain its growth, and metabolomics may highlight this, making it possible to detect cancer in an early phase of development. In the last decade, metabolomics has been widely applied to identify different metabolic signatures to improve ovarian cancer diagnosis. The aim of this review is to update the current status of the metabolomics research for the discovery of new diagnostic metabolomic biomarkers for ovarian cancer. The most promising metabolic alterations are discussed in view of their potential biological implications, underlying the issues that limit their effective clinical translation into ovarian cancer diagnostic tools.
Collapse
Affiliation(s)
- Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| | - Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.S.); (E.D.G.); (A.S.)
| |
Collapse
|
13
|
Lu T, Zhang L, Zhu W, Zhang Y, Zhang S, Wu B, Deng N. CRISPR/Cas9-Mediated OC-2 Editing Inhibits the Tumor Growth and Angiogenesis of Ovarian Cancer. Front Oncol 2020; 10:1529. [PMID: 32984003 PMCID: PMC7492522 DOI: 10.3389/fonc.2020.01529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the leading cancer-related cause of death in women worldwide. It is of great relevance to understand the mechanism responsible for tumor progression and identify unique oncogenesis markers for a higher chance of preventing this malignant disease. The high-expression OC-2 gene has been shown to be a potential candidate for regulating oncogenesis and angiogenesis in ovarian cancer. Hence, we wished to investigate the impact of OC-2 gene on ovarian cancer aggressiveness. CRISPR/Cas9, a gene editing tool, allows for direct ablation of OC-2 at the genomic level, and we successfully generated OC-2 KO cell lines from SKOV3 and CAOV3 cells. In an apoptosis assay, OC-2 KO induced the apoptosis activation of tumor cells, with the up-regulation of Bax/Caspase-8 and the down-regulation of Bcl-2. Consequently, the proliferation, migration, and invasion of OC-2 KO cell lines were significantly inhibited. Assays of qRT-PCR and Western blotting showed that the expression levels of pro-angiogenic growth factors VEGFA, FGF2, HGF, and HIF-1α and the activation of Akt/ERK pathways were significantly down-regulated at the loss of OC-2. In the xenograft model, OC-2 KO potently suppressed the subcutaneous tumor growth, with the inhibition exceeding 56%. The down-regulation of CD31 and relevant pro-angiogenic growth factors were observed in OC-2 KO tumor tissues. Taken together, OC-2 depletion negatively regulated the ovarian cancer progression possibly by apoptosis activation and angiogenesis inhibition. This work revealed a pivotal regulator of apoptosis and angiogenesis networks in ovarian cancer, and we applied the CRISPR/Cas9 system to the transcription factor pathway for developing a broad-acting anti-tumor gene therapy.
Collapse
Affiliation(s)
- Tongyi Lu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Wenhui Zhu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Yinmei Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Simin Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Binhua Wu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Ding Q, Dong S, Wang R, Zhang K, Wang H, Zhou X, Wang J, Wong K, Long Y, Zhu S, Wang W, Ren H, Zeng Y. A nine-gene signature related to tumor microenvironment predicts overall survival with ovarian cancer. Aging (Albany NY) 2020; 12:4879-4895. [PMID: 32208363 PMCID: PMC7138578 DOI: 10.18632/aging.102914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Mounting evidence suggests that immune cell infiltration within the tumor microenvironment (TME) is a crucial regulator of carcinogenesis and therapeutic efficacy in ovarian cancer (OC). In this study, 593 OC patients from TCGA were divided into high and low score groups based on their immune/stromal scores resulting from analysis utilizing the ESTIMATE algorithm. Differential expression analysis revealed 294 intersecting genes that influencing both the immune and stromal scores. Further Cox regression analysis identified 34 differentially expressed genes (DEGs) as prognostic-related genes. Finally, the nine-gene signature was derived from the prognostic-related genes using a Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression. This nine-gene signature could effectively distinguish the high-risk patients in the training (TCGA database) and validation (GSE17260) cohorts (all p < 0.01). A time-dependent receiver operating characteristic (ROC) analysis showed that the nine-gene signature had a reasonable predictive accuracy (AUC = 0.707, AUC =0.696) in both cohorts. In addition, this nine-gene signature is associated with immune infiltration in TME by Gene Set Variation Analysis (GSVA), and can be used to predict the survival of patients with OC.
Collapse
Affiliation(s)
- Qi Ding
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.,Engineering Technology Research Center for Diagnosis-Treatment and Application of Tumor Liquid Biopsy, Changsha, China
| | - Shanshan Dong
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.,Engineering Technology Research Center for Diagnosis-Treatment and Application of Tumor Liquid Biopsy, Changsha, China
| | - Ranran Wang
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.,Engineering Technology Research Center for Diagnosis-Treatment and Application of Tumor Liquid Biopsy, Changsha, China
| | - Keqiang Zhang
- The Fifth Department of Gynecological Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Hui Wang
- Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiao Zhou
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.,Engineering Technology Research Center for Diagnosis-Treatment and Application of Tumor Liquid Biopsy, Changsha, China
| | - Jing Wang
- The Fifth Department of Gynecological Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Kee Wong
- Engineering Technology Research Center for Diagnosis-Treatment and Application of Tumor Liquid Biopsy, Changsha, China
| | - Ying Long
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Shuai Zhu
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Weigang Wang
- The Fifth Department of Gynecological Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Huayi Ren
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Yong Zeng
- Translational Medicine Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.,Engineering Technology Research Center for Diagnosis-Treatment and Application of Tumor Liquid Biopsy, Changsha, China
| |
Collapse
|
15
|
Yang WL, Lu Z, Guo J, Fellman BM, Ning J, Lu KH, Menon U, Kobayashi M, Hanash S, Celestino J, Skates SJ, Bast RC. Human epididymis protein 4 antigen-autoantibody complexes complement cancer antigen 125 for detecting early-stage ovarian cancer. Cancer 2020; 126:725-736. [PMID: 31714597 PMCID: PMC6992519 DOI: 10.1002/cncr.32582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/21/2019] [Accepted: 07/18/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Early detection of ovarian cancer could significantly improve patient outcomes. Cancer antigen 125 (CA 125) is elevated in sera from approximately 60% of patients with early-stage (I/II) disease. Sensitivity might be improved through the combination of CA 125 with other biomarkers. Among potential biomarkers, antigen-autoantibody (Ag-AAb) complexes have received relatively little attention. METHODS Luminex-based immunoassays were used to measure human epididymis protein 4 (HE4), anti-HE4 autoantibody, and HE4 Ag-AAb complexes in sera from patients with early- (n = 73) and late-stage ovarian cancers (n = 49) at the time of diagnosis and from asymptomatic women with (n = 15) or without ovarian cancer (n = 212) enrolled in the Normal Risk Ovarian Cancer Screening Study. RESULTS At 98% specificity for healthy, asymptomatic women, 7% of patients with early-stage (I/II) ovarian cancer and 4% of patients with late-stage (III/IV) disease had elevated levels of HE4 autoantibody, whereas elevated levels of HE4 Ag-AAb complexes were detected in sera from 38% of early-stage cases and 31% of late-stage cases. Complementarity was observed in receiver operating characteristic (ROC) curves between HE4 Ag-AAb complexes and CA 125 levels in early-stage ovarian cancer (P < .001). CA 125 detected 63% of cases, and a combination of CA 125 and HE4 Ag-AAb complexes detected 81%. Complementarity was also observed in ROC curves for an independent validation set with 69 early-stage patients (P = .039). HE4 Ag-AAb complexes were detected in serial preclinical serum samples from women destined to develop ovarian cancer: they correlated with CA 125 but did not provide a lead time. CONCLUSIONS HE4 Ag-AAb complexes could complement CA 125 in detecting a higher fraction of early-stage ovarian cancers.
Collapse
Affiliation(s)
- Wei-Lei Yang
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
- Odyssey Program, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jing Guo
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bryan M. Fellman
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jing Ning
- Department of Biostatistics, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Karen H. Lu
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Usha Menon
- University College London, London, United Kingdom
| | - Makoto Kobayashi
- Department of Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Samir Hanash
- Department of Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | | | - Robert C. Bast
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
16
|
Samanta S, Tamura S, Dubeau L, Mhawech-Fauceglia P, Miyagi Y, Kato H, Lieberman R, Buckanovich RJ, Lin YG, Neamati N. Clinicopathological significance of endoplasmic reticulum stress proteins in ovarian carcinoma. Sci Rep 2020; 10:2160. [PMID: 32034256 PMCID: PMC7005787 DOI: 10.1038/s41598-020-59116-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related mortality in the United States due to the late-stage disease at diagnosis. Overexpression of GRP78 and PDI following endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) promote growth and invasion in cancer. To identify novel prognostic biomarkers in EOC, here we determined the expression of ER stress-associated proteins (GRP78, ATF6 and PERK) and correlated with clinical outcome in EOC. Tissue microarray (TMA) samples from 415 tissues collected from three cancer centers (UM, USC, and KCCRI) were used to assess the expression levels of ER-associated proteins using immunohistochemistry (IHC). We observed that the expression levels of GRP78 (p < 0.0001), ATF6 (p < 0.0001), and PERK (p < 0.0001) were significantly increased in specimens of EOC compared to normal tissues, including in the serous subtype (p < 0.0001). Previously we reported that high expression of PDI correlated with poor patient survival in EOC. Here we showed that overexpression of GRP78 and PDI protein expression correlated with poor patient survival (p = 0.03), while low expression of combined GRP78 and PDI correlated with better survival (p = 0.01) in high-grade serous. The increased expression of ER stress-associated proteins in EOC suggests a role for ER stress and the UPR in EOC. More importantly, our results demonstrate that GRP78 and PDI are potential biomarkers for EOC and could be used as dual prognostic markers.
Collapse
Affiliation(s)
- Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Shuzo Tamura
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Louis Dubeau
- USC/Norris Comprehensive Cancer Center and Department of Pathology, Keck School of Medicine of USC, 1441 Eastlake Avenue, Los Angeles, CA, 90089, USA
| | - Paulette Mhawech-Fauceglia
- USC/Norris Comprehensive Cancer Center and Department of Pathology, Keck School of Medicine of USC, 1441 Eastlake Avenue, Los Angeles, CA, 90089, USA
| | - Yohei Miyagi
- Research Institute and Department of Gynecologic Oncology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Hisamori Kato
- Research Institute and Department of Gynecologic Oncology, Kanagawa Cancer Center, 2-3-2 Nakao, Asahi-ku, Yokohama, 241-8515, Japan
| | - Rich Lieberman
- Department of Internal Medicine, Division of Hematology-Oncology, Division of Gynecologic Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Ronald J Buckanovich
- Department of Internal Medicine, Division of Hematology-Oncology, Division of Gynecologic Oncology, University of Michigan, Ann Arbor, MI, USA
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvonne G Lin
- USC/Norris Comprehensive Cancer Center and Department of Obstetrics-Gynecology, Keck School of Medicine of USC, 1441 Eastlake Avenue, Los Angeles, CA, 90089, USA
- Genentech-Roche, 1 DNA Way, South San Francisco, CA, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
El Bairi K, Afqir S, Amrani M. Is HE4 Superior over CA-125 in the Follow-up of Patients with Epithelial Ovarian Cancer? Curr Drug Targets 2020; 21:1026-1033. [PMID: 32334501 DOI: 10.2174/1389450121666200425211732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Notwithstanding important advances in the treatment of epithelial ovarian cancer (EOC), this disease is still a leading cause of global high mortality from gynecological malignancies. Recurrence in EOC is inevitable and it is responsible for poor survival rates. There is a critical need for novel effective biomarkers with improved accuracy compared to the standard carbohydrate antigen-125 (CA-125) for follow-up. The human epididymis protein 4 (HE4) is used for early detection of EOC (ROMA algorithm) as well as for predicting optimal cytoreduction after neoadjuvant chemotherapy and survival outcomes. Notably, the emerging HE4 is a promising prognostic biomarker that has displayed better accuracy in various recent studies for detecting recurrent disease. In this mini-review, we discussed the potential of HE4 as an accurate predictor of EOC recurrence.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Mohamed Ist University, Oujda, Morocco
| | - Said Afqir
- Faculty of Medicine and Pharmacy, Mohamed Ist University, Oujda, Morocco
| | - Mariam Amrani
- Faculty of Medicine and Pharmacy, Mohamed V University, Rabat, Morocco
| |
Collapse
|
18
|
High density of CD66b in primary high-grade ovarian cancer independently predicts response to chemotherapy. J Cancer Res Clin Oncol 2019; 146:127-136. [PMID: 31853662 DOI: 10.1007/s00432-019-03108-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Ovarian carcinoma (OC) is the most lethal female genital cancer. After a primary curative surgical approach followed by chemotherapy, a fraction of the patients recur with chemoresistant disease. Data indicate a favorable therapeutic effect of tumor-infiltrating neutrophils (TIN) in OC. Our aim was to investigate the prognostic role of CD66b expression, corresponding to neutrophilic infiltration for recurrence-free survival (RFS) and overall survival (OS) in patients with OC. METHODS A collective of 47 primary serous ovarian carcinoma and their matching recurrences were processed and stained with CD66b using immunohistochemistry. Tumors from patients with RFS of more than 6 months were defined as chemosensitive. Statistical analysis of CD66b expression was performed to assess the clinical endpoints. RESULTS High density of CD66b expressing neutrophils in primary carcinoma was associated with chemosensitivity (p = 0.014) and longer RFS (p = 0.001). Univariate analysis identified high density of CD66b expressing neutrophils as a predictor for favorable RFS (HR 0.41, 95% CI 0.22-0.76, p < 0.005). Residual disease > 2 cm (HR 3.67, 95% CI 1.62-8.31, p < 0.002) and higher number of chemotherapy cycles (HR 1.28, 95% CI 1.05-1.55, p < 0.013) were associated with worse RFS. Multivariate analysis showed that high density of CD66b expressing neutrophils (HR 0.22, 95% CI 0.10-0.48, p < 0.001) and residual disease > 2 cm (HR 3.69, 95% CI 1.43-9.53, p < 0.007) were independent predictors of RFS but had no impact on OS. CONCLUSION High CD66b neutrophil density in primary high-grade OC predicts good response to initial chemotherapy and longer recurrence-free survival independent of known risk factors.
Collapse
|
19
|
Chen L, Cheng X, Tu W, Qi Z, Li H, Liu F, Yang Y, Zhang Z, Wang Z. Apatinib inhibits glycolysis by suppressing the VEGFR2/AKT1/SOX5/GLUT4 signaling pathway in ovarian cancer cells. Cell Oncol (Dordr) 2019; 42:679-690. [PMID: 31325096 DOI: 10.1007/s13402-019-00455-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Apatinib is a tyrosine kinase inhibitor that targets vascular endothelial growth factor receptor-2 (VEGFR2), and has shown encouraging therapeutic effects in various malignant tumors. As yet, however, the role of apatinib in ovarian cancer has remained unknown. Here, we sought to elucidate the role of apatinib in the in vitro and in vivo viability and proliferation of ovarian cancer cells, as well as in glucose metabolism in these cells. METHODS The effects of apatinib on ovarian cancer cell viability and proliferation were assessed using Cell Counting Kit-8 (CCK-8) and colony formation assays, respectively. The expression of VEGFR2/AKT1/SOX5/GLUT4 pathway proteins was assessed using Western blotting, and glucose uptake and lactate production assays were used to detect glycolysis in ovarian cancer cells. SOX5 was exogenously over-expressed and silenced in ovarian cancer cells using expression vector and shRNA-based methods, respectively. RNA expression analyses were performed using RNA-seq and gene-chip-based methods. GLUT4 promoter activity was assessed using a dual-luciferase reporter assay. The expression of p-VEGFR2 (Tyr1175), p-AKT1 (Ser473), p-GSK3β (Ser9), SOX5 and GLUT4 in xenograft tissues was assessed using immunohistochemistry (IHC). RESULTS We found that apatinib inhibited the in vitro and in vivo viability and proliferation in Hey and OVCA433 ovarian cancer cells in a dose-dependent and time-dependent manner. We also found that apatinib effectively suppressed glucose uptake and lactate production by blocking the expression of GLUT4 in these cells. In addition, we found that SOX5 predominantly rescued the inhibitory effect of apatinib on GLUT4 expression by activating its promoter. Finally, we found that apatinib regulated the expression of SOX5 by suppressing the VEGFR2/AKT1/GSK3β signaling pathway. CONCLUSIONS From our results, we conclude that apatinib suppresses the in vitro and in vivo viability and proliferation of ovarian cancer cells, as well as glycolysis by inhibiting the VEGFR2/AKT1/GSK3β/SOX5/GLUT4 signaling pathway. Apatinib may serve as a promising drug for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Xi Cheng
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Zihao Qi
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Haoran Li
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Fei Liu
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Yufei Yang
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Zhe Zhang
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
| | - Ziliang Wang
- Department of Gynecological Oncology and Department of Medical Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Obstetrics and Gynecology, Xihua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
20
|
Zuo L, Niu W, Li A. Isolation of Circulating Tumor Cells of Ovarian Cancer by Transferrin Immunolipid Magnetic Spheres and Its Preliminary Clinical Application. ACTA ACUST UNITED AC 2019. [DOI: 10.1142/s1793984419400014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Circulating tumor cells (CTCs) play an important role in cancer prognosis, treatment monitoring and metastasis diagnosis. However, due to the extremely low concentration of CTC in the peripheral blood, its isolation and enrichment are critical steps for early diagnosis. Herein, we used the transferrin modified lipid magnetic spheres for the isolation of ovarian cancer CTCs, and studied the relationship between the CTCs count and the clinical case parameters, prognosis of ovarian cancer. The result showed that no CTC was found in the peripheral blood of 30 patients with benign cysts, and 34 out of 46 patients with ovarian cancer were positive for CTC, with a positive rate of 73.9%. Analysis of the parameters of the clinical cases showed that the positive rate of CTC was related to the clinical stages, and that it was not significantly related to the age, histopathological types and pathological grades of patients. Of the 34 CTC-positive patients, 18 had progression-free survival, with a survival rate of 52.9%, and of the 11 CTC-negative patients, 9 had progression-free survival, with a survival rate of 81.8%. The results showed that the transferrin lipid magnetic spheres prepared in this study, could effectively isolate the CTCs in the peripheral blood of patients with ovarian cancer, that the level of CTC in ovarian cancer patients was related to its clinical stage, and that the progression-free survival of the patients with a high level of CTCs was relatively short. Therefore, this study shows that the transferrin lipid magnetic sphere can achieve effective isolation of ovarian cancer CTC, which can be used as an auxiliary diagnostic method in comprehensive diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Li Zuo
- Department of Chemotherapy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, P. R. China
| | - Wei Niu
- Department of Chemotherapy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, P. R. China
| | - Anqi Li
- Department of Chemotherapy, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai 200240, P. R. China
| |
Collapse
|
21
|
El Bairi K, Atanasov AG, Amrani M, Afqir S. The arrival of predictive biomarkers for monitoring therapy response to natural compounds in cancer drug discovery. Biomed Pharmacother 2019; 109:2492-2498. [PMID: 30551510 DOI: 10.1016/j.biopha.2018.11.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/14/2018] [Accepted: 11/25/2018] [Indexed: 02/05/2023] Open
Abstract
Intrinsic or acquired drug resistance, adverse drug reactions and tumor heterogeneity between and within cancer patients limit the efficacy of clinical management of advanced cancers. To overcome these barriers, predictive biomarkers have recently emerged to guide medical oncologists in the selection of cancer patients who will respond to various anticancer treatments and to improve the toxicity to benefit ratio. Notably, targeted therapy has significantly benefited from these advances, but the application of predictive biomarkers have been a bit slower with some drugs derived from natural sources such as trabectedin, cabazitaxel and alvocidib. In this paper, we discuss some recent advances regarding the use of cancer biomarkers to predict efficacy of some selected natural compounds with a focus on human clinical studies.
Collapse
Affiliation(s)
- Khalid El Bairi
- Cancer Biomarkers Working Group, Mohamed I(st) University, Oujda, Morocco; Faculty of Medicine and Pharmacy, Mohamed I(st) University, Oujda, Morocco.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, Vienna, Austria; GLOBE Program Association (GLOBE-PA), Grandville, MI, USA
| | - Mariam Amrani
- Equipe de Recherche en Virologie et Onco-biologie, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| | - Said Afqir
- Faculty of Medicine and Pharmacy, Mohamed I(st) University, Oujda, Morocco; Department of Medical Oncology, Mohamed VI University Hospital, Oujda, Morocco
| |
Collapse
|
22
|
MiR-424-3p suppresses galectin-3 expression and sensitizes ovarian cancer cells to cisplatin. Arch Gynecol Obstet 2018; 299:1077-1087. [PMID: 30585294 PMCID: PMC6435611 DOI: 10.1007/s00404-018-4999-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022]
Abstract
Purpose Assessment of miR-424-3p mimic capability to sensitize SK-OV-3 and TOV-21G ovarian cancer cells to cisplatin by decreasing the expression of galectin-3, which is an anti-apoptotic protein overexpressed in ovarian cancer and associated with resistance to chemotherapy. Methods We performed a reverse transfection of miR-424-3p mimic into SK-OV-3 and TOV-21G ovarian cancer cells, followed by Real Time™ RT-PCR analysis of the expression of miR-424-3p and galectin-3 mRNA as well as ELISA assay for galectin-3 protein level. Next, we studied the viability (XTT assay), proliferation (EdU incorporation assay), and apoptosis (ELISA assay) of the both cell lines transfected with the mimic and treated with cisplatin. Results We demonstrated that miR-424-3p mimic effectively transfects into SK-OV-3 and TOV-21G ovarian cancer cells in which it significantly suppresses the expression of galectin-3 at the protein level, but not at the mRNA level. Reverse transfection of both cell lines with the mimic, followed by treatment with cisplatin, resulted in a reduction in cell viability and proliferation as well as an increase in the induction of apoptosis. Conclusions MiR-424-3p mimic sensitizes SK-OV-3 and TOV-21G ovarian cancer cells to cisplatin by decreasing the expression of galectin-3.
Collapse
|
23
|
Emerging ways to treat breast cancer: will promises be met? Cell Oncol (Dordr) 2018; 41:605-621. [PMID: 30259416 DOI: 10.1007/s13402-018-0409-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer among women and it is responsible for more than 40,000 deaths in the United States and more than 500,000 deaths worldwide each year. In previous decades, the development of improved screening, diagnosis and treatment methods has led to decreases in BC mortality rates. More recently, novel targeted therapeutic options, such as the use of monoclonal antibodies and small molecule inhibitors that target specific cancer cell-related components, have been developed. These components include ErbB family members (HER1, HER2, HER3 and HER4), Ras/MAPK pathway components (Ras, Raf, MEK and ERK), VEGF family members (VEGFA, VEGFB, VEGFC, VEGF and PGF), apoptosis and cell cycle regulators (BAK, BAX, BCL-2, BCL-X, MCL-1 and BCL-W, p53 and PI3K/Akt/mTOR pathway components) and DNA repair pathway components such as BRCA1. In addition, long noncoding RNA inhibitor-, microRNA inhibitor/mimic- and immunotherapy-based approaches are being developed for the treatment of BC. Finally, a novel powerful technique called CRISPR-Cas9-based gene editing is emerging as a precise tool for the targeted treatment of cancer, including BC. CONCLUSIONS Potential new strategies that are designed to specifically target BC are presented. Several clinical trials using these strategies are already in progress and have shown promising results, but inherent limitations such as off-target effects and low delivery efficiencies still have to be resolved. By improving the clinical efficacy of current therapies and exploring new ones, it is anticipated that novel ways to overcome BC may become attainable.
Collapse
|
24
|
Dai Y, Sun C, Feng Y, Jia Q, Zhu B. Potent immunogenicity in BRCA1-mutated patients with high-grade serous ovarian carcinoma. J Cell Mol Med 2018; 22:3979-3986. [PMID: 29855141 PMCID: PMC6050488 DOI: 10.1111/jcmm.13678] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/05/2018] [Indexed: 12/28/2022] Open
Abstract
High‐grade serous ovarian carcinomas (HGSOCs) were among the tumours with an unsatisfactory outcome of immune checkpoint inhibitors (ICIs). It is imperative to develop feasible biomarker for identifying responsive candidates and guiding precise immunotherapy for HGSOC patients. Here, we analysed genomic data of patients with HGSOCs to depict their immunological phenotype of tumour microenvironment (TME) and figure out the major determinants of immunogenicity. In comparison with other solid tumours, we observed the lowest levels of PD‐L1, total mutation burden (TMB) and cytolytic molecules in HGSOCs. Surprisingly, TMB is not certainly positively related to tumour immune response as it failed to predict the response to ICIs in a considerable portion of patients in previous clinical trials. By a machine learning approach in search of biomarkers for immunotherapy implications for HGSOCs, we identified the ten most dominant factors determining the immunogenicity of HGSOCs. Interestingly, we found that BRCA1 mutated tumours presented a potent immunogenic phenotype, independent of TMB, meeting the criteria of both our dominant factors and the determinants of immunogenicity established before. Our findings provide evidence that BRCA1‐mutation may be served as a predictive biomarker in guiding ICI therapies for the patients with HGSOCs.
Collapse
Affiliation(s)
- Ying Dai
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chengdu Sun
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi Feng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Alves ITS, Condinho M, Custódio S, Pereira BF, Fernandes R, Gonçalves V, da Costa PJ, Lacerda R, Marques AR, Martins-Dias P, Nogueira GR, Neves AR, Pinho P, Rodrigues R, Rolo E, Silva J, Travessa A, Leite RP, Sousa A, Romão L. Genetics of personalized medicine: cancer and rare diseases. Cell Oncol (Dordr) 2018; 41:335-341. [PMID: 29633150 DOI: 10.1007/s13402-018-0379-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 12/28/2022] Open
Abstract
The 21st annual meeting of the Portuguese Society of Human Genetics (SPGH), organized by Luísa Romão, Ana Sousa and Rosário Pinto Leite, was held in Caparica, Portugal, from the 16th to the 18th of November 2017. Having entered an era in which personalized medicine is emerging as a paradigm for disease diagnosis, treatment and prevention, the program of this meeting intended to include lectures by leading national and international scientists presenting exceptional findings on the genetics of personalized medicine. Various topics were discussed, including cancer genetics, transcriptome dynamics and novel therapeutics for cancers and rare disorders that are designed to specifically target molecular alterations in individual patients. Several panel discussions were held to emphasize (ethical) issues associated with personalized medicine, including genetic cancer counseling.
Collapse
Affiliation(s)
- Inês Teles Siefers Alves
- Department of Cell Biology and Biochemistry, Springer Science + Business Media B.V, Van Godewijckstraat 30, 3311, GX, Dordrecht, The Netherlands.
| | - Manuel Condinho
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Sónia Custódio
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Lisbon, Portugal
| | - Bruna F Pereira
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Rafael Fernandes
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Vânia Gonçalves
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo J da Costa
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Rafaela Lacerda
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana Rita Marques
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patrícia Martins-Dias
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Gonçalo R Nogueira
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana Rita Neves
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patrícia Pinho
- Genetics Laboratory, Hospital Center of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Raquel Rodrigues
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Lisbon, Portugal
| | - Eva Rolo
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Lisbon, Portugal
| | - Joana Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - André Travessa
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Lisbon, Portugal
| | - Rosário Pinto Leite
- Genetics Laboratory, Hospital Center of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ana Sousa
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
26
|
Manwar Hussain MR, Iqbal Z, Qazi WM, Hoessli DC. Charge and Polarity Preferences for N-Glycosylation: A Genome-Wide In Silico Study and Its Implications Regarding Constitutive Proliferation and Adhesion of Carcinoma Cells. Front Oncol 2018. [PMID: 29541627 PMCID: PMC5835500 DOI: 10.3389/fonc.2018.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The structural and functional diversity of the human proteome is mediated by N- and O-linked glycosylations that define the individual properties of extracellular and membrane-associated proteins. In this study, we utilized different computational tools to perform in silico based genome-wide mapping of 1,117 human proteins and unravel the contribution of both penultimate and vicinal amino acids for the asparagine-based, site-specific N-glycosylation. Our results correlate the non-canonical involvement of charge and polarity environment of classified amino acids (designated as L, O, A, P, and N groups) in the N-glycosylation process, as validated by NetNGlyc predictions, and 130 literature-reported human proteins. From our results, particular charge and polarity combinations of non-polar aliphatic, acidic, basic, and aromatic polar side chain environment of both penultimate and vicinal amino acids were found to promote the N-glycosylation process. However, the alteration in side-chain charge and polarity environment of genetic variants, particularly in the vicinity of Asn-containing epitope, may induce constitutive glycosylation (e.g., aberrant glycosylation at preferred and non-preferred sites) of membrane proteins causing constitutive proliferation and triggering epithelial-to-mesenchymal transition. The current genome-wide mapping of 1,117 proteins (2,909 asparagine residues) was used to explore charge- and polarity-based mechanistic constraints in N-glycosylation, and discuss alterations of the neoplastic phenotype that can be ascribed to N-glycosylation at preferred and non-preferred sites.
Collapse
Affiliation(s)
- Muhammad Ramzan Manwar Hussain
- Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics (CAS), Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zeeshan Iqbal
- Institute of Molecular Sciences & Bioinformatics, Lahore, Pakistan.,Department of Physics, GC University Lahore, Lahore, Pakistan
| | - Wajahat M Qazi
- Center for Intelligent Machines and Robotics, Department of Computer Science, COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Daniel C Hoessli
- Institute of Molecular Sciences & Bioinformatics, Lahore, Pakistan.,Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
27
|
El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, Gouri A, Ghazi B. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220:49-76. [PMID: 29310839 DOI: 10.1016/j.cancergen.2017.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1(st) University, Oujda, Morocco.
| | - Kanwal Tariq
- B-10 Jumani Center, Garden East, Karachi 74400, Pakistan
| | - Imane Himri
- Laboratory of Biochemistry, Faculty of Sciences, Mohamed I(st) Universiy, Oujda, Morocco; Delegation of the Ministry of Health, Oujda, Morocco
| | - Abdeslam Jaafari
- Laboratoire de Génie Biologique, Equipe d'Immunopharmacologie, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Maroc
| | - Wiam Smaili
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Maroc; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Maroc
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
28
|
Gschwantler-Kaulich D, Weingartshofer S, Rappaport-Fürhauser C, Zeilinger R, Pils D, Muhr D, Braicu EI, Kastner MT, Tan YY, Semmler L, Sehouli J, Singer CF. Diagnostic markers for the detection of ovarian cancer in BRCA1 mutation carriers. PLoS One 2017; 12:e0189641. [PMID: 29244844 PMCID: PMC5731824 DOI: 10.1371/journal.pone.0189641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Background Screening for ovarian cancer (OC) in women at high risk consists of a combination of carbohydrate antigen 125 (CA125) and transvaginal ultrasound, despite their low sensitivity and specificity. This could be improved by the combination of several biomarkers, which has been shown in average risk patients but has not been investigated until now in female BRCA mutation carriers. Methods Using a multiplex, bead-based, immunoassay system, we analyzed the concentrations of leptin, prolactin, osteopontin, insulin-like growth factor II, macrophage inhibitory factor, CA125 and human epididymis antigen 4 in 26 healthy wild type women, 26 healthy BRCA1 mutation carriers, 28 wildtype OC patients and 26 OC patients with BRCA1 mutation. Results Using the ROC analysis, we found a high overall sensitivity of 94.3% in differentiating healthy controls from OC patients with comparable results in the wildtype subgroup (sensitivity 92.8%, AUC = 0.988; p = 5.2e-14) as well as in BRCA1 mutation carriers (sensitivity 95.2%, AUC = 0.978; p = 1.7e-15) at an overall specificity of 92.3%. The used algorithm also allowed to identify healthy BRCA1 mutation carriers when compared to healthy wildtype women (sensitivity 88.4%, specificity 80.7%, AUC = 0.895; p = 6e-08), while this was less pronounced in patients with OC (sensitivity 66.7%, specificity 67.8%, AUC = 0.724; p = 0.00065). Conclusion We have developed an algorithm, which can differentiate between healthy women and OC patients and have for the first time shown, that such an algorithm can also be used in BRCA mutation carriers. To clarify a suggested benefit to the existing early detection program, large prospective trials with mainly early stage OC cases are warranted.
Collapse
Affiliation(s)
- Daphne Gschwantler-Kaulich
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
- * E-mail:
| | - Sigrid Weingartshofer
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| | | | - Robert Zeilinger
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| | - Dietmar Pils
- Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Daniela Muhr
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| | - Elena I. Braicu
- Department of Gynecology with Center for Oncological Surgery, European Competence Center for Ovarian Cancer, Charité - Campus Virchow-Klinikum, University Medicine of Berlin, Berlin, Germany
| | - Marie-Therese Kastner
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| | - Yen Y. Tan
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Lorenz Semmler
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| | - Jalid Sehouli
- Department of Gynecology with Center for Oncological Surgery, European Competence Center for Ovarian Cancer, Charité - Campus Virchow-Klinikum, University Medicine of Berlin, Berlin, Germany
| | - Christian F. Singer
- Department of Obstetrics and Gynecology, Cancer Comprehensive Center, Medical University Vienna, Vienna, Austria
| |
Collapse
|
29
|
Wilson AL, Moffitt LR, Duffield N, Rainczuk A, Jobling TW, Plebanski M, Stephens AN. Autoantibodies against HSF1 and CCDC155 as Biomarkers of Early-Stage, High-Grade Serous Ovarian Cancer. Cancer Epidemiol Biomarkers Prev 2017; 27:183-192. [PMID: 29141850 DOI: 10.1158/1055-9965.epi-17-0752] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022] Open
Abstract
Background: Tumor-directed circulating autoantibodies (AAb) are a well-established feature of many solid tumor types, and are often observed prior to clinical disease manifestation. As such, they may provide a good indicator of early disease development. We have conducted a pilot study to identify novel AAbs as markers of early-stage HGSOCs.Methods: A rare cohort of patients with early (FIGO stage Ia-c) HGSOCs for IgG, IgA, and IgM-mediated AAb reactivity using high-content protein arrays (containing 9,184 individual proteins). AAb reactivity against selected antigens was validated by ELISA in a second, independent cohort of individual patients.Results: A total of 184 antigens were differentially detected in early-stage HGSOC patients compared with all other patient groups assessed. Among the six most highly detected "early-stage" antigens, anti-IgA AAbs against HSF1 and anti-IgG AAbs CCDC155 (KASH5; nesprin 5) were significantly elevated in patients with early-stage malignancy. Receiver operating characteristic (ROC) analysis suggested that AAbs against HSF1 provided better detection of early-stage malignancy than CA125 alone. Combined measurement of anti-HSF1, anti-CCDC155, and CA125 also improved efficacy at higher sensitivity.Conclusions: The combined measurement of anti-HSF1, anti-CCDC155, and CA125 may be useful for early-stage HGSOC detection.Impact: This is the first study to specifically identify AAbs associated with early-stage HGSOC. The presence and high frequency of specific AAbs in early-stage cancer patients warrants a larger scale examination to define their value for early disease detection at primary diagnosis and/or recurrence. Cancer Epidemiol Biomarkers Prev; 27(2); 183-92. ©2017 AACR.
Collapse
Affiliation(s)
- Amy L Wilson
- Department of Molecular and Translational Sciences, Monash University, Victoria, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Victoria, Australia
| | - Laura R Moffitt
- Department of Molecular and Translational Sciences, Monash University, Victoria, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Victoria, Australia
| | - Nadine Duffield
- Department of Molecular and Translational Sciences, Monash University, Victoria, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Victoria, Australia
| | - Adam Rainczuk
- Department of Molecular and Translational Sciences, Monash University, Victoria, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Victoria, Australia
| | - Tom W Jobling
- Obstetrics and Gynaecology, Monash Medical Centre, Clayton, Victoria, Australia.,Epworth Research Institute, Epworth HealthCare, Richmond, Victoria, Australia
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Melbourne, Australia.,School of Health and Biomedical Sciences, RMIT, Bundoora, Victoria, Australia
| | - Andrew N Stephens
- Department of Molecular and Translational Sciences, Monash University, Victoria, Australia. .,Centre for Cancer Research, Hudson Institute of Medical Research, Victoria, Australia.,Epworth Research Institute, Epworth HealthCare, Richmond, Victoria, Australia
| |
Collapse
|
30
|
Qu Y, He Y, Li Z, Chen X, Liu Q, Zou S, Kong C, Liu Y, Gao C, Zhang G, Zhu W. Constructing an ovarian cancer metastasis index by dissecting medical records. Oncotarget 2017; 8:102212-102222. [PMID: 29254237 PMCID: PMC5731947 DOI: 10.18632/oncotarget.22336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/22/2017] [Indexed: 01/16/2023] Open
Abstract
Globally, ovarian cancer (OC) is the leading cause of gynecological cancer-associated deaths. Metastasis, especially multi-organ metastasis, determines the speed of disease progression. A multicenter retrospective study was performed to identify the factors that drive metastasis, from medical records of 534 patients with OC. The average number of target organs per patient was 3.66, indicating multi-organ metastasis. The most common sites of metastasis were large intestine and greater omentum, which were prone to co-metastasis. Results indicated that ascites and laterality, rather than age and menopausal status, were the potential drivers for multi-organ metastasis. Cancer antigen (CA) 125 (CA-125) and nine other blood indicators were found to show a significant, but weak correlation with multi-organ metastasis. A neural network cascade-multiple linear regression hybrid model was built to create an ovarian cancer metastasis index (OCMI) by integration of six multi-organ metastasis drivers including CA-125, blood platelet count, lymphocytes percentage, prealbumin, ascites, and laterality. In an independent set of 267 OC medical records, OCMI showed a moderate correlation with multi-organ metastasis (Spearman ρ = 0.67), the value being 0.72 in premenopausal patients, and good performance in identifying multi-organ metastasis (area under the receiver operating characteristic curve = 0.832), implying a potential prognostic marker for OC.
Collapse
Affiliation(s)
- Yanjun Qu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan He
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangming Li
- Department of Pharmacy, Guangdong Hospital of Integrated Chinese and Western Medicine, Foshan, China
| | - Xiuwei Chen
- Department of Gynecology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuangshuang Zou
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Congcong Kong
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yixiu Liu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ce Gao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenliang Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Institute of Clinical Pharmacy, The Heilongjiang Key Laboratory of Drug Research, Harbin Medical University, Harbin, China
| |
Collapse
|
31
|
Boylan KLM, Geschwind K, Koopmeiners JS, Geller MA, Starr TK, Skubitz APN. A multiplex platform for the identification of ovarian cancer biomarkers. Clin Proteomics 2017; 14:34. [PMID: 29051715 PMCID: PMC5634875 DOI: 10.1186/s12014-017-9169-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Currently, there are no FDA approved screening tools for detecting early stage ovarian cancer in the general population. Development of a biomarker-based assay for early detection would significantly improve the survival of ovarian cancer patients.
Methods We used a multiplex approach to identify protein biomarkers for detecting early stage ovarian cancer. This new technology (Proseek® Multiplex Oncology Plates) can simultaneously measure the expression of 92 proteins in serum based on a proximity extension assay. We analyzed serum samples from 81 women representing healthy, benign pathology, early, and advanced stage serous ovarian cancer patients.
Results Principle component analysis and unsupervised hierarchical clustering separated patients into cancer versus non-cancer subgroups. Data from the Proseek® plate for CA125 levels exhibited a strong correlation with current clinical assays for CA125 (correlation coefficient of 0.89, 95% CI 0.83, 0.93). CA125 and HE4 were present at very low levels in healthy controls and benign cases, while higher levels were found in early stage cases, with highest levels found in the advanced stage cases. Overall, significant trends were observed for 38 of the 92 proteins (p < 0.001), many of which are novel candidate serum biomarkers for ovarian cancer. The area under the ROC curve (AUC) for CA125 was 0.98 and the AUC for HE4 was 0.85 when comparing early stage ovarian cancer versus healthy controls. In total, 23 proteins had an estimated AUC of 0.7 or greater. Using a naïve Bayes classifier that combined 12 proteins, we improved the sensitivity corresponding to 95% specificity from 93 to 95% when compared to CA125 alone. Although small, a 2% increase would have a significant effect on the number of women correctly identified when screening a large population. Conclusions These data demonstrate that the Proseek® technology can replicate the results established by conventional clinical assays for known biomarkers, identify new candidate biomarkers, and improve the sensitivity and specificity of CA125 alone. Additional studies using a larger cohort of patients will allow for validation of these biomarkers and lead to the development of a screening tool for detecting early stage ovarian cancer in the general population. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9169-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin L M Boylan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, MMC 395, 420 Delaware Street, S.E, Minneapolis, MN 55455 USA.,Ovarian Cancer Early Detection Program, University of Minnesota, Minneapolis, MN USA
| | - Kate Geschwind
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, MMC 395, 420 Delaware Street, S.E, Minneapolis, MN 55455 USA.,Ovarian Cancer Early Detection Program, University of Minnesota, Minneapolis, MN USA
| | - Joseph S Koopmeiners
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| | - Timothy K Starr
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA.,Department of Genetics, Cell Biology and Genetics, University of Minnesota, Minneapolis, MN USA
| | - Amy P N Skubitz
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, MMC 395, 420 Delaware Street, S.E, Minneapolis, MN 55455 USA.,Ovarian Cancer Early Detection Program, University of Minnesota, Minneapolis, MN USA.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
32
|
Samtani R, Sharma N, Garg D. Effects of Endocrine-Disrupting Chemicals and Epigenetic Modifications in Ovarian Cancer: A Review. Reprod Sci 2017; 25:7-18. [PMID: 28602118 DOI: 10.1177/1933719117711261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ovarian cancer (OC) is a relatively fatal female reproductive malignancy. Since the underlying causes are uncertain, it brings us to believe that both genetic and external factors contribute toward development of this lethal disorder. Exposure to endocrine-disrupting chemicals (EDCs) in the form of occupational usage of pesticides, fungicides, herbicides, plasticizers, cosmetics, and so on is potentially carcinogenic and their ability to cause epigenetic modifications has led us to hypothesize that they may play a catalytic role in OC progression. In response to synthetic chemicals, animal models have demonstrated disturbances in the development of ovaries and steroid hormonal levels but in humans, more research is required. The present review is an attempt to address the impact of EDCs on the hormonal system and gene methylation levels that may lead to malfunctioning of the ovaries which may consequently develop in the form of cancer. It can be concluded that endocrine disruptors do have a potential carcinogenicity and their high proportions in human body may cause epigenetic modifications, prompting ovarian surface epithelium to grow in an abnormal manner.
Collapse
Affiliation(s)
- Ratika Samtani
- 1 Amity Institute of Anthropology, Amity University, Noida, Uttar Pradesh, India
| | - Noopur Sharma
- 1 Amity Institute of Anthropology, Amity University, Noida, Uttar Pradesh, India
| | - Deepali Garg
- 2 Dr Deepali Path Labs & Cancer Diagnostic Centre, Bathinda, Punjab, India
| |
Collapse
|
33
|
El Bairi K, Amrani M, Kandhro AH, Afqir S. Prediction of therapy response in ovarian cancer: Where are we now? Crit Rev Clin Lab Sci 2017; 54:233-266. [PMID: 28443762 DOI: 10.1080/10408363.2017.1313190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Therapy resistance is a major challenge in the management of ovarian cancer (OC). Advances in detection and new technology validation have led to the emergence of biomarkers that can predict responses to available therapies. It is important to identify predictive biomarkers to select resistant and sensitive patients in order to reduce important toxicities, to reduce costs and to increase survival. The discovery of predictive and prognostic biomarkers for monitoring therapy is a developing field and provides promising perspectives in the era of personalized medicine. This review article will discuss the biology of OC with a focus on targetable pathways; current therapies; mechanisms of resistance; predictive biomarkers for chemotherapy, antiangiogenic and DNA-targeted therapies, and optimal cytoreductive surgery; and the emergence of liquid biopsy using recent studies from the Medline database and ClinicalTrials.gov.
Collapse
Affiliation(s)
- Khalid El Bairi
- a Faculty of Medicine and Pharmacy , Mohamed Ist University , Oujda , Morocco
| | - Mariam Amrani
- b Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department , National Institute of Oncology, Université Mohamed V , Rabat , Morocco
| | - Abdul Hafeez Kandhro
- c Department of Biochemistry , Healthcare Molecular and Diagnostic Laboratory , Hyderabad , Pakistan
| | - Said Afqir
- d Department of Medical Oncology , Mohamed VI University Hospital , Oujda , Morocco
| |
Collapse
|
34
|
Guppy BJ, McManus KJ. Synthetic lethal targeting of RNF20 through PARP1 silencing and inhibition. Cell Oncol (Dordr) 2017; 40:281-292. [PMID: 28462496 DOI: 10.1007/s13402-017-0323-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The identification of novel therapeutic targets that exploit the aberrant genetics driving oncogenesis is critical to better combat cancer. RNF20 is somatically altered in numerous cancers, and its diminished expression drives genome instability, a driving factor of oncogenesis. Accordingly, we sought to determine whether PARP1 silencing and inhibition could preferentially kill RNF20-deficient cells using a synthetic lethal strategy. METHODS RNF20 and PARP1 were silenced using RNAi-based approaches. Direct synthetic lethal tests were performed by silencing RNF20 with and without PARP1 and the impact on cell numbers was evaluated using semi-quantitative imaging microscopy. Next, Olaparib and BMN673 (PARP1 inhibitors) were evaluated for their ability to induce preferential killing in RNF20 silenced cells, while real-time cell analyses were used to distinguish cell cytotoxicity from cell cycle arrest. Finally, quantitative imaging microscopy was employed to evaluate marks associated with DNA double-strand breaks (γ-H2AX) and apoptosis (cleaved Caspase-3). RESULTS We found that PARP1 silencing resulted in a decrease in number of RNF20 silenced cells relative to controls. We further found that Olaparib and BMN673 treatments also resulted in fewer RNF20 silenced cells relative to controls. Finally, we found by quantitative imaging microscopy that RNF20 silenced cells treated with BMN673 exhibited significant increases in γ-H2AX and cleaved Caspase-3, suggesting that these treatments induce DNA double-strand breaks that are not adequately repaired within RNF20-silenced cells. CONCLUSIONS Collectively, our data indicate that RNF20 and PARP1 are synthetic lethal interactors, suggesting that cancers with diminished RNF20 expression and/or function may be susceptible to PARP1 inhibitors.
Collapse
Affiliation(s)
- Brent J Guppy
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.,CancerCare Manitoba, Research Institute in Oncology and Hematology, ON6010 - 675 McDermot Avenue, Winnipeg, MB, R3E 0V9, Canada
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada. .,CancerCare Manitoba, Research Institute in Oncology and Hematology, ON6010 - 675 McDermot Avenue, Winnipeg, MB, R3E 0V9, Canada.
| |
Collapse
|