1
|
Sasine JP, Kozlova NY, Valicente L, Dukov J, Tran DH, Himburg HA, Kumar S, Khorsandi S, Chan A, Grohe S, Li M, Kan J, Sehl ME, Schiller GJ, Reinhardt B, Singh BK, Ho R, Yue P, Pasquale EB, Chute JP. Inhibition of Ephrin B2 Reverse Signaling Abolishes Multiple Myeloma Pathogenesis. Cancer Res 2024; 84:919-934. [PMID: 38231476 PMCID: PMC10940855 DOI: 10.1158/0008-5472.can-23-1950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Bone marrow vascular endothelial cells (BM EC) regulate multiple myeloma pathogenesis. Identification of the mechanisms underlying this interaction could lead to the development of improved strategies for treating multiple myeloma. Here, we performed a transcriptomic analysis of human ECs with high capacity to promote multiple myeloma growth, revealing overexpression of the receptor tyrosine kinases, EPHB1 and EPHB4, in multiple myeloma-supportive ECs. Expression of ephrin B2 (EFNB2), the binding partner for EPHB1 and EPHB4, was significantly increased in multiple myeloma cells. Silencing EPHB1 or EPHB4 in ECs suppressed multiple myeloma growth in coculture. Similarly, loss of EFNB2 in multiple myeloma cells blocked multiple myeloma proliferation and survival in vitro, abrogated multiple myeloma engraftment in immune-deficient mice, and increased multiple myeloma sensitivity to chemotherapy. Administration of an EFNB2-targeted single-chain variable fragment also suppressed multiple myeloma growth in vivo. In contrast, overexpression of EFNB2 in multiple myeloma cells increased STAT5 activation, increased multiple myeloma cell survival and proliferation, and decreased multiple myeloma sensitivity to chemotherapy. Conversely, expression of mutant EFNB2 lacking reverse signaling capacity in multiple myeloma cells increased multiple myeloma cell death and sensitivity to chemotherapy and abolished multiple myeloma growth in vivo. Complementary analysis of multiple myeloma patient data revealed that increased EFNB2 expression is associated with adverse-risk disease and decreased survival. This study suggests that EFNB2 reverse signaling controls multiple myeloma pathogenesis and can be therapeutically targeted to improve multiple myeloma outcomes. SIGNIFICANCE Ephrin B2 reverse signaling mediated by endothelial cells directly regulates multiple myeloma progression and treatment resistance, which can be overcome through targeted inhibition of ephrin B2 to abolish myeloma.
Collapse
Affiliation(s)
- Joshua P. Sasine
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Natalia Y. Kozlova
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Lisa Valicente
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Jennifer Dukov
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Dana H. Tran
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sanjeev Kumar
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Sarah Khorsandi
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aldi Chan
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Samantha Grohe
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Mary E. Sehl
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Gary J. Schiller
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Bryanna Reinhardt
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brijesh Kumar Singh
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
| | - Ritchie Ho
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
| | - Peibin Yue
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Elena B. Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California
| | - John P. Chute
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| |
Collapse
|
2
|
Xu L, Wang Z, Wang G. Screening of Biomarkers Associated with Osteoarthritis Aging Genes and Immune Correlation Studies. Int J Gen Med 2024; 17:205-224. [PMID: 38268862 PMCID: PMC10807283 DOI: 10.2147/ijgm.s447035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Purpose Osteoarthritis (OA) is a joint disease with a long and slow course, which is one of the major causes of disability in middle and old-aged people. This study was dedicated to excavating the cellular senescence-associated biomarkers of OA. Methods The Gene Expression Omnibus (GEO) database was searched and five datasets pertaining to OA were obtained. After removing the batch effect, the GSE55235, GSE55457, GSE82107, and GSE12021 datasets were integrated together for screening of the candidate genes by differential analysis and weighted gene co-expression network analysis (WGCNA). Next, those genes were further filtered by machine learning algorithms to obtain cellular senescence-associated biomarkers of OA. Subsequently, enrichment analyses based on those biomarkers were conducted, and we profiled the infiltration levels of 22 types immune cells with the ERSORT algorithm. A lncRNA-miRNA-mRNA regulatory and drug-gene network were constructed. Finally, we validated the senescence-associated biomarkers at both in vivo and in vitro levels. Results Five genes (BCL6, MCL1, SLC16A7, PIM1, and EPHA3) were authenticated as cellular senescence-associated biomarkers in OA. ROC curves demonstrated the reliable capacity of the five genes as a whole to discriminate OA samples from normal samples. The nomogram diagnostic model based on 5 genes proved to be a reliable predictor of OA. Single-gene GSEA results pointed to the involvement of the five biomarkers in immune-related pathways and oxidative phosphorylation in the development of OA. Immune infiltration analysis manifested that the five genes were significantly correlated with differential immune cells. Subsequently, a lncRNA-miRNA-mRNA network and gene-drug network containing were generated based on five cellular senescence-associated biomarkers in OA. Conclusion A foundation for understanding the pathophysiology of OA and new insights into OA diagnosis and treatment were provided by the identification of five genes, namely BCL6, MCL1, SLC16A7, PIM1, and EPHA3, as biomarkers associated with cellular senescence in OA.
Collapse
Affiliation(s)
- Lanwei Xu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People’s Republic of China
| | - Gang Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| |
Collapse
|
3
|
Nanamiya R, Suzuki H, Kaneko MK, Kato Y. Development of an Anti-EphB4 Monoclonal Antibody for Multiple Applications Against Breast Cancers. Monoclon Antib Immunodiagn Immunother 2023; 42:166-177. [PMID: 37824755 DOI: 10.1089/mab.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are the largest receptor tyrosine kinase family. EphB4 is essential for cell adhesion and motility during embryogenesis. Pathologically, EphB4 is overexpressed and contributes to poor prognosis in various tumors. Therefore, specific monoclonal antibodies (mAbs) should be developed to predict the prognosis for multiple tumors with high EphB4 expression, including breast and gastric cancers. This study aimed to develop specific anti-EphB4 mAbs for multiple applications using the Cell-Based Immunization and Screening method. EphB4-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/EphB4) cells were immunized into mice, and we established an anti-EphB4 mAb (clone B4Mab-7), which is applicable for flow cytometry, Western blot, and immunohistochemistry (IHC). B4Mab-7 reacted with endogenous EphB4-positive breast cancer cell line, MCF-7, but did not react with EphB4-knockout MCF-7 (BINDS-52) in flow cytometry. Dissociation constant (KD) values were determined to be 2.9 × 10-9 M and 1.3 × 10-9 M by flow cytometric analysis for CHO/EphB4 and MCF-7 cells, respectively. B4Mab-7 detected the EphB4 protein bands from breast cancer cells in Western blot, and stained breast cancer tissues in IHC. Altogether, B4Mab-7 is very useful for detecting EphB4 in various applications.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
4
|
Wang L, Li W, Pan Y. The Eph/Ephrin system in primary bone tumor and bone cancer pain. Aging (Albany NY) 2023; 15:7324-7332. [PMID: 37413995 PMCID: PMC10415561 DOI: 10.18632/aging.204852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
The family of Eph receptor tyrosine kinases and their Ephrin ligands system constitutes a bidirectional signaling pathway. Eph/Ephrin system coordinate a wide spectrum of pathologic processes during development, metastasis, prognosis, drug resistance and angiogenesis in carcinogenesis. Chemotherapy, surgery and radiotherapy are the most commonly used clinical treatments for primary bone tumors. Therefore, surgical resection is often unable to completely eliminate the tumor, and this is the main cause of metastasis and postoperative recurrence. A growing body of literature has been published lately revitalizing our scientific interest towards the role of Eph/Ephrins in pathogenesis and the treatment of bone tumor and bone cancer pain. This study mainly reviewed the roles of Eph/Ephrin system that has both tumor-suppressing and -promoting roles in primary bone tumors and bone cancer pain. Understanding the intracellular mechanisms of Eph/Ephrin system in tumorigenesis and metastasis of bone tumors might provide a foundation for the development of Eph/Ephrin targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wei Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Yong Pan
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
5
|
Szudy-Szczyrek A, Ahern S, Krawczyk J, Szczyrek M, Hus M. MiRNA as a Potential Target for Multiple Myeloma Therapy–Current Knowledge and Perspectives. J Pers Med 2022; 12:jpm12091428. [PMID: 36143213 PMCID: PMC9503263 DOI: 10.3390/jpm12091428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy. Despite the huge therapeutic progress thanks to the introduction of novel therapies, MM remains an incurable disease. Extensive research is currently ongoing to find new options. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at a post-transcriptional level. Aberrant expression of miRNAs in MM is common. Depending on their role in MM development, miRNAs have been reported as oncogenes and tumor suppressors. It was demonstrated that specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways in the microenvironment and MM cells. These properties make miRNAs attractive targets in anti-myeloma therapy. However, only a few miRNA-based drugs have been entered into clinical trials. In this review, we discuss the role of the miRNAs in the pathogenesis of MM, their current status in preclinical/clinical trials, and the mechanisms by which miRNAs can theoretically achieve therapeutic benefit in MM treatment.
Collapse
Affiliation(s)
- Aneta Szudy-Szczyrek
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
- Correspondence: (A.S.-S.); (M.H.)
| | - Sean Ahern
- Department of Haematology, University Hospital Galway, H91 Galway, Ireland
- National University of Ireland, H91 Galway, Ireland
| | - Janusz Krawczyk
- Department of Haematology, University Hospital Galway, H91 Galway, Ireland
- National University of Ireland, H91 Galway, Ireland
| | - Michał Szczyrek
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-950 Lublin, Poland
| | - Marek Hus
- Chair and Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland
- Correspondence: (A.S.-S.); (M.H.)
| |
Collapse
|
6
|
Cotoraci C, Ciceu A, Sasu A, Miutescu E, Hermenean A. Bioactive Compounds from Herbal Medicine Targeting Multiple Myeloma. APPLIED SCIENCES 2021; 11:4451. [DOI: 10.3390/app11104451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple myeloma (MM) is one of the most widespread hematological cancers. It is characterized by a clonal proliferation of malignant plasma cells in the bone marrow and by the overproduction of monoclonal proteins. In recent years, the survival rate of patients with multiple myeloma has increased significantly due to the use of transplanted stem cells and of the new therapeutic agents that have significantly increased the survival rate, but it still cannot be completely cured and therefore the development of new therapeutic products is needed. Moreover, many patients have various side effects and face the development of drug resistance to current therapies. The purpose of this review is to highlight the bioactive active compounds (flavonoids) and herbal extracts which target dysregulated signaling pathway in MM, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their healing potential targeting multiple myeloma. Mechanistically, they demonstrated the ability to promote cell cycle blockage and apoptosis or autophagy in cancer cells, as well as inhibition of proliferation/migration/tumor progression, inhibition of angiogenesis in the tumor vascular network. Current research provides valuable new information about the ability of flavonoids to enhance the apoptotic effects of antineoplastic drugs, thus providing viable therapeutic options based on combining conventional and non-conventional therapies in MM therapeutic protocols.
Collapse
Affiliation(s)
- Coralia Cotoraci
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Alciona Sasu
- Department of Hematology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Eftimie Miutescu
- Department of Gastroenterology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Godis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, Rebreanu 86, 310414 Arad, Romania
| |
Collapse
|
7
|
Kuang C, Zhu Y, Guan Y, Xia J, Ouyang J, Liu G, Hao M, Liu J, Guo J, Zhang W, Feng X, Li X, Zhang J, Wu X, Xu H, Li G, Xie L, Fan S, Qiu L, Zhou W. COX2 confers bone marrow stromal cells to promoting TNFα/TNFR1β-mediated myeloma cell growth and adhesion. Cell Oncol (Dordr) 2021; 44:643-659. [PMID: 33646559 DOI: 10.1007/s13402-021-00590-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Bone marrow stromal cells (BMSCs) have been implicated in multiple myeloma (MM) progression. However, the underlying mechanisms remain largely elusive. Therefore, we aimed to explore key factors in BMSCs that contribute to MM development. METHODS RNA-sequencing was used to perform gene expression profiling in BMSCs. Enzyme-linked immunosorbent assays (ELISAs) were performed to determine the concentrations of PGE2 and TNFα in sera and conditioned media (CM). Western blotting, qRT-PCR and IHC were used to examine the expression of cyclooxygenase 2 (COX2) in BMSCs and to analyze the regulation of TNFα by COX2. Cell growth and adhesion assays were employed to explore the function of COX2 in vitro. A 5T33MMvt-KaLwRij mouse model was used to study the effects of COX2 inhibition in vivo. RESULTS COX2 was found to be upregulated in MM patient-derived BMSCs and to play a critical role in BMSC-induced MM cell proliferation and adhesion. Administration of PGE2 to CM derived from BMSCs promoted MM cell proliferation and adhesion. Conversely, inhibition of COX2 in BMSCs greatly compromised BMSC-induced MM cell proliferation and adhesion. PCR array-based analysis of inflammatory cytokines indicated that COX2 upregulates the expression of TNFα. Subsequent rescue assays showed that an anti-TNFα monoclonal antibody could antagonize COX2-mediated MM cell proliferation and adhesion. Administration of NS398, a specific COX2 inhibitor, inhibited in vivo tumor growth and improved the survival of 5TMM mice. CONCLUSIONS Our results indicate that COX2 contributes to BMSC-induced MM proliferation and adhesion by increasing the secretion of PGE2 and TNFα. Targeting COX2 in BMSCs may serve as a potential therapeutic approach of treating MM.
Collapse
Affiliation(s)
- Chunmei Kuang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Yinghong Zhu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Yongjun Guan
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Jiliang Xia
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Jian Ouyang
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Guizhu Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, 200030, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China
| | - Jiabin Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Jiaojiao Guo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Wenxia Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China
| | - Xiangling Feng
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, China
| | - Xin Li
- Department of hematology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jingyu Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Xuan Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Hang Xu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Guancheng Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, China
| | - Wen Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital; Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
8
|
Arthur A, Gronthos S. Eph-Ephrin Signaling Mediates Cross-Talk Within the Bone Microenvironment. Front Cell Dev Biol 2021; 9:598612. [PMID: 33634116 PMCID: PMC7902060 DOI: 10.3389/fcell.2021.598612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
9
|
Peng Y, Song X, Lan J, Wang X, Wang M. Bone marrow stromal cells derived exosomal miR-10a and miR-16 may be involved in progression of patients with multiple myeloma by regulating EPHA8 or IGF1R/CCND1. Medicine (Baltimore) 2021; 100:e23447. [PMID: 33530159 PMCID: PMC7850735 DOI: 10.1097/md.0000000000023447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/23/2020] [Indexed: 11/25/2022] Open
Abstract
Interaction with bone marrow stromal cells (BMSCs) has been suggested as an important mechanism for the progression of multiple myeloma (MM) cells, while exosomes are crucial mediators for cell-to-cell communication. The study was to investigate the miRNA profile changes in exosomes released by BMSCs of MM patients and explore their possible function roles.The microarray datasets of exosomal miRNAs in BMSCs were downloaded from the Gene Expression Omnibus database (GSE110271: 6 MM patients, 2 healthy donors; GSE78865: 4 donors and 2 MM patients; GSE39571: 7 MM patients and 4 controls). The differentially expressed miRNAs (DEMs) were identified using the LIMMA method. The target genes of DEMs were predicted by the miRwalk 2.0 database and the hub genes were screened by constructing the protein-protein interaction (PPI) network, module analysis and overlapping with the differentially expressed genes (DEGs) after overexpression or knockout of miRNAs.Three downregulated DEMs were found to distinguish MM from normal and MM-MGUS controls in the GSE39571 dataset; one downregulated and one upregulated DEMs (hsa-miR-10a) could differentiate MM from normal and MM-MGUS controls in the GSE110271-GSE78865 merged dataset. Furthermore, 11 downregulated (hsa-miR-16) and 1 upregulated DEMs were shared between GSE39571 and merged dataset when comparing MM with normal samples. The target genes were predicted for these 17 DEMs. PPI with module analysis showed IGF1R and CCND1 were hub genes and regulated by hsa-miR-16. Furthermore, EPHA8 was identified as a DEG that was downregulated in MM cells when the use of has-miR-10a mimics; while IGF1R, CCND1, CUL3, and ELAVL1 were also screened as DEGs that were upregulated in MM cells when silencing of hsa-miR-16.BMSCs-derived exosomal miR-10a and miR-16 may be involved in MM progression by regulating EPHA8 or IGF1R/CCND1/CUL3/ELAVL1, respectively. These exosomal miRNAs or genes may represent potential biomarkers for diagnosis of MM and prediction of progression and targets for developing therapeutic drugs.
Collapse
|
10
|
Janes PW, Vail ME, Gan HK, Scott AM. Antibody Targeting of Eph Receptors in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13050088. [PMID: 32397088 PMCID: PMC7281212 DOI: 10.3390/ph13050088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
The Eph subfamily of receptor tyrosine kinases mediate cell-cell communication controlling cell and tissue patterning during development. While generally less active in adult tissues, they often re-emerge in cancers, particularly on undifferentiated or progenitor cells in tumors and the tumor microenvironment, associated with tumor initiation, angiogenesis and metastasis. Eph receptors are thus attractive therapeutic targets, and monoclonal antibodies have been commonly developed and tested for anti-cancer activity in preclinical models, and in some cases in the clinic. This review summarizes 20 years of research on various antibody-based approaches to target Eph receptors in tumors and the tumor microenvironment, including their mode of action, tumor specificity, and efficacy in pre-clinical and clinical testing.
Collapse
|
11
|
De Luca L, Laurenzana I, Trino S, Lamorte D, Caivano A, Musto P. An update on extracellular vesicles in multiple myeloma: a focus on their role in cell-to-cell cross-talk and as potential liquid biopsy biomarkers. Expert Rev Mol Diagn 2019; 19:249-258. [PMID: 30782029 DOI: 10.1080/14737159.2019.1583103] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Multiple myeloma (MM) is characterized by a clonal proliferation of neoplastic plasma cells (PCs) in bone marrow (BM) and the interplay between MM PCs and the BM microenvironment, which plays a relevant role in its pathogenesis. In this important cross-talk, extracellular vesicles (EVs) are active. EVs, including small and medium/large EVs, are lipid bi-layer particles released in circulation by normal and neoplastic cells. A selected cargo of lipids, proteins, and nucleic acids is loaded into EVs, and delivered locally and to distant sites, thus influencing the physiology of recipient cells. In the 'liquid biopsy' context, EVs can be isolated from human biofluids proving to be powerful markers in cancer. Areas covered: Here, we summarize the recent advances on EVs in MM field. Expert commentary: EVs from MM PCs: i) enhance malignant cell proliferation and aggressiveness through an autocrine loop; ii) are able to transfer drug resistance in sensitive-drug cells; iii) stimulate angiogenesis; iv) increase the activity of osteoclasts; v) have immunosuppressive effects. In addition, EVs from MM stromal cells also promote MM cell proliferation and drug resistance. Finally, we underline the importance of EVs as MM potential biomarkers in 'cancer liquid biopsy' and as a potential new therapeutic target.
Collapse
Affiliation(s)
- Luciana De Luca
- a Laboratory of Preclinical and Translational Research , IRCCS-Referral Cancer Center of Basilicata (CROB) , Rionero in Vulture (PZ) , Italy
| | - Ilaria Laurenzana
- a Laboratory of Preclinical and Translational Research , IRCCS-Referral Cancer Center of Basilicata (CROB) , Rionero in Vulture (PZ) , Italy
| | - Stefania Trino
- a Laboratory of Preclinical and Translational Research , IRCCS-Referral Cancer Center of Basilicata (CROB) , Rionero in Vulture (PZ) , Italy
| | - Daniela Lamorte
- a Laboratory of Preclinical and Translational Research , IRCCS-Referral Cancer Center of Basilicata (CROB) , Rionero in Vulture (PZ) , Italy
| | - Antonella Caivano
- a Laboratory of Preclinical and Translational Research , IRCCS-Referral Cancer Center of Basilicata (CROB) , Rionero in Vulture (PZ) , Italy
| | - Pellegrino Musto
- b Hematology and Stem Cell Transplantation Unit , IRCCS-Referral Cancer Center of Basilic`ata (CROB) , Rionero in Vulture (PZ) , Italy
| |
Collapse
|
12
|
Lamorte D, Faraone I, Laurenzana I, Milella L, Trino S, De Luca L, Del Vecchio L, Armentano MF, Sinisgalli C, Chiummiento L, Russo D, Bisaccia F, Musto P, Caivano A. Future in the Past: Azorella glabra Wedd. as a Source of New Natural Compounds with Antiproliferative and Cytotoxic Activity on Multiple Myeloma Cells. Int J Mol Sci 2018; 19:E3348. [PMID: 30373165 PMCID: PMC6274758 DOI: 10.3390/ijms19113348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy and, although the development of novel agents has improved survival of patients, to date, it remains incurable. Thus, newer and more effective therapeutic strategies against this malignancy are necessary. Plant extracts play an important role in anti-tumor drug discovery. For this reason, in the investigation of novel natural anti-MM agents, we evaluated the phytochemical profiles, in vitro antioxidant activity, and effects on MM cells of Azorella glabra (AG) Wedd. Total polyphenols (TPC), flavonoids (TFC), and terpenoids (TTeC) contents were different among samples and the richest fractions in polyphenols demonstrated a higher antioxidant activity in in vitro assays. Some fractions showed a dose and time dependent anti-proliferative activity on MM cells. The chloroform fraction (CHCl₃) showed major effects in terms of reduction of cell viability, induction of apoptosis, and cell cycle arrest on MM cells. The apoptosis induction was also confirmed by the activation of caspase-3. Importantly, the CHCl₃ fraction exhibited a negligible effect on the viability of healthy cells. These results encourage further investigations on AG extracts to identify specific bioactive compounds and to define their potential applications in MM.
Collapse
Affiliation(s)
- Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| | | | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| | - Luigi Milella
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| | - Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| | - Luigi Del Vecchio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, 80131 Naples, Italy.
| | | | - Chiara Sinisgalli
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Lucia Chiummiento
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Daniela Russo
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Faustino Bisaccia
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| | - Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS "Referral Cancer Center of Basilicata" (CROB), 85028 Rionero in Vulture, PZ, Italy.
| |
Collapse
|
13
|
Caso A, Laurenzana I, Lamorte D, Trino S, Esposito G, Piccialli V, Costantino V. Smenamide A Analogues. Synthesis and Biological Activity on Multiple Myeloma Cells. Mar Drugs 2018; 16:E206. [PMID: 29899231 PMCID: PMC6025564 DOI: 10.3390/md16060206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/05/2018] [Accepted: 06/10/2018] [Indexed: 02/06/2023] Open
Abstract
Smenamides are an intriguing class of peptide/polyketide molecules of marine origin showing antiproliferative activity against lung cancer Calu-1 cells at nanomolar concentrations through a clear pro-apoptotic mechanism. To probe the role of the activity-determining structural features, the 16-epi-analogue of smenamide A and eight simplified analogues in the 16-epi series were prepared using a flexible synthetic route. The synthetic analogues were tested on multiple myeloma (MM) cell lines showing that the configuration at C-16 slightly affects the activity, since the 16-epi-derivative is still active at nanomolar concentrations. Interestingly, it was found that the truncated compound 8, mainly composed of the pyrrolinone terminus, was not active, while compound 13, essentially lacking the pyrrolinone moiety, was 1000-fold less active than the intact substance and was the most active among all the synthesized compounds.
Collapse
Affiliation(s)
- Alessia Caso
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Ilaria Laurenzana
- Laboratory of Pre-Clinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Daniela Lamorte
- Laboratory of Pre-Clinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Stefania Trino
- Laboratory of Pre-Clinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture, Italy.
| | - Germana Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| | - Vincenzo Piccialli
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 4, 80126 Naples, Italy.
| | - Valeria Costantino
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
| |
Collapse
|