1
|
Wang H, Liu C, Jin K, Li X, Zheng J, Wang D. Research advances in signaling pathways related to the malignant progression of HSIL to invasive cervical cancer: A review. Biomed Pharmacother 2024; 180:117483. [PMID: 39353319 DOI: 10.1016/j.biopha.2024.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The progression of high-grade squamous intraepithelial lesion (HSIL) to invasive cervical cancer (ICC) is a complex process involving persistent human papillomavirus (HPV) infection and changes in signal transduction regulation, energy and material metabolism, cell proliferation, autoimmune, and other biological process in vaginal microenvironment and immune microenviroment. Signaling pathways are a series of interacting molecules in cells that regulate various physiological functions of cells, such as growth, differentiation, metabolism, and death. In the progression of HSIL to ICC, abnormal activation or inhibition in signaling pathways plays an essensial role. This review presented some signaling pathways related to the malignant progression of HSIL to ICC, including p53, Rb, PI3K/AKT/mTOR, Wnt/β-catenin, Notch, NF-κB, MAPK, TGF-β, JAK-STAT, Hippo, and Hedgehog. The molecular mechanisms involved in the biological process of pathway regulation were also analyzed, in order to illustrate the molecular pathway of HSIL progression to ICC and provide references for the development of more effective prevention and treatment methods.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Obstetrics and Gynecology, Quanzhou Medical College, Quanzhou, Fujian 362010, China
| | - Chang Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Keer Jin
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Xiang Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jiaxin Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; Key Clinical Specialty of Liaoning Province, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China.
| |
Collapse
|
2
|
Zhang G, Hou S, Li S, Wang Y, Cui W. Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review). Int J Oncol 2024; 64:48. [PMID: 38488027 PMCID: PMC11000535 DOI: 10.3892/ijo.2024.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Sen Hou
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Shuyue Li
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yequan Wang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
3
|
Peng Y, Xiao S, Zuo W, Xie Y, Xiao Y. Potential diagnostic value of miRNAs in sexually transmitted infections. Gene 2024; 895:147992. [PMID: 37977319 DOI: 10.1016/j.gene.2023.147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Collapse
Affiliation(s)
- Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Amini-Farsani Z, Hashemi Sheikhshabani S, Shaygan N, Asgharzade S. The impact of oleuropein on miRNAs regulating cell death signaling pathway in human cervical cancer cells. Biotechnol Appl Biochem 2024; 71:61-71. [PMID: 37849224 DOI: 10.1002/bab.2521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Cervical cancer is known as the second most pervasive malignancy in women across the globe. The role played by microRNAs (miRNAs) in the initiation, progression, and metastasis of this cancer has received specific attention. The use of natural compounds leading cancer cells toward apoptosis is a feasible strategy for cancer therapy. Oleuropein, an olive-extracted phenolic substance, displays anticancer properties. Here, it was attempted to assess the role played by oleuropein in cell viability in cervical cancer and changes in the expression of some miRNAs associated with cervical cancer as well as some of their possible target genes selected using bioinformatics analysis. For this purpose, HeLa cell line was exposed to several oleuropein concentrations for 48 and 72 h. After that, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and flow cytometry were employed to assess cell viability and apoptosis, respectively. In addition, to conduct bioinformatics analysis, Cytoscape computer program was used based on STRING database. Furthermore, to examine the role played by oleuropein in the expression of miRNAs of interest as well as their potential target genes, real-time PCR was employed. The findings indicated that oleuropein reduced cell viability through inducing apoptosis. As a result of treatment with oleuropein, miR-34a, miR-125b, and miR-29a showed increased expression levels, whereas miR-181b, miR-221, and miR-16 showed decreased expression levels. Furthermore, oleuropein reduced the expression of the anti-apoptotic genes Bcl-2 and Mcl1, whereas it elevated the expression of the pro-apoptotic Bid, Fas, and TNFRSF10B genes and the p53 tumor suppressor. Our results indicate that the apoptosis induction is a mechanism of action of oleuropein in HeLa cells. Because of its effect on the reflation of the expression of genes and miRNAs effective in the pathogenesis of cervical cancer, oleuropein shows potential as an effective research tool for developing new natural drugs for treating cervical cancer.
Collapse
Affiliation(s)
- Zeinab Amini-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nasibeh Shaygan
- Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular, Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Zhang M, Li Q, Zhang W, Yang Y, Gu J, Dong Q. Identification and validation of genes associated with copper death in oral squamous cell carcinoma based on machine learning and weighted gene co-expression network analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101561. [PMID: 37451513 DOI: 10.1016/j.jormas.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To identify copper-induced death-associated hub genes in oral squamous cell carcinoma (OSCC) and understand their functional and biological significance using machine learning and Weighted Gene Co-expression Network Analysis (WGCNA). METHODS OSCC transcriptomic data from GEO and TCGA databases were subjected to data integration, batch effect removal, background correction, and quantile normalization to select cuproptosis-associated genes using Spearman's correlation analysis. The 'limma' R package was used to filter differentially expressed genes (DEGs). Core module genes selected using gene co-expression network analysis with R package 'WGCNA' were screened using Support Vector Machine (SVM), LASSO regression, and Random Forest (RF) machine learning algorithms and validated using TCGA database samples. Core gene expression variations between OSCC and adjacent normal tissues were validated using immunohistochemistry. Immune infiltration analysis using package 'CIBERSORT' correlated hub genes with immune cells. RESULTS From 19 cuproptosis-related genes (identified from literature), 2382 cuproptosis-related mRNA were obtained through Spearman's correlation analysis; 112 DEGs using 'limma' R package and 32 hub genes using WGCNA were obtained. Hub genes TMPRSS11B, SERPINH1, and CDH3 were identified using machine learning algorithms. TCGA validation showed that TMPRSS11B significantly underexpressed (P < 0.001) but SERPINH1 and CDH3 significantly overexpressed (P < 0.001) in tumor samples. The AUC for TMPRSS11B, SERPINH1, and CDH3 in ROC curve analysis were 78.1%, 95.6%, and 87.5%, respectively. CONCLUSION TMPRSS11B, SERPINH1, and CDH3 may be pivotal for OSCC development and progression and potential targets for new therapeutic and predictive strategies. However, their specific functions and mechanisms underlying OSCC remain to be elucidated.
Collapse
Affiliation(s)
- Mingrui Zhang
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qingxia Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wu Zhang
- Graduate School, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuanbo Yang
- Department of Stomatology, Tangshan Workers Hospital, Tangshan, Hebei, China
| | - Jianqi Gu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qing Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
6
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
7
|
São José C, Pereira C, Ferreira M, André A, Osório H, Gullo I, Carneiro F, Oliveira C. 3D Chromatin Architecture Re-Wiring at the CDH3/CDH1 Loci Contributes to E-Cadherin to P-Cadherin Expression Switch in Gastric Cancer. BIOLOGY 2023; 12:803. [PMID: 37372088 DOI: 10.3390/biology12060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Cadherins are cell-cell adhesion molecules, fundamental for cell architecture and polarity. E-cadherin to P-cadherin switch can rescue adherens junctions in epithelial tumours. Herein, we disclose a mechanism for E-cadherin to P-cadherin switch in gastric cancers. CDH1 and CDH3 mRNA expression was obtained from 42 gastric tumours' RNA-seq data. CRISPR-Cas9 was used to knock out CDH1 and a putative regulatory element. CDH1-depleted and parental cells were submitted to proteomics and enrichment GO terms analysis; ATAC-seq/4C-seq with a CDH1 promoter viewpoint to assess chromatin accessibility and conformation; and RT-PCR/flow cytometry to assess CDH1/E-cadherin and CDH3/P-cadherin expression. In 42% of gastric tumours analysed, CDH1 to CDH3 switch was observed. CDH1 knockout triggered CDH1/E-cadherin complete loss and CDH3/P-cadherin expression increase at plasma membrane. This switch, likely rescuing adherens junctions, increased cell migration/proliferation, commonly observed in aggressive tumours. E- to P-cadherin switch accompanied increased CDH1 promoter interactions with CDH3-eQTL, absent in normal stomach and parental cells. CDH3-eQTL deletion promotes CDH3/CDH1 reduced expression. These data provide evidence that loss of CDH1/E-cadherin expression alters the CDH3 locus chromatin conformation, allowing a CDH1 promoter interaction with a CDH3-eQTL, and promoting CDH3/P-cadherin expression. These data highlight a novel mechanism triggering E- to P-cadherin switch in gastric cancer.
Collapse
Affiliation(s)
- Celina São José
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Carla Pereira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Marta Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Doctoral Program in Computer Sciences, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ana André
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Gullo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário São João, 4200-319 Porto, Portugal
| | - Carla Oliveira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
8
|
Li X, Lu Y, Wen P, Yuan Y, Xiao Z, Shi H, Feng E. Matrine restrains the development of colorectal cancer through regulating the AGRN/Wnt/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:809-819. [PMID: 36620879 DOI: 10.1002/tox.23730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Colorectal cancer is a common malignant digestive tract tumor. This study aimed to explore the biological role and potential underlying mechanism of matrine in colorectal cancer. METHODS The mRNA expression of AGRN was measured using RT-qPCR. Cell proliferation, migration, invasion and apoptosis were determined using CCK-8, EdU, transwell assays and flow cytometry, respectively. Xenograft tumor experiment was performed to explore the action of matrine and AGRN on tumor growth in colorectal cancer in vivo. Immunohistochemistry (IHC) assay was applied for AGRN, β-catenin, and c-Myc expression in the tumor tissues from mice. RESULTS Matrine dramatically repressed cell growth and reduced the level of AGRN in colorectal cancer cells. AGRN expression was boosted colorectal cancer tissues and cells. AGRN downregulation depressed cell proliferation, migration, invasion, and enhanced cell apoptosis in colorectal cancer cells. Moreover, matrine showed the anti-tumor effects on colorectal cancer cells via regulating AGRN expression. AGRN knockdown could inactivate the Wnt/β-catenin pathway in colorectal cancer cells. We found that AGRN downregulation exhibited the inhibition action in the progression of colorectal cancer by modulating the Wnt/β-catenin pathway. In addition, matrine could inhibit the activation of the Wnt/β-catenin pathway through regulating AGRN in colorectal cancer cells. Furthermore, xenograft tumor experiment revealed that matrine treatment or AGRN knockdown repressed the development of colorectal cancer via the Wnt/β-catenin pathway in vivo. CONCLUSION Matrine retarded colorectal cancer development by modulating AGRN to inactivate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xianzhe Li
- Department of General Surgery, Nanshi Hospital, Nanyang, China
| | - Ye Lu
- Department of radiation oncology, The Fifth People's Hospital of Huai'an, Huai'an, China
| | - Penghao Wen
- Department of Medical Oncology, Nanshi Hospital, Nanyang, China
| | - Yan Yuan
- Department of Radiotherapy, Nanshi Hospital, Nanyang, China
| | - Zhenghong Xiao
- Department of Medical Oncology, Nanshi Hospital, Nanyang, China
| | - Hengwei Shi
- Department of General Surgery, Nanshi Hospital, Nanyang, China
| | - Eryan Feng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
| |
Collapse
|
9
|
Pareek S, Jain U, Bharadwaj M, Saxena K, Roy S, Chauhan N. An ultrasensitive electrochemical DNA biosensor for monitoring Human papillomavirus-16 (HPV-16) using graphene oxide/Ag/Au nano-biohybrids. Anal Biochem 2023; 663:115015. [PMID: 36496002 DOI: 10.1016/j.ab.2022.115015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
A DNA-based electrochemical biosensor has been developed herein for the detection of Human papillomavirus-16 (HPV-16). HPV-16 is a double-stranded, non-enveloped, epitheliotropic DNA virus which responsible for cervical cancer. In this proposed biosensor, an indium tin oxide (ITO) coated glass electrode was modified for sensing HPV-16 using graphene oxide and silver coated gold nanoparticles. Subsequently, HPV-16 specific DNA probes were immobilized on a modified ITO surface. The synthesized nanocomposites were characterized by FE-SEM and UV-VIS spectroscopy techniques. Electrochemical characterization was performed by using cyclic voltammetry and electrochemical Impedance Spectroscopy methods. The hybridization between the probe and target DNA was analyzed by a reduction in current, mediated by methylene blue. The biosensor showed a qualitative inequity between the probe and target HPV-16 DNA. The developed biosensor showed high sensitivity as 0.54 mA/aM for the detection of HPV-16. In a linear range of 100 aM to 1 μM with 100 aM LOD, the proposed biosensor exhibited excellent performance with the rapid diagnosis. Thus, the results indicate that the developed HPV DNA biosensor shows good consistency with the present approaches and opens new opportunities for developing point-of-care devices. The diagnosis of HPV-16 infection in its early stage may also be possible with this detection system.
Collapse
Affiliation(s)
- Sakshi Pareek
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun, 248007, India
| | - Mausumi Bharadwaj
- National Institute of Cancer Prevention & Research, Indian Council of Medical Research (ICMR), 201301, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Souradeep Roy
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India; Centre for Interdisciplinary Research and Innovation (CIDRI), University of Petroleum and Energy Studies (UPES), Dehradun, India
| | - Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun, 248007, India.
| |
Collapse
|
10
|
Chen Q, Schatz C, Cen Y, Chen X, Haybaeck J, Li B. LncRNA TUG1 promotes the migration and invasion in type I endometrial carcinoma cells by regulating E-N cadherin switch. Taiwan J Obstet Gynecol 2022; 61:780-787. [PMID: 36088044 DOI: 10.1016/j.tjog.2022.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 10/14/2022] Open
Abstract
OBJECTIVE Accumulating evidence has demonstrated that lncRNA Taurine-upregulated gene 1 (TUG1) plays an important role in regulation of cell morphology, migration, proliferation and apoptosis. Our aim was to evaluate the oncogenic role of TUG1 in type I Endometrial Carcinoma (EC) and explore the precise mechanism of TUG1 involved in tumor progression. MATERIALS AND METHODS The GSE17025 data set was used to analyze the correlation of TUG1 expression with type I EC patients' prognosis. Furthermore, TUG1 expression profiles were measured by qRT-PCR from carcinoma tissues and adjacent nonneoplastic tissues (NNT) of 105 type I EC patients. The regulation of epithelial-mesenchymal transition (EMT) related molecules, p-AKT and AKT by TUG1 knockdown was investigated using Western blot analysis; meanwhile, the oncogenic roles of TUG1 were evaluated using cell viability and transwell migration/invasion assay in Hec-1-A and Ishikawa cell lines. RESULTS Firstly, we observed a significant association between higher TUG1 expression and lower survival rate in type I EC patients using the GSE17025 data set. A significant elevation of TUG1 levels was confirmed in type I EC tissues compared with NNT in the 105 type I EC patients, and high expression of TUG1 was associated with lymph vascular space invasion (LVSI) and lymph node metastasis (LNM). Subsequently, TUG1 knockdown could remarkably inhibit the Hec-1-A and Ishikawa cell invasion and migration in the functional experiment. Furthermore, our results showed that the protein levels of E-cadherin increased and N-cadherin decreased significantly, while β-catenin and Vimentin were not significantly altered upon TUG1 silencing in both Hec-1-A and Ishikawa cells. Finally, we found the p-AKT and AKT protein levels, and the rate of p-AKT/t-AKT has a tendency to be down-regulate in Hec-1-A cells, while the AKT pathway was not change significantly in Ishikawa cells after TUG1 knockdown. CONCLUSION Collectively, our data reveal that TUG1 might be regarded as an oncogenic molecule that promotes type I EC cells metastasis leading to tumor progression, at least partially, by regulating E-N cadherin switch and the AKT pathway.
Collapse
Affiliation(s)
- Qin Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Christoph Schatz
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| | - Yixuan Cen
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Xiaojing Chen
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria.
| | - Baohua Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Center of Uterine Cancer Diagnosis & Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
11
|
MiR-4652-5p Targets RND1 to Regulate Cell Adhesion and Promote Lung Squamous Cell Carcinoma Progression. Appl Biochem Biotechnol 2022; 194:3031-3043. [PMID: 35334070 DOI: 10.1007/s12010-022-03897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is one subtype of non-small-cell lung cancer, whose pathogenesis has not been fully understood. Exploring molecular mechanisms of LUSC helps a lot with the development of LUSC novel therapy. Hence, our study aims to investigate novel molecular mechanisms. Differentially expressed miRNAs and mRNAs were acquired from The Cancer Genome Atlas database. A series of assays were applied to test cell functions, including qRT-PCR to analyze RND1 and miR-4652-5p expression, dual-luciferase reporter gene assay to verify the targeting relationship between these two genes, cell counting kit-8 and colony formation assays to evaluate the ability of LUSC cells to proliferate, transwell to examine the migratory and invasive abilities, and western blot to test expression of RND1 and cell adhesion-related proteins. RND1 was lowly expressed while miR-4652-5p was highly expressed in LUSC cells. The correlation between these two genes was significantly negative and miR-4652-5p could downregulate RND1 expression. Additionally, cellular function assays validated that RND1 suppressed LUSC cells to proliferate, migrate, and invade. Besides, this gene might also affect cell adhesion. Furthermore, rescue assay suggested that miR-4652-5p downregulated RND1 expression to promote the progression of LUSC cells. Together, miR-4652-5p targeted RND1 to modulate cell adhesion and the progression of LUSC cells.
Collapse
|
12
|
Bañuelos-Villegas EG, Pérez-yPérez MF, Alvarez-Salas LM. Cervical Cancer, Papillomavirus, and miRNA Dysfunction. Front Mol Biosci 2021; 8:758337. [PMID: 34957212 PMCID: PMC8703027 DOI: 10.3389/fmolb.2021.758337] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cervical cancer is the leading cause of death by cancer in women from developing countries. Persistent infection with high-risk human papillomavirus (HPV) types 16 and 18 is a major risk factor for cervical carcinogenesis. Nevertheless, only a few women with morphologic expression of HPV infection progress into invasive disease suggesting the involvement of other factors in cervical carcinogenesis. MicroRNAs (miRNAs) are conserved small non-coding RNAs that negatively regulate gene expression including genes involved in fundamental biological processes and human cancer. Dysregulation of miRNAs has been widely reported in cervical cancer. This work focuses on reviewing the miRNAs affected during the HPV infection process, as well relevant miRNAs that contribute to the development and maintenance of malignant cervical tumor cells. Finally, we recapitulate on miRNAs that may be used to distinguish between healthy individuals from patients with precancerous lesions or cervical tumors.
Collapse
Affiliation(s)
- Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| | - María Fernanda Pérez-yPérez
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| |
Collapse
|
13
|
Barillari G, Bei R, Manzari V, Modesti A. Infection by High-Risk Human Papillomaviruses, Epithelial-to-Mesenchymal Transition and Squamous Pre-Malignant or Malignant Lesions of the Uterine Cervix: A Series of Chained Events? Int J Mol Sci 2021; 22:13543. [PMID: 34948338 PMCID: PMC8703928 DOI: 10.3390/ijms222413543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Wound healing requires static epithelial cells to gradually assume a mobile phenotype through a multi-step process termed epithelial-to-mesenchymal transition (EMT). Although it is inherently transient and reversible, EMT perdures and is abnormally activated when the epithelium is chronically exposed to pathogens: this event deeply alters the tissue and eventually contributes to the development of diseases. Among the many of them is uterine cervical squamous cell carcinoma (SCC), the most frequent malignancy of the female genital system. SCC, whose onset is associated with the persistent infection of the uterine cervix by high-risk human papillomaviruses (HR-HPVs), often relapses and/or metastasizes, being resistant to conventional chemo- or radiotherapy. Given that these fearsome clinical features may stem, at least in part, from the exacerbated and long-lasting EMT occurring in the HPV-infected cervix; here we have reviewed published studies concerning the impact that HPV oncoproteins, cellular tumor suppressors, regulators of gene expression, inflammatory cytokines or growth factors, and the interactions among these effectors have on EMT induction and cervical carcinogenesis. It is predictable and desirable that a broader comprehension of the role that EMT inducers play in SCC pathogenesis will provide indications to flourish new strategies directed against this aggressive tumor.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montellier, 00133 Rome, Italy; (R.B.); (V.M.); (A.M.)
| | | | | | | |
Collapse
|
14
|
Yuan T, Shi C, Xu W, Yang HL, Xia B, Tian C. Extracellular vesicles derived from T-cell acute lymphoblastic leukemia inhibit osteogenic differentiation of bone marrow mesenchymal stem cells via miR-34a-5p. Endocr J 2021; 68:1197-1208. [PMID: 34039781 DOI: 10.1507/endocrj.ej21-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Reduced bone formation in patients with T-cell acute lymphoblastic leukemia (T-ALL) may be related to the interaction between tumour cells and bone marrow stromal cells (BMSCs). The miRNAs in extracellular vesicles derived from leukemia cells play an essential role in regulating the function of BMSCs; however, the regulatory mechanisms remain unclear. The expression of miR-34a-5p in T-ALL patients and cells was measured by quantitative real-time PCR. BMSCs were co-cultured with extracellular vesicles isolated from T-ALL cells in mineralization medium. The osteogenic differentiation of BMSCs was evaluated by Alizarin Red S staining, alkaline phosphatase (ALP) staining, and detection of osteogenic differentiation markers. A dual-luciferase reporter assay was performed to confirm the targeting relationship between miR-34a-5p and Wnt family member 1 (WNT1). MiR-34a-5p expression was upregulated in T-ALL patients and Jurkat cells. After BMSCs were co-cultured with extracellular vesicles derived from T-ALL cells, osteogenic differentiation of BMSCs was inhibited, and bone mineralization and ALP activity were decreased compared to those of control cells. MiR-34a-5p knockdown in T-ALL cells restored osteogenic differentiation of BMSCs co-cultured with extracellular vesicles. In addition, miR-34a-5p targets and negatively regulates WNT1 expression. In conclusion, our results demonstrated that knockdown of miR-34a-5p in extracellular vesicles derived from T-ALL cells promoted osteogenic differentiation of BMSCs by regulating WNT1.
Collapse
Affiliation(s)
- Tian Yuan
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Ce Shi
- Central Laboratory of Hematology and Oncology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, P.R. China
| | - Wen Xu
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Hong-Liang Yang
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Bing Xia
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Chen Tian
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
15
|
Cao X, Ma Q, Wang B, Qian Q, Xi Y. Circ-E2F3 promotes cervical cancer progression by inhibiting microRNA-296-5p and increasing STAT3 nuclear translocation. Ann N Y Acad Sci 2021; 1507:84-98. [PMID: 34468993 DOI: 10.1111/nyas.14653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 01/03/2023]
Abstract
Circular RNA E2F transcription factor 3 (circ-E2F3) has been demonstrated to be differentially expressed in some diseases and cancers. However, the role of circ-E2F3 in cervical cancer (CC) progression remains unclear. Therefore, we aimed to elucidate the mechanism of circ-E2F3 regulation of CC progression. Circ-E2F3 expression was determined in CC samples, and its correlation with the clinicopathological characteristics of CC patients and cell biological processes was examined. The interaction among circ-E2F3, microRNA-296-5p (miR-296-5p), and signal transducer and activator of transcription 3 (STAT3) was analyzed by dual luciferase reporter gene and fluorescence in situ hybridization assays. Circ-E2F3-depleted CaSki cells were implanted into nude mice to verify the function of circ-E2F3 in vivo. Circ-E2F3 was upregulated in both CC tissues and cell lines, and this correlated with the clinicopathological features and poor prognosis of CC patients. Moreover, circ-E2F3 promoted the proliferation, invasion, and migration of CC cells and tumor growth in vivo. It was also observed that circ-E2F3 promoted the nuclear translocation of STAT3 through inhibition of miR-296-5p, thus affecting the expression of cyclin D1. Taken together, the key findings of our study demonstrate that circ-E2F3 induces inhibition of miR-296-5p, which triggers activation and nuclear translocation of STAT3 that then upregulates cyclin D1 expression.
Collapse
Affiliation(s)
- Xiangke Cao
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Qinghua Ma
- Department of Preventive Health, The Third People's Hospital of Xiangcheng District in Suzhou, Suzhou, China
| | - Bin Wang
- Department of Pediatrics, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Qingqiang Qian
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, China
| | - Yinan Xi
- Department of Obstetrics and Gynecology, Tangshan People's Hospital, Tangshan, China
| |
Collapse
|
16
|
Zhu H, Lin Y, Liu Y. miR‑34a increases inflammation and oxidative stress levels in patients with necrotizing enterocolitis by downregulating SIRT1 expression. Mol Med Rep 2021; 24:664. [PMID: 34296298 DOI: 10.3892/mmr.2021.12303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 11/06/2022] Open
Abstract
The miR‑34a/SIRT1 signaling axis is an important signaling axis in tumors and diseases. Notably, low SIRT1 expression in the intestinal tissues of patients with necrotizing enterocolitis (NEC) has been reported. However, whether miR‑34a/SIRT1 signaling as a target to protect the intestines during the NEC process is unclear and remains to be elucidated. Blood samples were collected from 30 patients with NEC, and an NEC rat model was used. The miR‑34a and SIRT1 gene and protein expression levels were assayed by qPCR and Western blotting method. The inflammatory cytokine levels and oxidative stress levels were detected using the ELISA method. The results demonstrated that birth weight, albumin and glucose concentrations were significantly decreased in the NEC patient group compared with the control group, but the C‑reactive protein (CRP) and procalcitonin (PCT) concentrations were significantly increased. The miR‑34a expression level was notably increased in the NEC group, but the SIRT1 expression level was markedly decreased. Notably, the miR‑34a was significantly correlated with NEC severity and the concentrations of CRP, PCT, IL‑6, TNF‑α, IL‑1β, IL‑8, MCP‑1, VCAM1 and malondialdehyde (MDA), but was significantly negatively correlated with SIRT1 gene expression and the concentration of IL‑10. Intestinal villi damage in NEC rats was decreased with miR‑34a inhibition and SIRT1 activation treatment by decreasing the levels of inflammatory cytokines, including IL‑6, TNF‑α, IL‑1β and IL‑8, and oxidative stress proteins, including MCP‑1, VCAM1, and MDA, as well as increasing the level of the anti‑inflammatory cytokine IL‑10. In addition, the results indicated that miR‑34a inhibition and SIRT1 activation strongly protected the intestine and decreased the damage caused by NEC, not only by decreasing the protein levels of SIRT1, TNF‑α, IL‑1β, IL‑6 and IL‑8, but also by increasing the IL‑10 protein levels. The miR‑34a inhibition and SIRT1 activation may decrease the damage caused by NEC by decreasing proinflammatory cytokines and oxidative stress proteins and by increasing the anti‑inflammatory cytokine pathway. Based on the aforementioned analysis, the miR‑34a and SIRT1 proteins may be potential novel therapeutic targets in NEC.
Collapse
Affiliation(s)
- Hui Zhu
- Department of NICU, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yan Lin
- Department of NICU, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yongle Liu
- Department of NICU, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
17
|
Wang Y, Gao WJ. Long non-coding RNA-H19 promotes ovarian cancer cell proliferation and migration via the microRNA-140/Wnt1 axis. Kaohsiung J Med Sci 2021; 37:768-775. [PMID: 34002485 DOI: 10.1002/kjm2.12393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/15/2021] [Accepted: 04/25/2021] [Indexed: 02/03/2023] Open
Abstract
To explore the effect and underlying molecular mechanism of long non-coding RNA (lncRNA)-H19 on ovarian cancer (OC) cells, a total of 41 cases of OC and adjacent normal tissues were collected. H19 and microRNA (miR)-140 expressions in OC tissues and cells were detected using quantitative real-time polymerase chain reaction (qRT-RCR). The correlation between H19 expression and prognosis of OC patient was analyzed. siRNA (si)-H19 and si-negative control (NC) were transfected into OC cells. Cell proliferation was checked by cell counting kit-8 assay and colony formation assay, and cell migration and invasion were analyzed via Transwell assay. The targeted binding relationship between H19 and miR-140 was predicted and verified, miR-140 downstream gene was predicted and Wnt1 was screened out. The impact of in-miR-140 on the si-H19-induced decreased OC cell proliferation and migration was evaluated. H19 expression was upregulated in OC tissues and cells, and its overexpression was associated with a poor prognosis of OC. si-H19 remarkably reduced OC cell proliferation and migration. H19 upregulated Wnt1 expression through targeting miR-140 in OC cells. Altogether, miR-140 was notably downregulated in OC, and in-miR-140 partially inhibited the si-H19-induced decrease of OC cell proliferation and migration. H19 competitively bound to miR-140 to upregulate Wnt1, thereby promoting OC cell proliferation and migration.
Collapse
Affiliation(s)
- Ye Wang
- Department of Gynecology and Obstetrics, Aerospace Center Hospital, Beijing, China
| | - Wei-Jiao Gao
- Department of Gynecologic Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
18
|
Wang ZQ, Sun XL, Wang YL, Miao YL. Agrin promotes the proliferation, invasion and migration of rectal cancer cells via the WNT signaling pathway to contribute to rectal cancer progression. J Recept Signal Transduct Res 2020; 41:363-370. [PMID: 32862766 DOI: 10.1080/10799893.2020.1811325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rectal cancer is the most common malignant tumor in the digestive system with rapidly metastasis and highly recurrence. Agrin (AGRN) is a proteoglycan involving in a large number of human cancers. However, how AGRN regulates the progression of rectal cancer remains largely unknown. We aimed to determine the biological role of AGRN and its mechanism in rectal cancer. AGRN expression in rectal cancer tissues was detected based on TCGA. The survival curve was plotted using the Kaplan-Meier method. qRT-PCR and western blot were utilized to examine the expression level of AGRN in cells. Cell proliferation, clonogenic ability, invasion, and migration of rectal cancer cells were analyzed by CCK-8, colony formation and transwell experiments. GSEA was employed for the analysis of the potential pathways-related with AGRN in rectal cancer. The activity of WNT pathway was determined by western blot. AGRN expression was dramatically increased in rectal cancer, and its up-regulation was associated with poorer prognosis of rectal cancer patients. AGRN expression was an independent factor for the prognosis of rectal cancer. AGRN inhibition suppressed rectal cancer cell growth, invasion, and migration, whereas AGRN overexpression facilitated these behaviors of rectal cancer cells in vitro. Mechanistically, WNT signaling pathway was enriched in high AGRN-expressing patients with rectal cancer. AGRN elevated the activity of WNT pathway through increasing Cyclin D1, C-Myc, p-GSK-3β, and p-β-catenin expression. Our present study indicated that AGRN might function as an oncogenic indicator in rectal cancer via activating the WNT pathway, which would help develop optimized therapeutic therapies for rectal cancer.
Collapse
Affiliation(s)
- Zai-Qiu Wang
- Department of Anorectal Surgery, Yantaiyuhuangding Hospital, Yantai, PR China
| | - Xiao-Li Sun
- Department of Clinical Laboratory, Yantaiyuhuangding Hospital, Yantai, PR China
| | - Ye-Li Wang
- Department of Anorectal Surgery, Yantaiyuhuangding Hospital, Yantai, PR China
| | - Ya-Li Miao
- Department of Oncology, The First People's Hospital of Jining, Jining, PR China
| |
Collapse
|