1
|
Wang Z, Zhang Z, Yue Y, Hou Y, Cao Y, Guo C, Nie X, Hou J. Cross-talk between WNT Signaling and Ferroptosis in Cancer. Mol Cancer Res 2025; 23:175-189. [PMID: 39786453 DOI: 10.1158/1541-7786.mcr-24-0880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Cancer remains one of the most formidable challenges in the medical field in this century, largely because of its poorly understood pathogenesis. Fortunately, recent advancements in the understanding of cancer pathogenesis have helped identify more therapeutic targets for improved treatment outcomes. The WNT signaling pathways are highly conserved cascades that participate in diverse physiologic processes, such as embryonic development, tissue homeostasis, and tissue regeneration. Ferroptosis, a unique iron-dependent form of cell death that is distinct from apoptosis, is driven by lipid peroxidation and excessive reactive oxygen species production. Emerging evidence shows that the dysregulation of WNT signaling pathways and ferroptosis, as well as their intricate cross-talk, plays crucial roles in cancer progression and therapeutic resistance, indicating their potential as targets for cancer therapies. This review provides a comprehensive overview of the current understanding of the cross-talk between WNT signaling pathways and ferroptosis in the pathogenesis and progression of cancer, with a specific focus on the regulatory role of the canonical WNT cascade in cancer-related ferroptosis. In addition, we discuss the pharmacologic mechanisms of current strategies that inhibit canonical WNT signaling and/or induce ferroptosis in cancer treatment. We propose that combining canonical WNT pathway inhibitors and ferroptosis inducers with current therapies represents a promising therapeutic strategy for personalized cancer treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhixiang Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yunhui Yue
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yujia Cao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Changsheng Guo
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China
| |
Collapse
|
2
|
Liang P, Tian K, Yang W, Feng R, Li Y, Hu L, Wang K, Qiu T, Zhang J, Sun X, Yao X. ACSL4-mediated ZIP7-VDAC3 interaction regulates endoplasmic reticulum-mitochondria iron transfer in hepatocytes under PFOS exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177679. [PMID: 39579909 DOI: 10.1016/j.scitotenv.2024.177679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant with adverse health consequences. Our previous studies showed that PFOS caused an increase in mitochondrial iron and accelerated the expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), one classic executor in the ferroptosis pathway. As ACSL4 is located in the mitochondria-associated endoplasmic reticulum (ER) membranes, here, we intended to further explore the role of ACSL4 in the inter-organelle iron crosstalk between ER and mitochondria under PFOS exposure. We found that PFOS caused ER iron accumulation in mice liver and human hepatocytes L-02. Inhibition of solute carrier family 39 member 7 (SLC39A7/ZIP7), a potential ER iron efflux channel supposed by us, alleviated PFOS-induced mitochondrial iron overload and further elevated ER iron level. Knockdown of voltage-dependent anion channel 3 (VDAC3) or mitochondrial calcium uniporter (MCU), the respective potential mitochondrial iron influx channels in outer/inner mitochondrial membrane, reversed the mitochondrial iron overload and aggravated ER iron accumulation in the cells under PFOS treatment. ACSL4 interacted with both ZIP7 and VDAC3 in mice liver and L-02 cells after treatment with PFOS. Upon inhibition of ACSL4, the ZIP7-VDAC3 interaction was reduced, mitigating mitochondrial iron overload and exacerbating iron accumulation in ER. Inhibiting VDAC3 or ZIP7 reversed the overloaded cytosolic iron under PFOS treatment, however, we found no further decrease in cytosolic iron after simultaneous inhibiting VDAC3 and ZIP7 compared with respectively inhibiting VDAC3 or ZIP7 alone. Our study provides evidence and reveals the molecular mechanism underneath the ER-mitochondria iron crosstalk under PFOS exposure, providing new insights into and enriches the understanding of the iron network-regulating function of the ferroptosis executor ACSL4 and highlighting its role in PFOS toxicity.
Collapse
Affiliation(s)
- Peiyao Liang
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Kefan Tian
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Wei Yang
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Ruzhen Feng
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Yu Li
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Lingli Hu
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Kejing Wang
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Tianming Qiu
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Jingyuan Zhang
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Xiance Sun
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Xiaofeng Yao
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian, China.
| |
Collapse
|
3
|
Adzavon KP, Zhao W, He X, Sheng W. Ferroptosis resistance in cancer cells: nanoparticles for combination therapy as a solution. Front Pharmacol 2024; 15:1416382. [PMID: 38962305 PMCID: PMC11219589 DOI: 10.3389/fphar.2024.1416382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Ferroptosis is a form of regulated cell death (RCD) characterized by iron-dependent lipid peroxidation. Ferroptosis is currently proposed as one of the most promising means of combating tumor resistance. Nevertheless, the problem of ferroptosis resistance in certain cancer cells has been identified. This review first, investigates the mechanisms of ferroptosis induction in cancer cells. Next, the problem of cancer cell resistance to ferroptosis, as well as the underlying mechanisms is discussed. Recently discovered ferroptosis-suppressing biomarkers have been described. The various types of nanoparticles that can induce ferroptosis are also discussed. Given the ability of nanoparticles to combine multiple agents, this review proposes nanoparticle-based ferroptosis cell death as a viable method of circumventing this resistance. This review suggests combining ferroptosis with other forms of cell death, such as apoptosis, cuproptosis and autophagy. It also suggests combining ferroptosis with immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Wang Sheng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| |
Collapse
|
4
|
Yang Y, Fan H, Guo Z. Modulation of Metal Homeostasis for Cancer Therapy. Chempluschem 2024; 89:e202300624. [PMID: 38315756 DOI: 10.1002/cplu.202300624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Metal ions such as iron, zinc, copper, manganese, and calcium are essential for normal cellular processes, including DNA synthesis, enzyme activity, cellular signaling, and oxidative stress regulation. When the balance of metal homeostasis is disrupted, it can lead to various pathological conditions, including cancer. Thus, understanding the role of metal homeostasis in cancer has led to the development of anti-tumor strategies that specifically target the metal imbalance. Up to now, diverse small molecule-based chelators, ionophores, metal complexes, and metal-based nanomaterials have been developed to restore the normal balance of metals or exploit the dysregulation for therapeutic purposes. They hold great promise in inhibiting tumor growth, preventing metastasis, and enhancing the effectiveness of existing cancer therapies. In this review, we aim to provide a comprehensive summary of the strategies employed to modulate the homeostasis of iron, zinc, copper, manganese, and calcium for cancer therapy. Their modulation mechanisms for metal homeostasis are succinctly described, and their recent applications in the field of cancer therapy are discussed. At the end, the limitations of these approaches are addressed, and potential avenues for future developments are explored.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, P. R. China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
5
|
Xu X, Wang SS, Zhang L, Lu AX, Lin Y, Liu JX, Yan CH. Methylmercury induced ferroptosis by interference of iron homeostasis and glutathione metabolism in CTX cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122278. [PMID: 37517642 DOI: 10.1016/j.envpol.2023.122278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Environmental methylmercury (MeHg) exposure has gained global attention owing to its serious health hazards, especially neurotoxicity. Ferroptosis is a novel form of programmed cell death characterized by lipid peroxidation and iron overload. However, the occurrence of ferroptosis and its underlying mechanisms have not been fully elucidated in the methylmercury-induced neurotoxicity and the role of Nrf2 in MeHg-induced ferroptosis remains unexplored. In this study, we verified that MeHg decreased cell viability in a dose- and time-dependent manner in the Rat Brain Astrocytes cells (CTX cells). MeHg (3.5 μmol/L) exposure induced CTX cells to undergo ferroptosis, as evidenced by glutathione (GSH) depletion, lipid peroxidation, and iron overload, which was significantly rescued by the ferroptosis-specific inhibitors Ferrostatin-1 and Deferoxamine. MeHg directly disrupted the process of GSH metabolism by downregulating of SLC7A11 and GPX4 and interfered with intracellular iron homeostasis through inhibition of iron storage and export. Simultaneously, the expression of Nrf2 was upregulated by MeHg in CTX cells. Hence, the inhibition of Nrf2 activity further downregulated the levels of GPX4, SLC7A11, FTH1, and SLC40A1, which aggravated MeHg-induced ferroptosis to a greater extent. Overall, our findings provided evidence that ferroptosis played a critical role in MeHg-induced neurotoxicity, and suppressing Nrf2 activity further exacerbated MeHg-induced ferroptosis in CTX cells.
Collapse
Affiliation(s)
- Xi Xu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Su Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|