1
|
Mane S, Jacob P, Hemadri V, Dey P, Bhand S, Tripathi S. Characterization of the phagocytic ability of white blood cells separated using a single curvature spiral microfluidic device. Biomed Eng Lett 2024; 14:1409-1419. [PMID: 39465117 PMCID: PMC11502713 DOI: 10.1007/s13534-024-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/29/2024] [Accepted: 08/01/2024] [Indexed: 10/29/2024] Open
Abstract
The present work describes a microfluidic device developed for separating white blood cells (WBCs) for the Nitroblue Tetrazolium (NBT) bioassay, which quantifies the phagocytic ability of cells. The NBT test requires a small number of phagocytic cells but is highly susceptible to the presence of red blood cells (RBCs). Our inertial microfluidic device can deliver a WBC sample by removing 99.99% of RBCs and subsequently reducing the ratio of RBC to WBC from 848:1 to 2:3. The microdevice operates on a relatively higher hematocrit concentration (1% Hct) of blood. Compared to conventional WBC separation methods, the microdevice's passive, label-free nature preserves the cell properties of the original sample. A single-turn spiral microfluidic device with a rectangular cross-section is simple to fabricate, cost-effective, and easy to operate. The reported microfluidic device requires only a single drop of whole blood (⁓20 µl) obtained via the finger prick method for efficient phagocytic analysis. Also, the microdevice reported in this study achieves WBC separation in under 10 min, omitting the need for RBC lysis, density gradient centrifugation, or expensive antibodies. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-024-00414-y.
Collapse
Affiliation(s)
- Sanjay Mane
- Department of Mechanical Engineering, BITS-Pilani, K K Birla Goa Campus, Goa, 403726 India
| | - Paul Jacob
- Department of Mechanical Engineering, BITS-Pilani, K K Birla Goa Campus, Goa, 403726 India
| | - Vadiraj Hemadri
- Department of Mechanical Engineering, BITS-Pilani, K K Birla Goa Campus, Goa, 403726 India
| | - Prasenjit Dey
- Department of Mechanical Engineering, National Institute of Technology, Goa, 403401 India
| | - Sunil Bhand
- Department of Chemistry, BITS-Pilani, K K Birla Goa Campus, Goa, 403726 India
| | - Siddhartha Tripathi
- Department of Mechanical Engineering, BITS-Pilani, K K Birla Goa Campus, Goa, 403726 India
| |
Collapse
|
2
|
Dong R, Liu S, Li Y, Gao F, Gao K, Chen C, Qian Z, Li W, Yang Y. Revisiting hemodynamics and blood oxygenation in a microfluidic microvasculature replica. Microvasc Res 2024; 152:104640. [PMID: 38065353 DOI: 10.1016/j.mvr.2023.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 02/03/2024]
Abstract
The complexity of microvascular circulation has led to the development of advanced imaging techniques and biomimetic models. This study developed a multifaceted microfluidic-based microdevice as an in vitro model of microvasculature to replicate important geometric and functional features of in vivo perfusion in mice. The microfluidic device consisted of a microchannel for blood perfusion, mirroring the natural hierarchical branching vascular structures found in mice. Additionally, the device incorporated a steady gradient of oxygen (O2) which diffused through the polydimethylsiloxane (PDMS) layer, allowing for dynamic blood oxygenation. The assembled multi-layered microdevice was accompanied by a dual-modal imaging system that combined laser speckle contrast imaging (LSCI) and intrinsic signal optical imaging (ISOI) to visualize full-field blood flow distributions and blood O2 profiles. By closely reproducing in vivo blood perfusion and oxygenation conditions, this microvasculature model, in conjunction with numerical simulation results, can provide quantitative information on physiologically relevant hemodynamics and key O2 transport parameters that are not directly measurable in traditional animal studies.
Collapse
Affiliation(s)
- Rui Dong
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sijia Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yuewu Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Fan Gao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chunxiao Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Weitao Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
3
|
Zorzi F, Bonfadini S, Aloisio L, Moschetta M, Storti F, Simoni F, Lanzani G, Criante L. Optofluidic Flow Cytometer with In-Plane Spherical Mirror for Signal Enhancement. SENSORS (BASEL, SWITZERLAND) 2023; 23:9191. [PMID: 38005576 PMCID: PMC10675696 DOI: 10.3390/s23229191] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Statistical analysis of the properties of single microparticles, such as cells, bacteria or plastic slivers, has attracted increasing interest in recent years. In this regard, field flow cytometry is considered the gold standard technique, but commercially available instruments are bulky, expensive, and not suitable for use in point-of-care (PoC) testing. Microfluidic flow cytometers, on the other hand, are small, cheap and can be used for on-site analyses. However, in order to detect small particles, they require complex geometries and the aid of external optical components. To overcome these limitations, here, we present an opto-fluidic flow cytometer with an integrated 3D in-plane spherical mirror for enhanced optical signal collection. As a result, the signal-to-noise ratio is increased by a factor of six, enabling the detection of particle sizes down to 1.5 µm. The proposed optofluidic detection scheme enables the simultaneous collection of particle fluorescence and scattering using a single optical fiber, which is crucial to easily distinguishing particle populations with different optical properties. The devices have been fully characterized using fluorescent polystyrene beads of different sizes. As a proof of concept for potential real-world applications, signals from fluorescent HEK cells and Escherichia coli bacteria were analyzed.
Collapse
Affiliation(s)
- Filippo Zorzi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Silvio Bonfadini
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
| | - Ludovico Aloisio
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Matteo Moschetta
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
| | - Filippo Storti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
| | - Francesco Simoni
- Università Politecnica delle Marche, 60131 Ancona, Italy;
- Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche (CNR), 80072 Pozzuoli, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
| | - Luigino Criante
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milan, Italy; (F.Z.); (S.B.); (L.A.); (M.M.); (F.S.); (G.L.)
| |
Collapse
|
4
|
Gong L, Cretella A, Lin Y. Microfluidic systems for particle capture and release: A review. Biosens Bioelectron 2023; 236:115426. [PMID: 37276636 DOI: 10.1016/j.bios.2023.115426] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Microfluidic technology has emerged as a promising tool in various applications, including biosensing, disease diagnosis, and environmental monitoring. One of the notable features of microfluidic devices is their ability to selectively capture and release specific cells, biomolecules, bacteria, and particles. Compared to traditional bulk analysis instruments, microfluidic capture-and-release platforms offer several advantages, such as contactless operation, label-free detection, high accuracy, good sensitivity, and minimal reagent requirements. However, despite significant efforts dedicated to developing innovative capture mechanisms in the past, the release and recovery efficiency of trapped particles have often been overlooked. Many previous studies have focused primarily on particle capture techniques and their efficiency, disregarding the crucial role of successful particle release for subsequent analysis. In reality, the ability to effectively release trapped particles is particularly essential to ensure ongoing, high-throughput analysis. To address this gap, this review aims to highlight the importance of both capture and release mechanisms in microfluidic systems and assess their effectiveness. The methods are classified into two categories: those based on physical principles and those using biochemical approaches. Furthermore, the review offers a comprehensive summary of recent applications of microfluidic platforms specifically designed for particle capture and release. It outlines the designs and performance of these devices, highlighting their advantages and limitations in various target applications and purposes. Finally, the review concludes with discussions on the current challenges faced in the field and presents potential future directions.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Andrew Cretella
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
5
|
Qi P, Lv J, Yan X, Bai L, Zhang L. Microfluidics: Insights into Intestinal Microorganisms. Microorganisms 2023; 11:1134. [PMID: 37317109 DOI: 10.3390/microorganisms11051134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 06/16/2023] Open
Abstract
Microfluidics is a system involving the treatment or manipulation of microscale (10-9 to 10-18 L) fluids using microchannels (10 to 100 μm) contained on a microfluidic chip. Among the different methodologies used to study intestinal microorganisms, new methods based on microfluidic technology have been receiving increasing attention in recent years. The intestinal tracts of animals are populated by a vast array of microorganisms that have been established to play diverse functional roles beneficial to host physiology. This review is the first comprehensive coverage of the application of microfluidics technology in intestinal microbial research. In this review, we present a brief history of microfluidics technology and describe its applications in gut microbiome research, with a specific emphasis on the microfluidic technology-based intestine-on-a-chip, and also discuss the advantages and application prospects of microfluidic drug delivery systems in intestinal microbial research.
Collapse
Affiliation(s)
- Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Grigorev GV, Lebedev AV, Wang X, Qian X, Maksimov GV, Lin L. Advances in Microfluidics for Single Red Blood Cell Analysis. BIOSENSORS 2023; 13:117. [PMID: 36671952 PMCID: PMC9856164 DOI: 10.3390/bios13010117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
The utilizations of microfluidic chips for single RBC (red blood cell) studies have attracted great interests in recent years to filter, trap, analyze, and release single erythrocytes for various applications. Researchers in this field have highlighted the vast potential in developing micro devices for industrial and academia usages, including lab-on-a-chip and organ-on-a-chip systems. This article critically reviews the current state-of-the-art and recent advances of microfluidics for single RBC analyses, including integrated sensors and microfluidic platforms for microscopic/tomographic/spectroscopic single RBC analyses, trapping arrays (including bifurcating channels), dielectrophoretic and agglutination/aggregation studies, as well as clinical implications covering cancer, sepsis, prenatal, and Sickle Cell diseases. Microfluidics based RBC microarrays, sorting/counting and trapping techniques (including acoustic, dielectrophoretic, hydrodynamic, magnetic, and optical techniques) are also reviewed. Lastly, organs on chips, multi-organ chips, and drug discovery involving single RBC are described. The limitations and drawbacks of each technology are addressed and future prospects are discussed.
Collapse
Affiliation(s)
- Georgii V. Grigorev
- Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
- School of Information Technology, Cherepovets State University, 162600 Cherepovets, Russia
| | - Alexander V. Lebedev
- Machine Building Department, Bauman Moscow State University, 105005 Moscow, Russia
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - George V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Physical metallurgy Department, Federal State Autonomous Educational Institution of Higher Education National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Liwei Lin
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Xia L, Zhou W, Huang J, Dong J, Xiao X, Li G. Size-resolved counting of circulating tumor cells on pinched flow-based microfluidic cytometry. Electrophoresis 2023; 44:82-88. [PMID: 36031791 DOI: 10.1002/elps.202200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 02/01/2023]
Abstract
Precise cell detecting and counting is meaningful in circulating tumor cells (CTCs) analysis. In this work, a simple cyclic olefin copolymer (COC) microflow cytometer device was developed for size-resolved CTCs counting. The proposed device is constructed by a counting channel and a pinched injection unit having three channels. Through injection flow rate control, microspheres/cells can be focused into the centerline of the counting channel. Polystyrene microspheres of 3, 9, 15, and 20 µm were used for the microspheres focusing characterization. After coupling to laser-induced fluorescence detection technique, the proposed device was used for polystyrene microspheres counting and sizing. A count accuracy up to 97.6% was obtained for microspheres. Moreover, the proposed microflow cytometer was applied to CTCs detecting and counting. To mimic blood sample containing CTCs and CTCs mixture with different subtypes, an MDA-MB-231 (human breast cell line) spiked red blood cells sample and a mixture of MDA-MB-231 and MCF-7 (human breast cell line) sample were prepared, respectively, and then analyzed by the developed pinched flow-based microfluidic cytometry. The simple fabricated and easy operating COC microflow cytometer exhibits the potential in the point-of-care clinical application.
Collapse
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wanjun Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianying Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jianwei Dong
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
8
|
Liu Y, Ji M, Zhang Y, Qiao X, Yu N, Ding C, Yang L, Feng R, Chou X, Geng W. A Novel Detachable, Reusable, and Versatile Acoustic Tweezer Manipulation Platform for Biochemical Analysis and Detection Systems. BIOSENSORS 2022; 12:1179. [PMID: 36551146 PMCID: PMC9775593 DOI: 10.3390/bios12121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Multifunctional, integrated, and reusable operating platforms are highly sought after in biochemical analysis and detection systems. In this study, we demonstrated a novel detachable, reusable acoustic tweezer manipulation platform that is flexible and versatile. The free interchangeability of different detachable microchannel devices on the acoustic tweezer platform was achieved by adding a waveguide layer (glass) and a coupling layer (polydimethylsiloxane (PDMS) polymer film). We designed and demonstrated the detachable multifunctional acoustic tweezer platform with three cell manipulation capabilities. In Demo I, the detachable acoustic tweezer platform is demonstrated to have the capability for parallel processing and enrichment of the sample. In Demo II, the detachable acoustic tweezer platform with capability for precise cell alignment is demonstrated. In Demo III, it was demonstrated that the detachable acoustic tweezer platform has the capability for the separation and purification of cells. Through experiments, our acoustic tweezer platform has good acoustic retention ability, reusability, and stability. More capabilities can be expanded in the future. It provides a simple, economical, and multifunctional reusable operating platform solution for biochemical analysis and detection systems.
Collapse
Affiliation(s)
- Yukai Liu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Miaomiao Ji
- Key Laboratory of Instrumentation Science &Dynamic Measurement, North University of China, Taiyuan 030051, China
| | - Yichi Zhang
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Xiaojun Qiao
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Nanxin Yu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Chenxi Ding
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Lingxiao Yang
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Rui Feng
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Xiujian Chou
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| | - Wenping Geng
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
| |
Collapse
|
9
|
Iakovlev AP, Erofeev AS, Gorelkin PV. Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review. BIOSENSORS 2022; 12:956. [PMID: 36354465 PMCID: PMC9688261 DOI: 10.3390/bios12110956] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/02/2023]
Abstract
This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.
Collapse
Affiliation(s)
| | | | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia
| |
Collapse
|
10
|
Zhang Y, Zhao Y, Cole T, Zheng J, Bayinqiaoge, Guo J, Tang SY. Microfluidic flow cytometry for blood-based biomarker analysis. Analyst 2022; 147:2895-2917. [PMID: 35611964 DOI: 10.1039/d2an00283c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flow cytometry has proven its capability for rapid and quantitative analysis of individual cells and the separation of targeted biological samples from others. The emerging microfluidics technology makes it possible to develop portable microfluidic diagnostic devices for point-of-care testing (POCT) applications. Microfluidic flow cytometry (MFCM), where flow cytometry and microfluidics are combined to achieve similar or even superior functionalities on microfluidic chips, provides a powerful single-cell characterisation and sorting tool for various biological samples. In recent years, researchers have made great progress in the development of the MFCM including focusing, detecting, and sorting subsystems, and its unique capabilities have been demonstrated in various biological applications. Moreover, liquid biopsy using blood can provide various physiological and pathological information. Thus, biomarkers from blood are regarded as meaningful circulating transporters of signal molecules or particles and have great potential to be used as non (or minimally)-invasive diagnostic tools. In this review, we summarise the recent progress of the key subsystems for MFCM and its achievements in blood-based biomarker analysis. Finally, foresight is offered to highlight the research challenges faced by MFCM in expanding into blood-based POCT applications, potentially yielding commercialisation opportunities.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Ying Zhao
- National Chengdu Centre of Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu, China
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jiahao Zheng
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Bayinqiaoge
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
11
|
Civelekoglu O, Liu R, Usanmaz CF, Chu CH, Boya M, Ozkaya-Ahmadov T, Arifuzzman AKM, Wang N, Sarioglu AF. Electronic measurement of cell antigen expression in whole blood. LAB ON A CHIP 2022; 22:296-312. [PMID: 34897353 DOI: 10.1039/d1lc00889g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane antigens are phenotypic signatures of cells used for distinguishing various subpopulations and, therefore, are of great interest for diagnosis of diseases and monitoring of patients in hematology and oncology. Existing methods to measure antigen expression of a target subpopulation in blood samples require labor-intensive lysis of contaminating cells and subsequent analysis with complex and bulky instruments in specialized laboratories. To address this long-standing limitation in clinical cytometry, we introduce a microchip-based technique that can directly measure surface expression of target cells in hematological samples. Our microchip isolates an immunomagnetically-labeled target cell population from the contaminating background in whole blood and then utilizes the differential responses of target cells to on-chip magnetic manipulation to estimate their antigen expression. Moreover, manipulating cells with chip-sized permanent magnets and performing quantitative measurements via an on-chip electrical sensor network allows the assay to be performed in a portable platform with no reliance on laboratory infrastructure. Using our technique, we could successfully measure expressions of the CD45 antigen that is commonly expressed by white blood cells, as well as CD34 that is expressed by scarce hematopoietic progenitor cells, which constitutes only ∼0.0001% of all blood cells, directly from whole blood. With our technology, flow cytometry can potentially become a rapid bedside or at-home testing method that is available around the clock in environments where this invaluable assay with proven clinical utility is currently either outsourced or not even accessible.
Collapse
Affiliation(s)
- Ozgun Civelekoglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ruxiu Liu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Can F Usanmaz
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Chia-Heng Chu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Mert Boya
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Tevhide Ozkaya-Ahmadov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - A K M Arifuzzman
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ningquan Wang
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - A Fatih Sarioglu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
12
|
Dev AA, Dunne P, Hermans TM, Doudin B. Fluid Drag Reduction by Magnetic Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:719-726. [PMID: 34982565 DOI: 10.1021/acs.langmuir.1c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The frictional forces of a viscous liquid flow are a major energy loss issue and severely limit microfluidics practical use. Reducing this drag by more than a few tens of percent remain elusive. Here, we show how cylindrical liquid-in-liquid flow leads to drag reduction of 60-99% for sub-mm and mm-sized channels, regardless of whether the viscosity of the transported liquid is larger or smaller than that of the confining one. In contrast to lubrication or sheath flow, we do not require a continuous flow of the confining lubricant, here made of a ferrofluid held in place by magnetic forces. In a laminar flow model with appropriate boundary conditions, we introduce a modified Reynolds number with a scaling that depends on geometrical factors and viscosity ratio of the two liquids. It explains our whole range of data and reveals the key design parameters for optimizing the drag reduction values. Our approach promises a new route for microfluidics designs with pressure gradient reduced by orders of magnitude.
Collapse
Affiliation(s)
- Arvind Arun Dev
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504 CNRS-UdS, 67034 Strasbourg, France
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Peter Dunne
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504 CNRS-UdS, 67034 Strasbourg, France
| | - Thomas M Hermans
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Bernard Doudin
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS, UMR 7504 CNRS-UdS, 67034 Strasbourg, France
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| |
Collapse
|
13
|
Awate DM, Pola CC, Shumaker E, Gomes CL, Juárez JJ. 3D printed imaging platform for portable cell counting. Analyst 2021; 146:4033-4041. [PMID: 34036979 DOI: 10.1039/d1an00778e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite having widespread application in the biomedical sciences, flow cytometers have several limitations that prevent their application to point-of-care (POC) diagnostics in resource-limited environments. 3D printing provides a cost-effective approach to improve the accessibility of POC devices in resource-limited environments. Towards this goal, we introduce a 3D-printed imaging platform (3DPIP) capable of accurately counting particles and perform fluorescence microscopy. In our 3DPIP, captured microscopic images of particle flow are processed on a custom developed particle counter code to provide a particle count. This prototype uses a machine vision-based algorithm to identify particles from captured flow images and is flexible enough to allow for labeled and label-free particle counting. Additionally, the particle counter code returns particle coordinates with respect to time which can further be used to perform particle image velocimetry. These results can help estimate forces acting on particles, and identify and sort different types of cells/particles. We evaluated the performance of this prototype by counting 10 μm polystyrene particles diluted in deionized water at different concentrations and comparing the results with a commercial Beckman-Coulter Z2 particle counter. The 3DPIP can count particle concentrations down to ∼100 particles per mL with a standard deviation of ±20 particles, which is comparable to the results obtained on a commercial particle counter. Our platform produces accurate results at flow rates up to 9 mL h-1 for concentrations below 1000 particle per mL, while 5 mL h-1 produces accurate results above this concentration limit. Aside from performing flow-through experiments, our instrument is capable of performing static experiments that are comparable to a plate reader. In this configuration, our instrument is able to count between 10 and 250 cells per image, depending on the prepared concentration of bacteria samples (Citrobacter freundii; ATCC 8090). Overall, this platform represents a first step towards the development of an affordable fully 3D printable imaging flow cytometry instrument for use in resource-limited clinical environments.
Collapse
Affiliation(s)
- Diwakar M Awate
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA.
| | - Cicero C Pola
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA.
| | - Erica Shumaker
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA.
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA.
| | - Jaime J Juárez
- Department of Mechanical Engineering, Iowa State University, 2529 Union Drive, Ames, IA 50011, USA. and Center for Multiphase Flow Research and Education, Iowa State University, 2519 Union Drive, Ames, IA 50011, USA
| |
Collapse
|