1
|
Horsley PJ, Bailey DL, Schembri G, Hsiao E, Drummond J, Back MF. The role of amino acid PET in radiotherapy target volume delineation for adult-type diffuse gliomas: A review of the literature. Crit Rev Oncol Hematol 2024; 205:104552. [PMID: 39521308 DOI: 10.1016/j.critrevonc.2024.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To summarise existing literature examining amino acid positron emission tomography (AA-PET) for radiotherapy target volume delineation in patients with gliomas. METHODS Systematic search of MEDLINE and EMBASE databases. RESULTS Twenty studies met inclusion criteria. Studies comparing MRI- and AA-PET- derived target volumes consistently found these to be complementary. Across studies, AA-PET was a strong predictor of the site of subsequent relapse. In studies examining AA-PET-guided radiotherapy at standard doses, including one study using reduced margins, survival outcomes were similar to historical cohorts whose volumes were generated using MRI alone. Four prospective single-arm trials examining AA-PET-guided dose-escalated radiotherapy reported mixed results. The two trials that used both a higher biologically-effective dose and boost-volumes defined using both MRI and AA-PET reported promising outcomes. CONCLUSION AA-PET is a promising complementary tool to MRI for radiotherapy target volume delineation, with potential benefits requiring further validation including margin reduction and facilitation of dose-escalation.
Collapse
Affiliation(s)
- Patrick J Horsley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Geoffrey Schembri
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - James Drummond
- Department of Radiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Michael F Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; The Brain Cancer Group, Sydney, New South Wales, Australia; Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia; Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| |
Collapse
|
2
|
Fiz F, Bottoni G, Ugolini M, Righi S, Cirone A, Garganese MC, Verrico A, Rossi A, Milanaccio C, Ramaglia A, Mastronuzzi A, Abate ME, Cacchione A, Gandolfo C, Colafati GS, Garrè ML, Morana G, Piccardo A. Diagnostic and Dosimetry Features of [ 64Cu]CuCl 2 in High-Grade Paediatric Infiltrative Gliomas. Mol Imaging Biol 2023; 25:391-400. [PMID: 36042116 DOI: 10.1007/s11307-022-01769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 03/12/2023]
Abstract
PURPOSE OF THE REPORT Paediatric diffuse high-grade gliomas (PDHGG) are rare central nervous system neoplasms lacking effective therapeutic options. Molecular imaging of tumour metabolism might identify novel diagnostic/therapeutic targets. In this study, we evaluated the distribution and the dosimetry aspects of [64Cu]CuCl2 in PDHGG subjects, as copper is a key element in cellular metabolism whose turnover may be increased in tumour cells. MATERIAL AND METHODS Paediatric patients with PDHGG were prospectively recruited. [64Cu]CuCl2 PET/CT was performed 1 h after tracer injection; if the scan was positive, it was repeated 24 and 72 h later. Lesion standardised uptake value (SUV) and target-to-background ratio (TBR) were calculated. Tumour and organ dosimetry were computed using the MIRD algorithm. Each patient underwent an MRI scan, including FLAIR, T2-weighted and post-contrast T1-weighted imaging. RESULTS Ten patients were enrolled (median age 9, range 6-16 years, 6 females). Diagnoses were diffuse midline gliomas (n = 8, 5 of which with H3K27 alterations) and diffuse hemispheric gliomas (n = 2). Six patients had visible tracer uptake (SUV: 1.0 ± 0.6 TBR: 5 ± 3.1). [64Cu]CuCl2 accumulation was always concordant with MRI contrast enhancement and was higher in the presence of radiological signs of necrosis. SUV and TBR progressively increased on the 24- and 72-h acquisitions (p < 0.05 and p < 0.01, respectively). The liver and the abdominal organs received the highest non-target dose. CONCLUSIONS [64Cu]CuCl2 is a well-tolerated radiotracer with reasonably favourable dosimetric properties, showing selective uptake in tumour areas with visible contrast enhancement and necrosis, thus suggesting that blood-brain barrier damage is a pre-requisite for its distribution to the intracranial structures. Moreover, tracer uptake showed an accumulating trend over time. These characteristics could deserve further analysis, to determine whether this radiopharmaceutical might have a possible therapeutic role as well.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy.
| | - Gianluca Bottoni
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Martina Ugolini
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Sergio Righi
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Alessio Cirone
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Maria Carmen Garganese
- Nuclear Medicine Unit/Imaging Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Verrico
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | | | - Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Angela Mastronuzzi
- Neuro-Oncology Unit, Department of Paediatric Haematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | | | - Antonella Cacchione
- Neuro-Oncology Unit, Department of Paediatric Haematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Carlo Gandolfo
- Imaging Department, Neuroradiology Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | - Giovanni Morana
- Department of Neurosciences, University of Turin, Turin, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. Ospedali Galliera, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| |
Collapse
|
3
|
Muthukumar S, Darden J, Crowley J, Witcher M, Kiser J. A Comparison of PET Tracers in Recurrent High-Grade Gliomas: A Systematic Review. Int J Mol Sci 2022; 24:ijms24010408. [PMID: 36613852 PMCID: PMC9820099 DOI: 10.3390/ijms24010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Humans with high-grade gliomas have a poor prognosis, with a mean survival time of just 12-18 months for patients who undergo standard-of-care tumor resection and adjuvant therapy. Currently, surgery and chemoradiotherapy serve as standard treatments for this condition, yet these can be complicated by the tumor location, growth rate and recurrence. Currently, gadolinium-based, contrast-enhanced magnetic resonance imaging (CE-MRI) serves as the predominant imaging modality for recurrent high-grade gliomas, but it faces several drawbacks, including its inability to distinguish tumor recurrence from treatment-related changes and its failure to reveal the entirety of tumor burden (de novo or recurrent) due to limitations inherent to gadolinium contrast. As such, alternative imaging modalities that can address these limitations, including positron emission tomography (PET), are worth pursuing. To this end, the identification of PET-based markers for use in imaging of recurrent high-grade gliomas is paramount. This review will highlight several PET radiotracers that have been implemented in clinical practice and provide a comparison between them to assess the efficacy of these tracers.
Collapse
Affiliation(s)
| | - Jordan Darden
- Carilion Clinic Neurosurgery, Roanoke, VA 24016, USA
| | | | - Mark Witcher
- Carilion Clinic Neurosurgery, Roanoke, VA 24016, USA
| | - Jackson Kiser
- Carilion Clinic Radiology, Roanoke, VA 24016, USA
- Correspondence:
| |
Collapse
|
4
|
Ryan JT, Nakayama M, Gleeson I, Mannion L, Geso M, Kelly J, Ng SP, Hardcastle N. Functional brain imaging interventions for radiation therapy planning in patients with glioblastoma: a systematic review. Radiat Oncol 2022; 17:178. [PMID: 36371225 PMCID: PMC9653002 DOI: 10.1186/s13014-022-02146-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
RATIONALE This systematic review aims to synthesise the outcomes of different strategies of incorporating functional biological markers in the radiation therapy plans of patients with glioblastoma to support clinicians and further research. METHODS The systematic review protocol was registered on PROSPERO (CRD42021221021). A structured search for publications was performed following PRISMA guidelines. Quality assessment was performed using the Newcastle-Ottawa Scale. Study characteristics, intervention methodology and outcomes were extracted using Covidence. Data analysis focused on radiation therapy target volumes, toxicity, dose distributions, recurrence and survival mapped to functional image-guided radiotherapy interventions. RESULTS There were 5733 citations screened, with 53 citations (n = 32 studies) meeting review criteria. Studies compared standard radiation therapy planning volumes with functional image-derived volumes (n = 20 studies), treated radiation therapy volumes with recurrences (n = 15 studies), the impact on current standard target delineations (n = 9 studies), treated functional volumes and survival (n = 8 studies), functionally guided dose escalation (n = 8 studies), radiomics (n = 4 studies) and optimal organ at risk sparing (n = 3 studies). The approaches to target outlining and dose escalation were heterogeneous. The analysis indicated an improvement in median overall survival of over two months compared with a historical control group. Simultaneous-integrated-boost dose escalation of 72-76 Gy in 30 fractions appeared to have an acceptable toxicity profile when delivered with inverse planning to a volume smaller than 100 cm[Formula: see text]. CONCLUSION There was significant heterogeneity between the approaches taken by different study groups when implementing functional image-guided radiotherapy. It is recommended that functional imaging data be incorporated into the gross tumour volume with appropriate technology-specific margins used to create the clinical target volume when designing radiation therapy plans for patients with glioblastoma.
Collapse
Affiliation(s)
- John T Ryan
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Melbourne, Australia
- Medical Radiations Department, School of Health and Biomedical Sciences, STEM College, RMIT University Bundoora, Melbourne, Australia
| | - Masao Nakayama
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, 7-5-2 Kusunokicho, Chuou-ku, Kobe, Japan
| | - Ian Gleeson
- Cancer Research UK RadNet Cambridge, Medical Physics, NHS Foundation Trust, Addenbrookes Hospital, Cambridge, CB2 0QQ UK
| | - Liam Mannion
- Division of Midwifery and Radiography, School of Health Sciences, University of London, Northampton Square, London, UK
| | - Moshi Geso
- Medical Radiations Department, School of Health and Biomedical Sciences, STEM College, RMIT University Bundoora, Melbourne, Australia
| | - Jennifer Kelly
- Medical Radiations Department, School of Health and Biomedical Sciences, STEM College, RMIT University Bundoora, Melbourne, Australia
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, 145 Studley Rd, Heidelberg, Melbourne, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Australia
| |
Collapse
|
5
|
John F, Bosnyák E, Robinette NL, Amit-Yousif AJ, Barger GR, Shah KD, Michelhaugh SK, Klinger NV, Mittal S, Juhász C. Multimodal imaging-defined subregions in newly diagnosed glioblastoma: impact on overall survival. Neuro Oncol 2020; 21:264-273. [PMID: 30346623 DOI: 10.1093/neuonc/noy169] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although glioblastomas are heterogeneous brain-infiltrating tumors, their treatment is mostly focused on the contrast-enhancing tumor mass. In this study, we combined conventional MRI, diffusion-weighted imaging (DWI), and amino acid PET to explore imaging-defined glioblastoma subregions and evaluate their potential prognostic value. METHODS Contrast-enhanced T1, T2/fluid attenuated inversion recovery (FLAIR) MR images, apparent diffusion coefficient (ADC) maps from DWI, and alpha-[11C]-methyl-L-tryptophan (AMT)-PET images were analyzed in 30 patients with newly diagnosed glioblastoma. Five tumor subregions were identified based on a combination of MRI contrast enhancement, T2/FLAIR signal abnormalities, and AMT uptake on PET. ADC and AMT uptake tumor/contralateral normal cortex (T/N) ratios in these tumor subregions were correlated, and their prognostic value was determined. RESULTS A total of 115 MRI/PET-defined subregions were analyzed. Most tumors showed not only a high-AMT uptake (T/N ratio > 1.65, N = 27) but also a low-uptake subregion (N = 21) within the contrast-enhancing tumor mass. High AMT uptake extending beyond contrast enhancement was also common (N = 25) and was associated with low ADC (r = -0.40, P = 0.05). Higher AMT uptake in the contrast-enhancing tumor subregions was strongly prognostic for overall survival (hazard ratio: 7.83; 95% CI: 1.98-31.02, P = 0.003), independent of clinical and molecular genetic prognostic variables. Nonresected high-AMT uptake subregions predicted the sites of tumor progression on posttreatment PET performed in 10 patients. CONCLUSIONS Glioblastomas show heterogeneous amino acid uptake with high-uptake regions often extending into non-enhancing brain with high cellularity; nonresection of these predict the site of posttreatment progression. High tryptophan uptake values in MRI contrast-enhancing tumor subregions are a strong, independent imaging marker for longer overall survival.
Collapse
Affiliation(s)
- Flóra John
- Department of Pediatrics, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan
| | - Edit Bosnyák
- Department of Pediatrics, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan
| | - Natasha L Robinette
- Department of Oncology, Wayne State University, Detroit, Michigan.,Department of Radiology, Wayne State University, Detroit, Michigan.,Karmanos Cancer Institute, Detroit, Michigan
| | - Alit J Amit-Yousif
- Department of Oncology, Wayne State University, Detroit, Michigan.,Department of Radiology, Wayne State University, Detroit, Michigan.,Karmanos Cancer Institute, Detroit, Michigan
| | - Geoffrey R Barger
- Department of Neurology, Wayne State University, Detroit, Michigan.,Karmanos Cancer Institute, Detroit, Michigan
| | - Keval D Shah
- Department of Neurology, Wayne State University, Detroit, Michigan
| | | | | | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Detroit, Michigan.,Department of Oncology, Wayne State University, Detroit, Michigan.,Department of Biomedical Engineering, Wayne State University, Detroit, Michigan.,Karmanos Cancer Institute, Detroit, Michigan
| | - Csaba Juhász
- Department of Pediatrics, Wayne State University, Detroit, Michigan.,Department of Neurology, Wayne State University, Detroit, Michigan.,Department of Neurosurgery, Wayne State University, Detroit, Michigan.,PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit Medical Center, Detroit, Michigan.,Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
6
|
Molecular and Clinical Insights into the Invasive Capacity of Glioblastoma Cells. JOURNAL OF ONCOLOGY 2019; 2019:1740763. [PMID: 31467533 PMCID: PMC6699388 DOI: 10.1155/2019/1740763] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
Abstract
The invasive capacity of GBM is one of the key tumoral features associated with treatment resistance, recurrence, and poor overall survival. The molecular machinery underlying GBM invasiveness comprises an intricate network of signaling pathways and interactions with the extracellular matrix and host cells. Among them, PI3k/Akt, Wnt, Hedgehog, and NFkB play a crucial role in the cellular processes related to invasion. A better understanding of these pathways could potentially help in developing new therapeutic approaches with better outcomes. Nevertheless, despite significant advances made over the last decade on these molecular and cellular mechanisms, they have not been translated into the clinical practice. Moreover, targeting the infiltrative tumor and its significance regarding outcome is still a major clinical challenge. For instance, the pre- and intraoperative methods used to identify the infiltrative tumor are limited when trying to accurately define the tumor boundaries and the burden of tumor cells in the infiltrated parenchyma. Besides, the impact of treating the infiltrative tumor remains unclear. Here we aim to highlight the molecular and clinical hallmarks of invasion in GBM.
Collapse
|
7
|
Choudhary G, Langen KJ, Galldiks N, McConathy J. Investigational PET tracers for high-grade gliomas. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2018; 62:281-294. [PMID: 29869489 DOI: 10.23736/s1824-4785.18.03105-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-grade gliomas (HGGs) are the most common primary malignant tumors of the brain, with glioblastoma (GBM) constituting over 50% of all the gliomas in adults. The disease carries very high mortality, and even with optimal treatment, the median survival is 2-5 years for anaplastic tumors and 1-2 years for GBMs. Neuroimaging is critical to managing patients with HGG for diagnosis, treatment planning, response assessment, and detecting recurrent disease. Magnetic resonance imaging (MRI) is the cornerstone of imaging in neuro-oncology, but molecular imaging with positron emission tomography (PET) can overcome some of the inherent limitations of MRI. Additionally, PET has the potential to target metabolic and molecular alterations in HGGs relevant to prognosis and therapy that cannot be assessed with anatomic imaging. Many classes of PET tracers have been evaluated in HGG including agents that target cell membrane biosynthesis, protein synthesis, amino acid transport, DNA synthesis, the tricarboxylic acid (TCA) cycle, hypoxic environments, cell surface receptors, blood flow, vascular endothelial growth factor (VEGF), epidermal growth factor (EGFR), and the 18-kDa translocator protein (TSPO), among others. This chapter will provide an overview of PET tracers for HGG that have been evaluated in human subjects with a focus on tracers that are not yet in widespread use for neuro-oncology.
Collapse
Affiliation(s)
- Gagandeep Choudhary
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Jülich Research Center, Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4), Jülich Research Center, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany.,Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Cologne, Germany
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA -
| |
Collapse
|
8
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
9
|
Challapalli A, Aboagye EO. Positron Emission Tomography Imaging of Tumor Cell Metabolism and Application to Therapy Response Monitoring. Front Oncol 2016; 6:44. [PMID: 26973812 PMCID: PMC4770188 DOI: 10.3389/fonc.2016.00044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer cells do reprogram their energy metabolism to enable several functions, such as generation of biomass including membrane biosynthesis, and overcoming bioenergetic and redox stress. In this article, we review both established and evolving radioprobes developed in association with positron emission tomography (PET) to detect tumor cell metabolism and effect of treatment. Measurement of enhanced tumor cell glycolysis using 2-deoxy-2-[(18)F]fluoro-D-glucose is well established in the clinic. Analogs of choline, including [(11)C]choline and various fluorinated derivatives are being tested in several cancer types clinically with PET. In addition to these, there is an evolving array of metabolic tracers for measuring intracellular transport of glutamine and other amino acids or for measuring glycogenesis, as well as probes used as surrogates for fatty acid synthesis or precursors for fatty acid oxidation. In addition to providing us with opportunities for examining the complex regulation of reprogramed energy metabolism in living subjects, the PET methods open up opportunities for monitoring pharmacological activity of new therapies that directly or indirectly inhibit tumor cell metabolism.
Collapse
Affiliation(s)
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
10
|
Positron emission tomography of high-grade gliomas. J Neurooncol 2016; 127:415-25. [PMID: 26897013 DOI: 10.1007/s11060-016-2077-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
High-grade gliomas [HGG (WHO grades III-IV)] are almost invariably fatal. Imaging of HGG is important for orientating diagnosis, prognosis and treatment planning and is crucial for development of novel, more effective therapies. Given the potentially unlimited number of usable tracing molecules and the elevated number of available radionuclides, PET allows gathering multiple informations on HGG including data on tissue metabolism and drug pharmacokinetics. PET studies on the diagnosis, prognosis and treatment of HGG carried out by most frequently used tracers and radionuclides ((11)C and (18)F) and published in 2014 have been reviewed. These studies demonstrate that a thorough choice of tracers may confer elevated diagnostic and prognostic power to PET imaging of HGG. They also suggest that a combination of PET and MRI may give the most complete and reliable imaging information on HGG and that research on hybrid PET/MRI may be paying back in terms of improved diagnosis, prognosis and treatment planning of these deadly tumours.
Collapse
|
11
|
Juhász C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging 2015; 13. [PMID: 24825818 DOI: 10.2310/7290.2014.00015] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Positron emission tomography (PET) is an imaging technology that can detect and characterize tumors based on their molecular and biochemical properties, such as altered glucose, nucleoside, or amino acid metabolism. PET plays a significant role in the diagnosis, prognostication, and treatment of various cancers, including brain tumors. In this article, we compare uptake mechanisms and the clinical performance of the amino acid PET radiotracers (l-[methyl-11C]methionine [MET], 18F-fluoroethyl-tyrosine [FET], 18F-fluoro-l-dihydroxy-phenylalanine [FDOPA], and 11C-alpha-methyl-l-tryptophan [AMT]) most commonly used for brain tumor imaging. First, we discuss and compare the mechanisms of tumoral transport and accumulation, the basis of differential performance of these radioligands in clinical studies. Then we summarize studies that provided direct comparisons among these amino acid tracers and to clinically used 2-deoxy-2[18F]fluoro-d-glucose [FDG] PET imaging. We also discuss how tracer kinetic analysis can enhance the clinical information obtained from amino acid PET images. We discuss both similarities and differences in potential clinical value for each radioligand. This comparative review can guide which radiotracer to favor in future clinical trials aimed at defining the role of these molecular imaging modalities in the clinical management of brain tumor patients.
Collapse
|