1
|
Vasilijic S, Atai NA, Hyakusoku H, Worthington S, Ren Y, Sagers JE, Sahin MI, Brown A, Reddy R, Malhotra C, Fujita T, Landegger LD, Lewis R, Welling DB, Stankovic KM. Identification of immune-related candidate biomarkers in plasma of patients with sporadic vestibular schwannoma. SCIENCE ADVANCES 2023; 9:eadf7295. [PMID: 37948527 PMCID: PMC10637750 DOI: 10.1126/sciadv.adf7295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Vestibular schwannoma (VS) is an intracranial tumor arising from neoplastic Schwann cells and typically presenting with hearing loss. The traditional belief that hearing deficit is caused by physical expansion of the VS, compressing the auditory nerve, does not explain the common clinical finding that patients with small tumors can have profound hearing loss, suggesting that tumor-secreted factors could influence hearing ability in VS patients. We conducted profiling of patients' plasma for 66 immune-related factors in patients with sporadic VS (N > 170) and identified and validated candidate biomarkers associated with tumor size (S100B) and hearing (MCP-3). We further identified a nine-biomarker panel (TNR-R2, MIF, CD30, MCP-3, IL-2R, BLC, TWEAK, eotaxin, and S100B) with outstanding discriminatory ability for VS. These findings revealed possible therapeutic targets for VS, providing a unique diagnostic tool that may predict hearing change and tumor growth in VS patients, and may inform the timing of tumor resection to preserve hearing.
Collapse
Affiliation(s)
- Sasa Vasilijic
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Nadia A. Atai
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Hiroshi Hyakusoku
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
- Department of Otorhinolaryngology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Steven Worthington
- Harvard Institute for Quantitative Social Science, Harvard University, Cambridge, MA, USA
| | - Yin Ren
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Jessica E. Sagers
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Mehmet I. Sahin
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Alyssa Brown
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Rohan Reddy
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Charvi Malhotra
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Takeshi Fujita
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Lukas D. Landegger
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Richard Lewis
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - D. Bradley Welling
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Du B, Yu R, Geng X, Li Y, Liu Y, Liu S, Li F, Yu Q, Guo Y, Xi X. The function of MSP-activated γδT cells in hepatocellular carcinoma. Int Immunopharmacol 2023; 124:110893. [PMID: 37669598 DOI: 10.1016/j.intimp.2023.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
Immunotherapeutic strategies targeting γδT cells are now recognized as a promising treatment method for hepatocellular carcinoma (HCC). To date, no specific antigen or antigenic epitope recognized by γδT cells has been identified, limiting their application in the field of HCC treatment. Previously, we used an established screening strategy to identify a novel HCC protein antigen recognized by γδT cells called MSP. In this study, we explored the function of MSP activated-γδT cells in HCC. Results demonstrated that the proportions of γδT cells in the peripheral blood of HCC patients and the level of IFN-γ in the serum were higher than in healthy controls. We also determined that γδT cells can bind MSP protein. MSP-activated γδT cells were shown to contain a specific CDR3δ2 sequence that supports the recognition of MSP by γδT cells. We determined that MSP is highly expressed in HCC, MSP-activated γδT cells in the peripheral blood of HCC patients express co-stimulatory molecules, and MSP-activated γδT cells directly killed HCC cells. In conclusion, we demonstrated that the novel protein ligand MSP activated γδT cells, leading to the killing of HCC cells through direct and indirect mechanisms. These findings could provide a potential new target for the clinical diagnosis and treatment of HCC and a foundation for clinical treatment strategies in HCC.
Collapse
Affiliation(s)
- Boyu Du
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Ruihong Yu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Xiaoqing Geng
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Yulin Li
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Yirui Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Shuaitong Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Fangzhou Li
- Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - QingQing Yu
- Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Yang Guo
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan City, Hubei Province, PR China.
| | - Xueyan Xi
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan City, Hubei Province, PR China.
| |
Collapse
|
3
|
Vasilijic S, Atai NA, Hyakusoku H, Worthington S, Ren Y, Sagers JE, Sahin MI, Fujita T, Landegger LD, Lewis R, Welling DB, Stankovic KM. Identification of Immune-Related Candidate Biomarkers in Plasma of Patients with Sporadic Vestibular Schwannoma: Candidate Plasma Biomarkers in Vestibular Schwannoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525436. [PMID: 36747696 PMCID: PMC9900840 DOI: 10.1101/2023.01.24.525436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vestibular schwannoma (VS) is intracranial tumor arising from neoplastic Schwann cells, causing hearing loss in about 95% of patients. The traditional belief that hearing deficit is caused by physical expansion of the VS, compressing the auditory nerve, does not explain the common clinical finding that patients with small tumors can have profound hearing loss, suggesting that tumor-secreted factors could influence hearing ability in VS patients. Here, we conducted profiling of patients' plasma for 67 immune-related factors on a large cohort of VS patients (N>120) and identified candidate biomarkers associated with tumor growth (IL-16 and S100B) and hearing (MDC). We identified the 7-biomarker panel composed of MCP-3, BLC, S100B, FGF-2, MMP-14, eotaxin, and TWEAK that showed outstanding discriminatory ability for VS. These findings revealed possible therapeutic targets for VS-induced hearing loss and provided a unique diagnostic tool that may predict hearing change and tumor growth in VS patients and may help inform the ideal timing of tumor resection to preserve hearing.
Collapse
Affiliation(s)
- Sasa Vasilijic
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, US
| | - Nadia A. Atai
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
| | - Hiroshi Hyakusoku
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
- Department of Otorhinolaryngology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Steven Worthington
- Harvard Institute for Quantitative Social Science, Harvard University, Cambridge, MA, US
| | - Yin Ren
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
| | - Jessica E. Sagers
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
| | - Mehmet I Sahin
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
| | - Takeshi Fujita
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
| | - Lukas D. Landegger
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
| | - Richard Lewis
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
- Department of Neurology, Harvard Medical School, Boston, MA, US
| | - D. Bradley Welling
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
| | - Konstantina M. Stankovic
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, US
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, US
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, US
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, US
| |
Collapse
|
4
|
Lu L, Cole A, Huang D, Wang Q, Guo Z, Yang W, Lu J. Clinical Significance of Hepsin and Underlying Signaling Pathways in Prostate Cancer. Biomolecules 2022; 12:biom12020203. [PMID: 35204704 PMCID: PMC8961580 DOI: 10.3390/biom12020203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
The hepsin gene encodes a type II transmembrane serine protease. Previous studies have shown the overexpression of hepsin in prostate cancer, and the dysregulation of hepsin promotes cancer cell proliferation, migration, and metastasis in vitro and in vivo. The review incorporated with our work showed that hepsin expression levels were specifically increased in prostate cancer, and higher expression in metastatic tumors than in primary tumors was also observed. Moreover, increased expression was associated with poor outcomes for patients with prostate cancer. Using in silico protein–protein interaction prediction, mechanistic analysis showed that hepsin interacted with eight other oncogenic proteins, whose expression was significantly correlated with hepsin expression in prostate cancer. The oncogenic functions of hepsin are mainly linked to proteolytic activities that disrupt epithelial integrity and regulatorily interact with other genes to influence cell-proliferation, EMT/metastasis, inflammatory, and tyrosine-kinase-signaling pathways. Moreover, genomic amplifications of hepsin, not deletions or other alterations, were significantly associated with prostate cancer metastasis. Targeting hepsin using a specific inhibitor or antibodies significantly attenuates its oncogenic behaviors. Therefore, hepsin could be a novel biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Lucy Lu
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Adam Cole
- TruCore Pathology, Little Rock, AR 72204, USA;
| | - Dan Huang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Qiang Wang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Zhongming Guo
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Wancai Yang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (W.Y.); (J.L.)
| | - Jim Lu
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
- Correspondence: (W.Y.); (J.L.)
| |
Collapse
|
5
|
Xi X, Guo Y, Zhu M, Qiu F, Lei F, Li G, Du B. Identification of new potential antigen recognized by γδT cells in hepatocellular carcinoma. Cancer Immunol Immunother 2021; 70:1917-1927. [PMID: 33399933 PMCID: PMC10992768 DOI: 10.1007/s00262-020-02826-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022]
Abstract
In recent years, the application of chimeric antigen receptor T-cell (CAR-T) therapy based on gamma delta T (γδT) cells in hepatocellular carcinoma (HCC) immunotherapy has attracted more and more attention. However, specific antigens recognized by γδT cells are rarely identified, which has become the main restriction on such therapeutic application of γδT cells. In this report, we identified a new peptide and protein antigen recognized by γδT cells in HCC using our previous established strategy. First, we investigated the diversity of the γ9/δ2 T-cell immunorepertoire by sequence analyses of the expressed complementarity-determining region 3 (CDR3) in HCC patients. Then, we constructed γ9/δ2 T-cell receptor (TCR)-transfected cell lines expressing significant HCC CDR3 sequence and identified a series of peptides capable of binding to γδT cells specifically. Next, we identified, further tested and verified the biological functions of these peptides and their matched protein by bioinformatics analysis. We identified that the new protein hepatocyte growth factor-like protein, also called as macrophage-stimulating protein (MSP), and peptide HP1, not only bound to HCC-predominant γδTCR but also effectively activated γδT cells isolated from HCC patients. Moreover, they could stimulate γδT cells in peripheral blood from HCC patients to produce cytokines, which contributed to inhibiting HCC and played an important role in mediating cytotoxicity to HCC cell lines. In conclusion, we identified MSP and HP1, which showed potential as candidates for antigens recognized by γδT cells in HCC.
Collapse
Affiliation(s)
- Xueyan Xi
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China.
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.
- Department of Rheumatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
| | - Yang Guo
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Min Zhu
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Fen Qiu
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China
| | - Feifei Lei
- Department of Rheumatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Gang Li
- Department of Rheumatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Boyu Du
- Institute of Basic Medical Sciences, Hubei University of Medicine, No.30 Renmin Nanlu, Shiyan, 442000, Hubei, China.
- Department of Rheumatology, Renmin Hospital, Hubei University of Medicine, Shiyan, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
6
|
Jeong BC, Oh SH, Lee MN, Koh JT. Macrophage-Stimulating Protein Enhances Osteoblastic Differentiation via the Recepteur d'Origine Nantais Receptor and Extracellular Signal-Regulated Kinase Signaling Pathway. J Bone Metab 2020; 27:267-279. [PMID: 33317230 PMCID: PMC7746481 DOI: 10.11005/jbm.2020.27.4.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background Macrophage-stimulating protein (MSP; also known as macrophage stimulating 1 and hepatocyte growth factor-like protein) has been shown to play a crucial role in calcium homeostasis and skeletal mineralization in zebrafish. However, the precise role of MSP in osteoblasts has not been elucidated. In this study, we investigated the effect of MSP on osteoblast differentiation of pre-osteoblast cells. Methods Osteoblast differentiation upon MSP treatment was evaluated by analyzing the osteogenic gene expression, alkaline phosphatase (ALP) activity, and mineralized nodule formation. To assess changes in the MSP-RON signaling pathway, knockdown of Ron gene was performed using siRNA and pharmacological inhibitor treatment. Results Expression of the tyrosine kinase receptor RON, a receptor of MSP, was found to be significantly increased during osteoblast differentiation. MSP treatment significantly upregulated the expression of osteogenic marker genes and remarkably increased ALP activity and mineralized nodule formation. Conversely, knockdown of Ron significantly attenuated the expression of osteogenic marker genes and ALP activity that were induced upon MSP treatment. Mechanistically, MSP treatment significantly enhanced the phosphorylation of extracellular signal-regulated kinase (ERK); however, additional treatment with the selective ERK inhibitor PD98059 attenuated the effect of MSP on osteoblast differentiation. Conclusions Altogether, these results indicate that the MSP-RON axis is involved in promoting osteoblast differentiation via activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Byung-Chul Jeong
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sin-Hye Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Mi Nam Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea.,Hard-Tissue Biointerface Research Center, Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
7
|
Chen H, Zhang Y, Jia J, Ren J, Yu H, Zhu C, Wang Y, Zhou R. Macrophage-stimulating protein is decreased in severe preeclampsia and regulates the biological behavior of HTR-8/SVneo trophoblast cells. Placenta 2020; 103:33-42. [PMID: 33070035 DOI: 10.1016/j.placenta.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE) is a major challenge for obstetricians. There is no effective way to block the development of PE other than terminating the pregnancy. The biological behavior of trophoblast cells, which are similar to cancer cells, may be closely related to the onset of PE. The vital role of macrophage-stimulating protein (MSP) in the development and progression of cancer has been recognized, while a role for this protein in PE has rarely been reported. This study aimed to explore whether MSP affects severe PE (sPE) and, if so, to characterize the mechanism. Patient information, blood samples and/or placental tissues were collected. An enzyme-linked immunosorbent assay (ELISA) was used to determine the plasma MSP concentration. The relationships between the plasma MSP concentration and clinical characteristics were analyzed. Immunofluorescence was performed to localize MSP in placental tissues. Western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to determine MSP protein and mRNA expression in placental tissues. MSP was overexpressed or underexpressed in the trophoblastic cell line HTR-8/SVneo by lentiviral transfection and the proliferation, apoptosis, migration, invasion and angiogenesis of cells were detected. MSP was downregulated in sPE, and the underexpression of MSP inhibited HTR-8/SVneo cell proliferation, migration, invasion and angiogenesis. We further verified that MSP affects the biological behavior of trophoblast cells through the β-catenin/ZEB1 signaling pathway. These results suggest that decreased MSP in the blood and placental tissues of patients with sPE, especially those with early-onset sPE, leads to reduced trophoblast cell invasion, which plays an important role in the pathogenesis of PE.
Collapse
Affiliation(s)
- Hongqin Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Yanping Zhang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Jin Jia
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Jie Ren
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Hongbiao Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Cairong Zhu
- West China School of Public Health, Sichuan University, Sichuan, China
| | - Yanyun Wang
- Laboratory of Molecular and Translational Medicine, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China
| | - Rong Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University) of Ministry of Education, Chengdu, Sichuan, PR China.
| |
Collapse
|
8
|
Vanderwerff BR, Church KJ, Kawas LH, Harding JW. Comparative characterization of the HGF/Met and MSP/Ron systems in primary pancreatic adenocarcinoma. Cytokine 2019; 123:154762. [PMID: 31254927 DOI: 10.1016/j.cyto.2019.154762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is an aggressive disease with a poor prognosis for which current standard chemotherapeutic treatments offer little survival benefit. Receptor tyrosine kinases (RTK)s have garnered interest as therapeutic targets to augment or replace standard chemotherapeutic treatments because of their ability to promote cell growth, migration, and survival in various cancers. Met and Ron, which are homologous RTKs activated by the ligands hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), respectively, are over-activated and display synergistic malignant effects in several cancers. Despite the homology between Met and Ron, studies that have directly compared the functional outcomes of these systems in any context are limited. To address this, we sought to determine if the HGF/Met and MSP/Ron systems produce overlapping or divergent contributions towards a malignant phenotype by performing a characterization of MSP and HGF driven signaling, behavioral, and transcriptomic responses in a primary pancreatic adenocarcinoma (PAAD) cell line in vitro. The impact of dual Met and Ron expression signatures on the overall survival of PAAD patients was also assessed. We found HGF and MSP both encouraged PAAD cell migration, but only HGF increased proliferation. RNA sequencing revealed that the transcriptomic effects of MSP mimicked a narrow subset of the responses induced by HGF. Analysis of clinical data indicated that the strong prognostic value of Met expression in primary PAAD does not appear to be modulated by Ron expression. The relatively reduced magnitude of MSP-dependent effects on primary PAAD cells are consistent with the limited prognostic value of Ron expression in this cancer when compared to Met. Although HGF and MSP produced a differing breadth of responses in vitro, overlapping pro-cancer signaling, behavioral, and transcriptional effects still point to a potential role for the MSP/Ron system in pancreatic cancer.
Collapse
Affiliation(s)
- Brett R Vanderwerff
- Department of School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| | - Kevin J Church
- Athira Pharma, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Athira Pharma, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Joseph W Harding
- Department of School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Athira Pharma, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
9
|
Damalanka VC, Han Z, Karmakar P, O’Donoghue AJ, La Greca F, Kim T, Pant SM, Helander J, Klefström J, Craik CS, Janetka JW. Discovery of Selective Matriptase and Hepsin Serine Protease Inhibitors: Useful Chemical Tools for Cancer Cell Biology. J Med Chem 2018; 62:480-490. [DOI: 10.1021/acs.jmedchem.8b01536] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vishnu C. Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California, 92093, United States
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - Florencia La Greca
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Shishir M. Pant
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Jonathan Helander
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Juha Klefström
- Cancer Cell Circuitry Laboratory, Research Programs Unit/Translational Cancer Biology & Medicum, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158, United States
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| |
Collapse
|
10
|
Hepatocyte Growth Factor Activator: A Proteinase Linking Tissue Injury with Repair. Int J Mol Sci 2018; 19:ijms19113435. [PMID: 30388869 PMCID: PMC6275078 DOI: 10.3390/ijms19113435] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 01/16/2023] Open
Abstract
Hepatocyte growth factor (HGF) promotes pleiotropic signaling through its specific receptor tyrosine kinase, MET. As such, it has important roles in the regeneration of injured tissues. Since HGF is produced mainly by mesenchymal cells and MET is expressed in most epithelial, endothelial and somatic stem cells, HGF functions as a typical paracrine growth factor. HGF is secreted as an inactive precursor (proHGF) and requires proteolytic activation to initiate HGF-induced MET signaling. HGF activator (HGFAC) is a serum activator of proHGF and produces robust HGF activities in injured tissues. HGFAC is a coagulation factor XII-like serine endopeptidase that circulates in the plasma as a zymogen (proHGFAC). Thrombin, kallikrein-related peptidase (KLK)-4 or KLK-5 efficiently activates proHGFAC. The activated HGFAC cleaves proHGF at Arg494-Val495, resulting in the formation of the active disulfide-linked heterodimer HGF. Macrophage stimulating protein, a ligand of RON, is also activated by HGFAC in vivo. Although HGFAC functions primarily at the site of damaged tissue, a recent report has suggested that activated HGFAC relays a signal to stem cells in non-injured tissues via proHGF activation in the stem cell niche. This review focuses on current knowledge regarding HGFAC-mediated proHGF activation and its roles in tissue regeneration and repair.
Collapse
|
11
|
Brown NE, Paluch AM, Nashu MA, Komurov K, Waltz SE. Tumor Cell Autonomous RON Receptor Expression Promotes Prostate Cancer Growth Under Conditions of Androgen Deprivation. Neoplasia 2018; 20:917-929. [PMID: 30121008 PMCID: PMC6098205 DOI: 10.1016/j.neo.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Current treatment strategies provide minimal results for patients with castration-resistant prostate cancer (CRPC). Attempts to target the androgen receptor have shown promise, but resistance ultimately develops, often due to androgen receptor reactivation. Understanding mechanisms of resistance, including androgen receptor reactivation, is crucial for development of more efficacious CRPC therapies. Here, we report that the RON receptor tyrosine kinase is highly expressed in the majority of human hormone-refractory prostate cancers. Further, we show that exogenous expression of RON in human and murine prostate cancer cells circumvents sensitivity to androgen deprivation and promotes prostate cancer cell growth in both in vivo and in vitro settings. Conversely, RON loss induces sensitivity of CRPC cells to androgen deprivation. Mechanistically, we demonstrate that RON overexpression leads to activation of multiple oncogenic transcription factors (namely, β-catenin and NF-κB), which are sufficient to drive androgen receptor nuclear localization and activation of AR responsive genes under conditions of androgen deprivation and support castration-resistant growth. In total, this study demonstrates the functional significance of RON during prostate cancer progression and provides a strong rationale for targeting RON signaling in prostate cancer as a means to limit resistance to androgen deprivation therapy.
Collapse
Affiliation(s)
- Nicholas E Brown
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Andrew M Paluch
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Madison A Nashu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Susan E Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45267, USA.
| |
Collapse
|
12
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the Nervous System in Tumor Angiogenesis. CANCER MICROENVIRONMENT 2018; 11:1-11. [PMID: 29502307 DOI: 10.1007/s12307-018-0207-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Tumor angiogenesis, growth of new blood vessels, is one of the major prerequisites for tumor growth as tumor cells rely on adequate oxygen and nutrient supply as well as the removal of waste products. Growth factors including VEGF orchestrate the development of angiogenesis. In addition, nervous system via the release of neurotransmitters contributes to tumor angiogenesis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression via regulating tumor angiogenesis. Various neurotransmitters have been reported to play an important role in tumor angiogenesis.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia.
| |
Collapse
|
13
|
Global and Targeted Proteomics of Prostate Cancer Cell Secretome: Combination of 2-Dimensional Image-Converted Analysis of Liquid Chromatography and Mass Spectrometry and In Silico Selection Selected Reaction Monitoring Analysis. J Pharm Sci 2016; 105:3440-3452. [DOI: 10.1016/j.xphs.2016.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 01/22/2023]
|
14
|
Han Z, Harris PKW, Karmakar P, Kim T, Owusu BY, Wildman SA, Klampfer L, Janetka JW. α-Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer. ChemMedChem 2016; 11:585-99. [PMID: 26889658 DOI: 10.1002/cmdc.201500600] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/20/2022]
Abstract
Upregulation of the HGF and MSP growth-factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c-MET or RON kinase signaling. We rationally designed P1' α-ketobenzothiazole mechanism-based inhibitors of these proteases. Structure-activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1-P1' substrate cleavage site via a P1' amide linker off the benzothiazole, occupying the S3' pocket. Optimized inhibitors display sub-nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin-like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)-mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types.
Collapse
Affiliation(s)
- Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Peter K W Harris
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Partha Karmakar
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Tommy Kim
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA
| | - Ben Y Owusu
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - Scott A Wildman
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Lidija Klampfer
- Department of Oncology, Southern Research Institute, 2000 9th Ave., Birmingham, AL, 35205, USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO, 63110, USA.
| |
Collapse
|