1
|
Emori M, Nakahashi N, Takasawa A, Murata K, Murahashi Y, Shimizu J, Tsukahara T, Sugita S, Takada K, Hasegawa T, Osanai M, Iba K. Establishment and characterization of a novel dedifferentiated chondrosarcoma cell line, SMU-DDCS, harboring an IDH1 mutation. Hum Cell 2023; 36:2195-2203. [PMID: 37454032 DOI: 10.1007/s13577-023-00944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Dedifferentiated chondrosarcoma (DDCS) is a high-grade subtype with a bi-morphic histological appearance of a conventional chondrosarcoma component and it can abruptly transition to a high-grade non-cartilaginous sarcoma. To better understand the biological features of DDCSs and to help develop new therapies, a novel DDCS cell line, SMU-DDCS, was established. Tissue from an open biopsy of a tumor resected from a 75-year-old patient was subjected to primary culture. The cell line was established and authenticated by assessing DNA microsatellite short tandem repeats. The cells maintained in monolayer cultures exhibited constant growth, spheroid formation, and high invasive capacity. Out of the four mice inoculated with SMU-DDCS cells, tumors developed in three mice after 2 weeks. R132C mutation was found in the IDH1 but not the IDH2 genomic DNA sequence of SMU-DDCS cells. SMU-DDCS cells exhibited low chemosensitivity to doxorubicin, methotrexate, and cisplatin. This SMU-DDCS cell line harboring an IDH1 mutation will be a useful tool for investigating DDCS development and for evaluating novel therapeutic agents against it.
Collapse
Affiliation(s)
- Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan.
| | - Naoya Nakahashi
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
- Departments of Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Akira Takasawa
- Departments of Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Kenji Murata
- Departments of Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Yasutaka Murahashi
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Junya Shimizu
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Tomohide Tsukahara
- Departments of Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Makoto Osanai
- Departments of Pathology, Sapporo Medical University School of Medicine, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| | - Kosuke Iba
- Department of Musculoskeletal Anti-Aging Medicine, Sapporo Medical University, West 16, South 1, Chuo- Ku, Sapporo, 060-8543, Japan
| |
Collapse
|
2
|
Li XY, Wang JB, An HB, Wen MZ, You JX, Yang XT. Effect of SARS-CoV-2 infection on asthma patients. Front Med (Lausanne) 2022; 9:928637. [PMID: 35983093 PMCID: PMC9378965 DOI: 10.3389/fmed.2022.928637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSARS-CoV-2 causes coronavirus disease 2019 (COVID-19), a new coronavirus pneumonia, and containing such an international pandemic catastrophe remains exceedingly difficult. Asthma is a severe chronic inflammatory airway disease that is becoming more common around the world. However, the link between asthma and COVID-19 remains unknown. Through bioinformatics analysis, this study attempted to understand the molecular pathways and discover potential medicines for treating COVID-19 and asthma.MethodsTo investigate the relationship between SARS-CoV-2 and asthma patients, a transcriptome analysis was used to discover shared pathways and molecular signatures in asthma and COVID-19. Here, two RNA-seq data (GSE147507 and GSE74986) from the Gene Expression Omnibus were used to detect differentially expressed genes (DEGs) in asthma and COVID-19 patients to find the shared pathways and the potential drug candidates.ResultsThere were 66 DEGs in all that were classified as common DEGs. Using a protein-protein interaction (PPI) network created using various bioinformatics techniques, five hub genes were found. We found that asthma has some shared links with the progression of COVID-19. Additionally, protein-drug interactions with common DEGs were also identified in the datasets.ConclusionWe investigated possible links between COVID-19 and asthma using bioinformatics databases, which might be useful in treating COVID-19 patients. More studies on populations affected by these diseases are needed to elucidate the molecular mechanism behind their association.
Collapse
Affiliation(s)
- Xin-yu Li
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-bing Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-bang An
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Ming-zhe Wen
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-xiong You
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-tao Yang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xi-tao Yang,
| |
Collapse
|
3
|
Li X, Dean DC, Ferreira A, Nelson SD, Hornicek FJ, Yu S, Duan Z. Establishment and Characterization of a Novel Dedifferentiated Chondrosarcoma Cell Line DDCS2. Cancer Control 2021; 28:10732748211045274. [PMID: 34767468 PMCID: PMC8645311 DOI: 10.1177/10732748211045274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The dedifferentiated variant of chondrosarcoma is highly aggressive and carries an especially grim prognosis. While chemotherapeutics has failed to benefit patients with dedifferentiated chondrosarcoma significantly, preclinical chemosensitivity studies have been limited by a scarcity of available cell lines. There is, therefore, an urgent need to expand the pool of available cell lines. Methods We report the establishment of a novel dedifferentiated chondrosarcoma cell line DDCS2, which we isolated from the primary tumor specimen of a 60-year-old male patient. We characterized its short tandem repeat (STR) DNA profile, growth potential, antigenic markers, chemosensitivity, and oncogenic spheroid and colony-forming capacity. Results DDCS2 showed a spindle to polygonal shape and an approximate 60-hour doubling time. STR DNA profiling revealed a unique genomic identity not matching any existing cancer cell lines within the ATCC, JCRB, or DSMZ databases. There was no detectable contamination with another cell type. Western blot and immunofluorescence assays were consistent with a mesenchymal origin, and our MTT assay revealed relative resistance to conventional chemotherapeutics, which is typical of a dedifferentiated chondrosarcoma. Under ex vivo three-dimensional (3D) culture conditions, the DDCS2 cells produced spheroid patterns similar to the well-established CS-1 and SW1353 chondrosarcoma cell lines. Conclusion Our findings confirm DDCS2 is a novel model for dedifferentiated chondrosarcoma and therefore adds to the limited pool of current cell lines urgently needed to investigate the chemoresistance within this deadly cancer.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, 71041Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL 33136
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL 33136
| | - Al Ferreira
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL 33136
| | - Scott D Nelson
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL 33136
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, 71041Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
4
|
Ma R, Mandell J, Lu F, Heim T, Schoedel K, Duensing A, Watters RJ, Weiss KR. Do Patient-derived Spheroid Culture Models Have Relevance in Chondrosarcoma Research? Clin Orthop Relat Res 2021; 479:477-490. [PMID: 32469486 PMCID: PMC7899730 DOI: 10.1097/corr.0000000000001317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/27/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND In high-grade chondrosarcoma, 5-year survival is lower than 50%. Therefore, it is important that preclinical models that mimic the disease with the greatest possible fidelity are used to potentially develop new treatments. Accumulating evidence suggests that two-dimensional (2-D) cell culture may not accurately represent the tumor's biology. It has been demonstrated in other cancers that three-dimensional (3-D) cancer cell spheroids may recapitulate tumor biology and response to treatment with greater fidelity than traditional 2-D techniques. To our knowledge, the formation of patient-derived chondrosarcoma spheroids has not been described. QUESTIONS/PURPOSES (1) Can patient-derived chondrosarcoma spheroids be produced? (2) Do spheroids recapitulate human chondrosarcoma better than 2-D cultures, both morphologically and molecularly? (3) Can chondrosarcoma spheroids provide an accurate model to test novel treatments? METHODS Experiments to test the feasibility of spheroid formation of chondrosarcoma cells were performed using HT-1080, an established chondrosarcoma cell line, and two patient-derived populations, TP19-S26 and TP19-S115. Cells were cultured in flasks, trypsinized, and seeded into 96-well ultra-low attachment plates with culture media. After spheroids formed, they were monitored daily by bright-field microscopy. Spheroids were fixed using paraformaldehyde and embedded in agarose. After dehydration with isopropanol, paraffin-embedded spheroids were sectioned, and slides were stained with hematoxylin and eosin. To compare differences and similarities in gene expression between 2-D and 3-D chondrosarcoma cultures and primary tumors, and to determine whether these spheroids recapitulated the biology of chondrosarcoma, RNA was extracted from 2-D cultures, spheroids, and tumors. Quantitative polymerase chain reaction was performed to detect chondrosarcoma markers of interest, including vascular endothelial growth factor alpha, hypoxia-inducible factor 1α, COL2A1, and COL10A1. To determine whether 2-D and 3-D cultures responded differently to novel chondrosarcoma treatments, we compared their sensitivities to disulfiram and copper chloride treatment. To test their sensitivity to disulfiram and copper chloride treatment, 10,000 cells were seeded into 96-well plates for 2-D culturing and 3000 cells in each well for 3-D culturing. After treating the cells with disulfiram and copper for 48 hours, we detected cell viability using quantitative presto-blue staining and measured via plate reader. RESULTS Cell-line and patient-derived spheroids were cultured and monitored over 12 days. Qualitatively, we observed that HT-1080 demonstrated unlimited growth, while TP19-S26 and TP19-S115 contracted during culturing relative to their initial size. Hematoxylin and eosin staining of HT-1080 spheroids revealed that cell-cell attachments were more pronounced at the periphery of the spheroid structure than at the core, while the core was less dense. Spheroids derived from the intermediate-grade chondrosarcoma TP19-S26 were abundant in extracellular matrix, and spheroids derived from the dedifferentiated chondrosarcoma TP19-S115 had a higher cellularity and heterogeneity with spindle cells at the periphery. In the HT-1080 cells, differences in gene expression were appreciated with spheroids demonstrating greater expressions of VEGF-α (1.01 ± 0.16 versus 6.48 ± 0.55; p = 0.003), COL2A1 (1.00 ± 0.10 versus 7.46 ± 2.52; p < 0.001), and COL10A1 (1.01 ± 0.19 versus 22.53 ± 4.91; p < 0.001). Differences in gene expressions were also noted between primary tumors, spheroids, and 2-D cultures in the patient-derived samples TP19-S26 and TP19-S115. TP19-S26 is an intermediate-grade chondrosarcoma. With the numbers we had, we could not detect a difference in VEGF-α and HIF1α gene expression compared with the primary tumor. COL2A1 (1.00 ± 0.14 versus 1.76 ± 0.10 versus 335.66 ± 31.13) and COL10A1 (1.06 ± 0.378 versus 5.98 ± 0.45 versus 138.82 ± 23.4) expressions were both greater in the tumor (p (COL2A1) < 0.001; p (COL10A1) < 0.0001) and 3-D cultures (p (COL2A1) = 0.004; p (COL10A1) < 0.0001) compared with 2-D cultures. We could not demonstrate a difference in VEGF-α and HIF1α expressions in TP19-S115, a dedifferentiated chondrosarcoma, in the tumor compared with 2-D and 3-D cultures. COL2A1 (1.00 ± 0.02 versus 1.86 ± 0.18 versus 2.95 ± 0.56) and COL10A1 (1.00 ± 0.03 versus 5.52 ± 0.66 versus 3.79 ± 0.36) expressions were both greater in spheroids (p (COL2A1) = 0.003; p (COL10A1) < 0.0001) and tumors (p (COL2A1) < 0.001; p (COL10A1) < 0.0001) compared with 2-D cultures. Disulfiram-copper chloride treatment demonstrated high cytotoxicity in HT-1080 and SW-1353 chondrosarcoma cells grown in the 2-D monolayer, but 3-D spheroids were highly resistant to this treatment. CONCLUSION We provide preliminary findings that it is possible to generate 3-D spheroids from chondrosarcoma cell lines and two human chondrosarcomas (one dedifferentiated chondrosarcoma and one intermediate-grade chondrosarcoma). Chondrosarcoma spheroids derived from human tumors demonstrated morphology more reminiscent of primary tumors than cells grown in 2-D culture. Spheroids displayed similar expressions of cartilage markers as the primary tumor, and we observed a higher expression of collagen markers in the spheroids compared with cells grown in monolayer. Spheroids also demonstrated greater chemotherapy resistance than monolayer cells, but more patient-derived spheroids are needed to further conclude that 3-D cultures may mimic the chemoresistance that chondrosarcomas demonstrate clinically. Additional studies on patient-derived chondrosarcoma spheroids are warranted. CLINICAL RELEVANCE Chondrosarcomas demonstrate resistance to chemotherapy and radiation, and we believe that if they can be replicated, models such as 3-D spheroids may provide a method to test novel treatments for human chondrosarcoma. Additional comprehensive genomic studies are required to compare 2-D and 3-D models with the primary tumor to determine the most effective way to study this disease in vitro.
Collapse
Affiliation(s)
- Ruichen Ma
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jonathan Mandell
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Feiqi Lu
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tanya Heim
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Karen Schoedel
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anette Duensing
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Rebecca J Watters
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kurt R Weiss
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Cao L, Wu Y, Han SM, Sun T, Yu BH, Gao F, Wu WJ, Gao BL. Dedifferentiated chondrsarcoma: a clinicopathologic analysis of 25 cases. BMC Musculoskelet Disord 2021; 22:189. [PMID: 33588810 PMCID: PMC7885579 DOI: 10.1186/s12891-021-04053-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/04/2021] [Indexed: 11/10/2022] Open
Abstract
Background To investigate the clinical, imaging and pathological features of dedifferentiated chondrosarcoma for better diagnosis. Methods Patients who had been confirmed to have dedifferentiated chondrosarcoma were enrolled in this study and analyzed in the clinical, imaging and pathological data. Results Twenty-five patients had pathologically confirmed dedifferentiated chondrosarcoma including 15 males and 10 females with an age range of 24–74 (median 58, interquartile range 49–65). Ten patients had the tumor at the femur, four at the ilium, two at the humerus, two at the tibia, two at cotyle, and one at each of the following locations: scapula, sacrum, rib, pubic branch, and calcaneus. Twenty-one patients had local pain and a soft tissue mass while the other four patients had only local pain without a soft tissue mass. Four patients had pathological fractures. Imaging showed extensive bone destruction with calcification inside the lesion and possible pathological fractures. On gross observation of the specimen, the chondrosarcoma components were usually located inside the bone, and the dedifferentiated sarcoma components were mainly located outside the bone. Microscopy showed the dedifferentiated tumor had two components: well-differentiated chondrosarcoma and poorly differentiated non-chondral sarcoma including malignant fibrous histiocytoma in eleven cases, osteosarcoma in ten cases, fibrosarcoma in two, liomyosarcoma in one, and lipoblastoma in the remaining one.. Followed up from 3 moths to 60 months (mean 15.6), eight patients died with a survival time of 10–23 months (mean 16), and the other 17 patients survived with the survival duration from three to 60 months (15). Conclusion Dedifferentiated chondrosarcoma is a fatal disease with multiple components, and most of the cases have dual morphological and imaging features of chondrosarcoma and non-chondrosarcoma. The imaging presentations are primarily of common central chondrosarcoma, combined with cortical destruction, soft tissue mass, and pathological fractures.
Collapse
Affiliation(s)
- Lei Cao
- Department of Radiology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Yuan Wu
- Hebei Provincial Gucheng County Hospital, Gucheng, 253800, Hebei Province, China
| | - Shu-Man Han
- Department of Radiology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Tao Sun
- Department of Radiology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Bao-Hai Yu
- Department of Radiology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Feng Gao
- Department of Radiology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| | - Wen-Juan Wu
- Department of Radiology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China.
| | - Bu-Lang Gao
- Department of Radiology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, 050051, Hebei Province, China
| |
Collapse
|