1
|
Chen C, Wan M, Peng X, Zhang Q, Liu Y. GPR37-centered ceRNA network contributes to metastatic potential in lung adenocarcinoma: Evidence from high-throughput sequencing. Transl Oncol 2024; 39:101819. [PMID: 37979558 PMCID: PMC10656721 DOI: 10.1016/j.tranon.2023.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023] Open
Abstract
The competing endogenous RNA (ceRNA)-based profiling has been extensively studied in carcinogenesis of lung adenocarcinoma (LUAD), while it has seldomly been applied to investigate the metastatic potential of LUAD. This study aims to examine the function and in-depth mechanism of GPR37-centered ceRNA network in LUAD. Cancer tissues and adjacent normal tissues from three LUAD patients were collected for high-throughput sequencing to screen for differentially expressed genes. A PPI network was constructed to screen the key gene GPR37, followed by analysis for the functions and pathways. Clinical data from LUAD patients were integrated with gene expression data in TCGA-LUAD dataset for survival analysis. Based on the miRNAs targeting_GPR37 and lncRNAs targeting_miRNAs, a lncRNA-miRNA-mRNA ceRNA network was established. GPR37 was up-regulated in LUAD tissue samples, and it may be a key gene involved in LUAD progression. GPR37 in LUAD was mainly enriched in the mitosis-related pathways. High GPR37 expression corresponded to poor prognosis in LUAD patients. Meanwhile, GPR37 could be used as an independent factor to predict the prognosis in LUAD patients. LncRNA DLEU1, up-regulated in LUAD tissue samples, may competitively bind to miR-4458 to up-regulate the expression of the miR-4458 downstream target GPR37. DLEU1 was associated with poor prognosis and tumor metastasis in LUAD patients. Altogether, our findings reveal a novel ceRNA network of DLEU1/miR-4458/GPR37 in LUAD growth and metastasis.
Collapse
Affiliation(s)
- Chuanhui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Mengzhi Wan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiong Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Qing Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Yu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Ahmadpour ST, Orre C, Bertevello PS, Mirebeau-Prunier D, Dumas JF, Desquiret-Dumas V. Breast Cancer Chemoresistance: Insights into the Regulatory Role of lncRNA. Int J Mol Sci 2023; 24:15897. [PMID: 37958880 PMCID: PMC10650504 DOI: 10.3390/ijms242115897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | - Charlotte Orre
- Inserm U1083, UMR CNRS 6214, Angers University, 49933 Angers, France; (C.O.); (D.M.-P.)
| | - Priscila Silvana Bertevello
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | | - Jean-François Dumas
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | |
Collapse
|
3
|
Zhang J, Luo Q, Li X, Guo J, Zhu Q, Lu X, Wei L, Xiang Z, Peng M, Ou C, Zou Y. Novel role of immune-related non-coding RNAs as potential biomarkers regulating tumour immunoresponse via MICA/NKG2D pathway. Biomark Res 2023; 11:86. [PMID: 37784183 PMCID: PMC10546648 DOI: 10.1186/s40364-023-00530-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023] Open
Abstract
Major histocompatibility complex class I related chain A (MICA) is an important and stress-induced ligand of the natural killer group 2 member D receptor (NKG2D) that is expressed in various tumour cells. Given that the MICA/NKG2D signalling system is critically embedded in the innate and adaptive immune responses, it is particularly involved in the surveillance of cancer and viral infections. Emerging evidence has revealed the important roles of non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) in different cancer types. We searched for all relevant publications in the PubMed, Scopus and Web of Science database using the keywords ncRNA, MICA, NKG2D, cancer, and miRNAs. All relevant studies published from 2008 to the 2023 were retrieved and collated. Notably, we found that miRNAs can target to NKG2D mRNA and MICA mRNA 3'-untranslated regions (3'-UTR), leading to translation inhibition of NKG2D and MICA degradation. Several immune-related MICA/NKG2D pathways may be dysregulated in cancer with aberrant miRNA expressions. At the same time, the competitive endogenous RNA (ceRNA) hypothesis holds that circRNAs, lncRNAs, and mRNAs induce an abnormal MICA expression by directly targeting downstream miRNAs to mediate mRNA suppression in cancer. This review summarizes the novel mechanism of immune escape in the ncRNA-related MICA/NKG2D pathway mediated by NK cells and cancer cells. Moreover, we identified the miRNA-NKG2D, miRNA-MICA and circRNA/lncRNA/mRNA-miRNA-mRNA/MICA axis. Thus, we were particularly concerned with the regulation of mediated immune escape in the MICA/NKG2D pathway by ncRNAs as potential therapeutic targets and diagnostic biomarkers of immunity and cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Qizhi Luo
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Xin Li
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Junshuang Guo
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Quan Zhu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Xiaofang Lu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Leiyan Wei
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Zhiqing Xiang
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Manqing Peng
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
4
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
5
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
6
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Singh DD, Lee HJ, Yadav DK. Recent Clinical Advances on Long Non-Coding RNAs in Triple-Negative Breast Cancer. Cells 2023; 12:cells12040674. [PMID: 36831341 PMCID: PMC9955037 DOI: 10.3390/cells12040674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a more aggressive type of breast cancer due to its heterogeneity and complex molecular mechanisms. TNBC has a high risk for metastasis, and it is difficult to manage clinical conditions of the patients. Various investigations are being conducted to overcome these challenges using RNA, DNA, and proteins for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) have emerged as a novel target to treat the multistep process of TNBC. LncRNAs regulate epigenetic expression levels, cell proliferation and apoptosis, and tumour invasiveness and metastasis. Thus, lncRNA-based early diagnosis and treatment options could be helpful, especially for patients with severe TNBC. lncRNAs are expressed in a highly specific manner in cells and tissues and are involved in TNBC progression and development. lncRNAs could be used as sensitive and specific targets for diagnosis, treatment, and monitoring of patients with TNBC. Therefore, the exploration of novel diagnostic and prognostic biomarkers is of extreme importance. Here, we discuss the molecular advances on lncRNA regulation of TNBC and lncRNA-based early diagnosis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
- Correspondence: (H.-J.L.); (D.K.Y.)
| | | |
Collapse
|
8
|
Non-coding RNAs in breast cancer: Implications for programmed cell death. Cancer Lett 2022; 550:215929. [DOI: 10.1016/j.canlet.2022.215929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
|
9
|
Wei YB, Liang DM, Zhang ML, Li YJ, Sun HF, Wang Q, Liang Y, Li YM, Wang RR, Yang ZL, Wang P, Xie SY. WFDC21P promotes triple-negative breast cancer proliferation and migration through WFDC21P/miR-628/SMAD3 axis. Front Oncol 2022; 12:1032850. [PMID: 36387210 PMCID: PMC9659817 DOI: 10.3389/fonc.2022.1032850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 08/26/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) modulate cell proliferation, cycle, and apoptosis. However, the role of lncRNA-WFDC21P in the tumorigenesis of triple-negative breast cancer (TNBC) remains unclear. Results of this study demonstrated that WFDC21P levels significantly increased in TNBC, which was associated with the poor survival of patients. WFDC21P overexpression significantly promoted TNBC cell proliferation and metastasis. WFDC21P interacted with miR-628-5p, which further suppressed cell proliferation and metastasis by negatively regulating Smad3-related gene expression. Recovery of miR-628-5p weakened the roles of WFDC21P in promoting the growth and metastasis of TNBC cells. Moreover,N6-methyladenosine (m6A) modification upregulated WFDC21P expression in the TNBC cells. WFDC21P and its m6A levels were increased after methyltransferase like 3 (METTL3) overexpression but reduced after METTL3 silencing. The proliferation and metastasis of TNBC cells were promoted by METTL3 overexpression but suppressed by METTL3 silencing. This study demonstrated the vital roles of WFDC21P and its m6A in regulating the proliferation and metastasis of TNBC cells via the WFDC21P/miR-628/SMAD3 axis.
Collapse
Affiliation(s)
- Yu-Bo Wei
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Dong-Min Liang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Mei-Ling Zhang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Hong-Fang Sun
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Qin Wang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Yan Liang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Yan-Mei Li
- Department of Immune Rheumatism, Yantaishan Hospital, Yantai, Shandong, China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhen-Lin Yang
- Department of Breast and Thyroid Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
- Department of Epidemiology, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Alghazali MW, Al-Hetty HRAK, Ali ZMM, Saleh MM, Suleiman AA, Jalil AT. Non-coding RNAs, another side of immune regulation during triple-negative breast cancer. Pathol Res Pract 2022; 239:154132. [PMID: 36183439 DOI: 10.1016/j.prp.2022.154132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is considered about 12-24 % of all breast cancer cases. Patients experience poor overall survival, high recurrence rate, and distant metastasis compared to other breast cancer subtypes. Numerous studies have highlighted the crucial roles of non-coding RNAs (ncRNAs) in carcinogenesis and proliferation, migration, and metastasis of tumor cells in TNBC. Recent research has demonstrated that long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play a role in the regulation of the immune system by affecting the tumor microenvironment, the epithelial-mesenchymal transition, the regulation of dendritic cells and myeloid-derived stem cells, and T and B cell activation and differentiation. Immune-related miRNAs and lncRNAs, which have been established as predictive markers for various cancers, are strongly linked to immune cell infiltration and could be a viable therapeutic target for TNBC. In the current review, we discuss the recent updates of ncRNAs, including miRNAs and lncRNAs in TNBC, including their biogenesis, target genes, and biological function of their targets, which are mostly involved in the immune response.
Collapse
Affiliation(s)
| | | | - Zahraa Muhsen M Ali
- Department of Medical Laboratory Techniques, Al-Rafidain University College, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq.
| |
Collapse
|
11
|
Ma J, Zhao W, Zhang H, Chu Z, Liu H, Fang X, Tang D. Long non-coding RNA ANRIL promotes chemoresistance in triple-negative breast cancer via enhancing aerobic glycolysis. Life Sci 2022; 306:120810. [PMID: 35850243 DOI: 10.1016/j.lfs.2022.120810] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
AIMS lncRNA ANRIL expression is dysregulated in many human cancers and is thus a useful prognostic marker for cancer patients. However, whether ANRIL is involved in drug resistance in triple-negative breast cancer (TNBC) has not yet been investigated. MAIN METHODS A luciferase reporter assay was conducted to verify the binding between miR-125a and ANRIL. RT-PCR and western blotting were performed to detect the expression of miR-125a, ANRIL, and ENO1. Glycolysis stress was assessed using the Seahorse extracellular flux analyzer. Functional studies were performed using both in vitro and in vivo xenograft models. KEY FINDINGS ANRIL was markedly upregulated in both patients with TNBC and TNBC cell lines. Knockdown of ANRIL increased the cytotoxic effect of ADR and repressed cellular glycolytic activity in TNBC cells. Mechanistic analysis showed that ANRIL may act as a competing endogenous RNA of miR-125a to relieve the repressive effect of miR-125a on its target glycolytic enzyme enolase (ENO1). Notably, 2-deoxy-glucose attenuated ANRIL-induced increase in drug resistance in TNBC cells. SIGNIFICANCE These results indicate that knockdown of ANRIL plays an active role in overcoming drug resistance in TNBC by inhibiting glycolysis through the miR-125a/ENO1 pathway, which may be useful for the development of novel therapeutic targets for treating patients with TNBC, especially those with drug resistance.
Collapse
Affiliation(s)
- Jianli Ma
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China
| | - Wenhui Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China
| | - Zhong Chu
- Department of Translational Medicine& Clinical Research, Sir Run Run Shaw Hospital of Zhejiang University, East Qingchun Road, NO. 3, Shangcheng district, Hangzhou 310000, Zhejiang Province, China
| | - Huili Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China
| | - Xue Fang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China
| | - Dabei Tang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road NO. 150, Nangang district, Harbin 150000, Heilongjiang Province, China.
| |
Collapse
|
12
|
Zhang H, Shi X, Ge Z, Wang Z, Gao Y, Gao G, Xu W, Qu X. PBX3-activated DLG1-AS1 can promote the proliferation, invasion, and migration of TNBC cells by sponging miR-16-5p. Mol Ther Oncolytics 2022; 25:201-210. [PMID: 35592389 PMCID: PMC9092379 DOI: 10.1016/j.omto.2021.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
DLG1-AS1 and PBX3 have been identified as acting as an oncogene in cervical cancer. However, they have not been well explored in triple-negative breast cancer (TNBC). As TNBC is one of the malignancies causing increasing death throughout the world, this study aimed to probe into the regulatory relationship between DLG1-AS1 and PBX3 in TNBC cells. In this study, real-time quantitative PCR (qRT-PCR) and western blot experiments were conducted to investigate the RNA and protein levels of genes of interest in TNBC cells. Functional experiments were implemented, such as 5-ethynyl-2′-deoxyuridine (EdU), transwell, and wound healing assays, to assess the changes in TNBC cell phenotype. Chromatin immunoprecipitation, luciferase reporter, RNA binding protein immunoprecipitation, and RNA pull-down assays were conducted to investigate the binding relationships among subject genes. The results show that DLG1-AS1 and PBX3 displayed high expression in TNBC cells, and PBX3 worked as the transcriptional activator of DLG1-AS1. Also, DLG1-AS1 served as an oncogene in TNBC cells and as a sponge for miR-16-5p to up-regulate JARID2. Meanwhile, JARID2 and PBX3 exerted oncogenic effects on TNBC cell growth. In conclusion, PBX3-activated DLG1-AS1 can promote the proliferation, invasion, and migration of TNBC cells by sponging miR-16-5p and elevating JARID2 expression.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xianquan Shi
- Ultrasonography Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhicheng Ge
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zihan Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yinguang Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Guoxuan Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiang Qu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Corresponding author Xiang Qu, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
13
|
A Novel Necroptosis-Associated lncRNA Signature Can Impact the Immune Status and Predict the Outcome of Breast Cancer. J Immunol Res 2022; 2022:3143511. [PMID: 35578667 PMCID: PMC9107037 DOI: 10.1155/2022/3143511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BRCA) is one of the leading causes of death among women worldwide, and drug resistance often leads to a poor prognosis. Necroptosis is a type of programmed cell death (PCD) and exhibits regulatory effects on tumor progression, but few studies have focused on the relationships between necroptosis-associated lncRNAs and BRCA. In this study, we established a signature basis of 7 necroptosis-related lncRNAs associated with prognosis and divided BRCA patients into high- and low-risk groups. Kaplan-Meier curves all showed an adverse prognosis for patients in the high-risk group. Cox assays confirmed that risk score was an independent prognostic factor for BRCA patients. The receiver operating characteristic (ROC) curve proved the predictive accuracy of the signature and the area under the curve (AUC) values of the risk score reached 0.722. The nomogram relatively accurately predicted the prognosis of the patients. GSEA analysis suggested that the related signaling pathways and biological processes enriched in the high- and low-risk groups may influence the tumor microenvironment (TME) of BRCA. ssGSEA showed the difference in immune cell infiltration, immune pathway activation, and immune checkpoint expression between the two risk groups, with the low-risk group more suitable for immunotherapy. According to the significant difference in IC50 between risk groups, patients can be guided for an individualized treatment plan. Overall, the authors established a prognostic signature consisting of 7 necroptosis-associated lncRNAs that can independently predict the clinical outcome of BRCA patients. The difference in the tumor immune microenvironment between the low- and high-risk populations may be the reason for the resistance to immunotherapy in some patients.
Collapse
|
14
|
Wang G, Dong Y, Liu H, Ji N, Cao J, Liu A, Tang X, Ren Y. Long noncoding RNA (lncRNA) metallothionein 1 J, pseudogene (MT1JP) is downregulated in triple-negative breast cancer and upregulates microRNA-138 (miR-138) to downregulate hypoxia-inducible factor-1α (HIF-1α). Bioengineered 2022; 13:13718-13727. [PMID: 35703312 PMCID: PMC9276039 DOI: 10.1080/21655979.2022.2077906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly invasive subtype of breast cancer. This study explored the molecular mechanism and influences of metallothionein 1 J, pseudogene (MT1JP), microRNA-138 (miR-138), and hypoxia-inducible factor-1α (HIF-1α) on TNBC cell proliferation and migration. We confirmed TNBC cases by immunohistochemistry (IHC) staining. The expression of MT1JP in two types of tissue collected from 78 TNBC patients was detected by performing real-time quantitative fluorescence PCR (RT-qPCR). To further evaluate the relationship among MT1JP, miR-138 and HIF-1α, expression vectors of MT1JP and HIF-1α, as well as miR-138 mimic and inhibitor, were delivered into BT-549 cells. We observed that MT1JP was downregulated in TNBC. MT1JP was positively correlated with miR-138 but negatively correlated with HIF-1α in TNBC tissues. In TNBC cells, upregulation of miR-138 and downregulation of HIF-1α were observed after overexpression of MT1JP. In addition, overexpression of miR-138 resulted in downregulation of HIF-1α but did not affect the expression of MT1JP. Decreased proliferation rate of TNBC cells was observed after overexpression of MT1JP and miR-138. HIF-1α increased cell proliferation and migration. HIF-1α also suppressed the role of MT1JP and miR-138 in TNBC cell proliferation and migration. In conclusion, our findings demonstrated that MT1JP inhibited TNBC by regulating the miR-138/HIF-1α axis, indicating that MT1JP might serve as a biomarker or target for TNBC treatment.
Collapse
Affiliation(s)
- Gangyue Wang
- Department of Breast, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yi Dong
- Department of Breast, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Heng Liu
- Department of Breast, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Nang Ji
- Department of Breast, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jilei Cao
- Department of Breast, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Aihui Liu
- Department of Breast, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xin Tang
- Department of Breast, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yu Ren
- Department of Breast, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Jiang B, Liu Q, Gai J, Guan J, Li Q. LncRNA SLC16A1-AS1 regulates the miR-182/PDCD4 axis and inhibits the triple-negative breast cancer cell cycle. Immunopharmacol Immunotoxicol 2022; 44:534-540. [PMID: 35316129 DOI: 10.1080/08923973.2022.2056482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Although SLC16A1-AS1 is involved in lung cancer, its function in breast cancer is still elusive. We observed downregulation of SLC16A1-AS1 expression in triple-negative breast cancer (TNBC) by analyzing TCGA dataset. Therefore, we analyzed the function of SLC16A1-AS1 in TNBC. METHODS We observed downregulation of SLC16A1-AS1 expression in TNBC by analyzing TCGA dataset. Therefore, we analyzed the function of SLC16A1-AS1 in TNBC. RESULTS SLC16A1-AS1 expression was downregulated in TNBC tissues. SLC16A1-AS1 interacted with miR-182, whereas SLC16A1-AS1 and miR-182 overexpression failed to affect their expression. SLC16A1-AS1 overexpression upregulated the expression of PDCD4, a downstream target of miR-182. SLC16A1-AS1 and PDCD4 overexpression suppressed cell cycle progression from the G1 phase to the G2 phase. MiR-182 and silencing of PDCD4 played the opposite role. Additionally, miR-182 overexpression inhibited the role of SLC16A1-AS1 overexpression on cell cycle progression in both BT-549 and BT20 cells. The cell proliferation assay showed that SLC16A1-AS1 and PDCD4 overexpression decreased the cell proliferation rate. CONCLUSION SLC16A1-AS1 may inhibit cell cycle progression and restrain TNBC cell proliferation by regulating the miR-182/PDCD4 axis.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning Province, 110042, PR China.,Department of Pathology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang City, Liaoning Province, 110122, PR China
| | - Qian Liu
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang City, Liaoning Province, 110042, PR China
| | - Junda Gai
- Department of Pathology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang City, Liaoning Province, 110122, PR China
| | - Jingqian Guan
- Department of Pathology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang City, Liaoning Province, 110122, PR China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang City, Liaoning Province, 110122, PR China
| |
Collapse
|
16
|
Paul U, Banerjee S. The functional significance and cross-talk of non-coding RNAs in triple negative and quadruple negative breast cancer. Mol Biol Rep 2022; 49:6899-6918. [PMID: 35235157 DOI: 10.1007/s11033-022-07288-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022]
Abstract
One of the leading causes of cancer-related deaths worldwide is breast cancer, among which triple-negative breast cancer (TNBC) is the most malignant and lethal subtype. This cancer accounts for 10-20% of all breast cancer deaths. Proliferation, tumorigenesis, and prognosis of TNBC are affected when the androgen receptor (AR) is not expressed, and it is classified as quadruple negative breast cancer (QNBC). Non-coding RNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play a significant role in tumorigenesis by virtue of their oncogenic and tumor-suppressive properties. To regulate tumorigenesis, miRNAs interact with their target mRNAs and modulate their expression, whereas lncRNAs can either act alone or interact with miRNAs or other molecules through various signaling pathways. Conversely, circRNAs regulate tumorigenesis by acting as miRNA sponges predominantly. Recently, non-coding RNAs were studied comprehensively for their roles in tumor proliferation, progression, and metastasis. As a result of existing studies and research progress, non-coding RNAs have been implicated in TNBC, necessitating their use as biomarkers for future diagnostic applications. In this review, the non-coding RNAs are explicitly implicated in the regulation of breast cancer, and their cross-talk between TNBC and QNBC is also discussed.
Collapse
Affiliation(s)
- Utpalendu Paul
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
17
|
Sun JY, Ni MM. Long non-coding RNA HEIH: a novel tumor activator in multiple cancers. Cancer Cell Int 2021; 21:558. [PMID: 34689775 PMCID: PMC8543845 DOI: 10.1186/s12935-021-02272-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/16/2021] [Indexed: 12/27/2022] Open
Abstract
The last decade has witnessed the altered expression levels of long non-coding RNA HEIH in different types of cancer. More than half of the HEIH studies in cancer have been published within the last two years. To our knowledge, this is the first review to discuss very recent developments and insights into HEIH contribution to carcinogenesis. The functional role, molecular mechanism, and clinical significance of HEIH in human cancers are described in detail. The expression of HEIH is elevated in a broad spectrum of cancers, and its disorder contributes to cell proliferation, migration, invasion, and drug resistance of cancer cells through different underlying mechanisms. In addition, the high expression of HEIH is significantly associated with advanced tumor stage, tumor size and decreased overall survival, suggesting HEIH may function as a prognostic biomarker and potential therapeutic target for human cancers.
Collapse
Affiliation(s)
- Jie-Yu Sun
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Ming-Ming Ni
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Rd., Nanjing, 210008, People's Republic of China.
| |
Collapse
|
18
|
Chen X, Sun X, Li X, Xu L, Yu W. LncRNA-HEIH is a Novel Diagnostic and Predictive Biomarker in Gastric Cancer. Genet Test Mol Biomarkers 2021; 25:284-292. [PMID: 33877891 DOI: 10.1089/gtmb.2020.0270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Gastric cancer (GC) is associated with a high mortality rate. Long noncoding RNA (lncRNA)-high expressed in hepatocellular carcinoma (HEIH) has recently gained interest as a marker for the detection of several cancer types. This study was designed to uncover the function of lncRNA-HEIH in GC. Materials and Methods: Oncomine was used to analyze HEIH expression in cancerous and paired noncancerous tissues of GC patients. Subsequently, the expression levels of HEIH in GC cells was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, the effects of HEIH expression level on clinicopathological parameters and prognosis were further studied by statistical analysis and Kaplan-Meier survival curves. GC cell proliferation and the influence of HEIH on the sensitivity of cells to oxaliplatin following HEIH knockdown were assessed using sulforhodamine blue (SRB) assays in the MKN45 and AGS cell lines. In addition, the expression levels of p53 were detected by RT-qPCR following knockdown of HEIH. Results: The lncRNA-HEIH was highly expressed in both GC tissues and GC cell lines. Patients with high HEIH expression were associated with medium-high differentiation (p = 0.0058), distant metastasis (M, p = 0.0378), lymph node metastasis (N, p = 0.0083), and a deeper tumor invasion (T, p = 0.0204). The elevated expression levels of HEIH in GC patients were associated with a worse prognosis compared to GC patients with low HEIH expression. This finding was supported by the parameters overall survival (p = 3.3e-06), first progression (p = 0.00028), and postprogression (p = 1.5e-08). Downregulation of HEIH expression inhibited cell proliferation, enhanced oxaliplatin sensitivity, and induced the expression of p53 in MKN45 and AGC cells. Conclusion: These findings provide evidence that HEIH may be useful as a prognostic biomarker in GC. This lncRNA may also serve as a potential therapeutic target in GC patients.
Collapse
Affiliation(s)
- Xin Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue Sun
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Li
- Department of Technologies, Burning Rock Biotech, Guangzhou, China
| | - Lu Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenyan Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Multifaceted roles of long non-coding RNAs in triple-negative breast cancer: biology and clinical applications. Biochem Soc Trans 2021; 48:2791-2810. [PMID: 33258920 DOI: 10.1042/bst20200666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous breast cancer subtype that lacks targeted therapy due to the absence of estrogen, progesterone, and HER2 receptors. Moreover, TNBC was shown to have a poor prognosis, since it involves aggressive phenotypes that confer significant hindrance to therapeutic treatments. Recent state-of-the-art sequencing technologies have shed light on several long non-coding RNAs (lncRNAs), previously thought to have no biological function and were considered as genomic junk. LncRNAs are involved in various physiological as well as pathological conditions, and play a key role in drug resistance, gene expression, and epigenetic regulation. This review mainly focuses on exploring the multifunctional roles of candidate lncRNAs, and their strong association with TNBC development. We also summarise various emerging research findings that establish novel paradigms of lncRNAs function as oncogenes and/or tumor suppressors in TNBC development, suggesting their role as prospective therapeutic targets.
Collapse
|
20
|
Baptista B, Riscado M, Queiroz J, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021. [DOI: 10.1016/j.bcp.2021.114469 order by 22025--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
21
|
Thakur KK, Kumar A, Banik K, Verma E, Khatoon E, Harsha C, Sethi G, Gupta SC, Kunnumakkara AB. Long noncoding RNAs in triple-negative breast cancer: A new frontier in the regulation of tumorigenesis. J Cell Physiol 2021; 236:7938-7965. [PMID: 34105151 DOI: 10.1002/jcp.30463] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
In recent years, triple-negative breast cancer (TNBC) has emerged as the most aggressive subtype of breast cancer and is usually associated with increased mortality worldwide. The severity of TNBC is primarily observed in younger women, with cases ranging from approximately 12%-24% of all breast cancer cases. The existing hormonal therapies offer limited clinical solutions in completely circumventing the TNBC, with chemoresistance and tumor recurrences being the common hurdles in the path of TNBC treatment. Accumulating evidence has correlated the dysregulation of long noncoding RNAs (lncRNAs) with increased cell proliferation, invasion, migration, tumor growth, chemoresistance, and decreased apoptosis in TNBC. Various clinical studies have revealed that aberrant expression of lncRNAs in TNBC tissues is associated with poor prognosis, lower overall survival, and disease-free survival. Due to these specific characteristics, lncRNAs have emerged as novel diagnostic and prognostic biomarkers for TNBC treatment. However, the underlying mechanism through which lncRNAs perform their actions remains unclear, and extensive research is being carried out to reveal it. Therefore, understanding of mechanisms regulating the modulation of lncRNAs will be a substantial breakthrough in effective treatment therapies for TNBC. This review highlights the association of several lncRNAs in TNBC progression and treatment, along with their possible functions and mechanisms.
Collapse
Affiliation(s)
- Krishan K Thakur
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elina Khatoon
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Choudhary Harsha
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Subash C Gupta
- Department of Biochemistry, Laboratory for Translational Cancer Research, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| |
Collapse
|
22
|
Zhang J, Du C, Zhang L, Wang Y, Zhang Y, Li J. lncRNA GSEC Promotes the Progression of Triple Negative Breast Cancer (TNBC) by Targeting the miR-202-5p/AXL Axis. Onco Targets Ther 2021; 14:2747-2759. [PMID: 33907418 PMCID: PMC8068510 DOI: 10.2147/ott.s293832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to explore the biological functions of G-quadruplex-forming sequence containing lncRNA (GSEC) in triple negative breast cancer (TNBC). Methods The expression of GSEC in TNBC tissues was evaluated by qRT-PCR. Cell viability was evaluated by Cell Counting Kit-8 assay. Cell proliferation was evaluated by 5-ethynyl-20-deoxyuridine (EdU) staining assay. Cell invasion and migration were evaluated by Transwell assay. Gain- and loss-function assays were performed to assess the biological functions of GSEC in TNBC. The interactions between GSEC, miR-202-5p and AXL were determined by luciferase report assay and RNA immunoprecipitation (RIP) assay. In addition, a nude mouse xenograft model was used to confirm the oncogenic role of GSEC in TNBC. Results GSEC was significantly upregulated in TNBC tissues and cancer cell lines, and high level of GSEC was associated with advanced tumor stage, positive lymph-node metastasis and the poor prognosis of TNBC patients. Knockdown of GSEC effectively inhibited TNBC cell proliferation, invasion and migration in vitro. GSEC regulated the expression of AXL by directly sponging miR-202-5p. Downregulation of miR-202-5p attenuated GSEC knockdown-induced inhibition on TNBC cell proliferation, invasion and migration in vitro. Meanwhile, overexpression of AXL obviously reversed the inhibitory effects of miR-202-5p mimics in TNBC progression in vitro. Conclusion GSEC functioned as a potential oncogene and promoted AXL-mediated TNBC progression by sponging miR-202-5p, which might be a novel diagnostic and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| | - Chuang Du
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| | - Linfeng Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| | - Yan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| | - Yingying Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| | - Jingruo Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| |
Collapse
|
23
|
Sun X, Sun Y, Li J, Zhao X, Shi X, Gong T, Pan S, Zheng Z, Zhang X. SOCS6 promotes radiosensitivity and decreases cancer cell stemness in esophageal squamous cell carcinoma by regulating c-Kit ubiquitylation. Cancer Cell Int 2021; 21:165. [PMID: 33712005 PMCID: PMC7953756 DOI: 10.1186/s12935-021-01859-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Radiotherapy is a major treatment for esophageal squamous cell carcinoma (ESCC). However, HPV infection related radioresistance caused poor prognosis of ESCC. The function of SOCS6, which has been shown to be a tumor suppressor in several cancers, has not been fully investigated up till now. In this manuscript, we aim to further investigate the role of SOCS6 in regulating ESCC radioresistance. Methods Fifty-seven ESCC patients were enrolled for survival analysis. SOCS6 was stably overexpressed in HPV+ ESCC and ESCC cells, and cells were treated with radiation and then subjected to colony formation assays. Expression of DNA damage repair regulating proteins were examined by Western blotting. Cell growth, cell migration and cisplatin sensitivity were then analyzed. Sphere formation assays and flow cytometry were used to investigate changes in cancer stem cell (CSC) properties. Immunofluorescent staining and confocal microscopy were used to locate SOCS6 and c-Kit. Ubiquitylation level of c-Kit were analyzed after immunoprecipitation. Then, coimmunoprecipitation (CoIP) of SOCS6 and c-Kit were performed. In vivo, xenograft animal models were treated with radiation to examine the radiosensitivity. Results SOCS6 is correlated with better prognosis in ESCC patients. Radioresistance is impaired by SOCS6 upregulation, which inhibited cell growth, migration and increased sensitivity to cisplatin. SOCS6 significantly decreased the population of CSCs expressing the surface biomarker CD271 or CD24low/CD44high and their ability of sphere formation. SOCS6 and c-Kit were collocated in the cytoplasm. Blotting of ubiquitin and CoIP experiments indicated that the mechanism was related to ubiquitylation and degradation of the receptor c-Kit. Xenograft tumor mouse model showed that SOCS6 inhibited tumor growth and promoted radiosensitivity in vivo. Conclusions Our findings suggest that SOCS6 can promote the radiosensitivity of HPV+ ESCC and ESCC cells and reduce their stemness via ubiquitylation and degradation of c-Kit. Thus, SOCS6 is a potential target for overcoming radioresistance of ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01859-2.
Collapse
Affiliation(s)
- Xuanzi Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiaobo Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Tuotuo Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Shupei Pan
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhongqiang Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
24
|
Liu P, Guo Y, He Y, Tang Y. Radix Tetrastigma Hemsleyani Flavone Inhibits the Occurrence and Development of Ovarian Cancer Cells by Regulating miRNA-4458 Expression. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ovarian cancer (OC) has been identified to have the highest mortality rate among gynecological tumors. Most patients are diagnosed at an advanced stage because of its asymptomatic nature and a lack of effective early diagnostic methods. Advanced-stage cancer cells are prone to metastasis
which reduces the efficacy of standard therapies. Thus, we evaluated the effect of different concentrations of radix tetrastigma hemsleyani flavone (RTHF) on SKOV3 OC cells. Our findings indicated a significant inhibition in cell proliferation, migration, and invasion. RTHF treatment resulted
in a significant increase in p21 protein expression, whereas the expression of cyclin D1, MMP-2, and MMP-9 has reportedly decreased. In addition, the expression of miRNA-4458 expression increased significantly in a dose-dependent manner. Co-transfection of miRNA-4458 mimics into SKOV3 cells
revealed that overexpressed miRNA-4458 can increase SKOV3 cell proliferation and p21 protein expression. Reduced cell migration and invasion were also observed along with decreased expression of cyclin D1, MMP-2, and MMP-9. Furthermore, inhibition of miRNA-4458 expression reversed the RTHF
effect on SKOV3 cell proliferation, migration, invasion, and cyclin D1, MMP-2, and MMP-9 expression. These results indicate that RTHF reduces the proliferation, migration, and invasion of OC cells, and the underlying mechanism is associated with the upregulation of miRNA-4458 expression. These
findings provide a new treatment strategy for advanced OC.
Collapse
Affiliation(s)
- Ping Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| | - Yanjuan Guo
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| | - Yanfang He
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| | - Yajuan Tang
- Department of Obstetrics and Gynecology, The Affiliated Hospital North China University of Science and Technology, Tangshan 063000, Hebei, PR China
| |
Collapse
|
25
|
Baptista B, Riscado M, Queiroz JA, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021; 189:114469. [PMID: 33577888 DOI: 10.1016/j.bcp.2021.114469] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
The knowledge about non-coding RNAs (ncRNAs) is rapidly increasing with new data continuously emerging, regarding their diverse types, applications, and roles. Particular attention has been given to ncRNA with regulatory functions, which may have a critical role both in biological and pathological conditions. As a result of the diversity of ncRNAs and their ubiquitous involvement in several biologic processes, ncRNA started to be considered in the biomedical field, with immense potential to be exploited either as biomarkers or as therapeutic agents in certain pathologies. Indeed, ncRNA-based therapeutics have been proposed in many disorders and some even reached clinical trials. However, to prepare an RNA product suitable for pharmacological applications, certain criteria must be fulfilled, and it has to be guaranteed RNA purity, stability, and bioactivity. So, in this review, the different types of ncRNAs are identified and characterized, by describing their biogenesis, functions, and applications. A perspective on the main challenges and innovative approaches for the future and broad therapeutic application of RNA is also presented.
Collapse
Affiliation(s)
- B Baptista
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - M Riscado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS & University of Orléans Orléans, France
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
26
|
Zhang W, Guan X, Tang J. The long non-coding RNA landscape in triple-negative breast cancer. Cell Prolif 2021; 54:e12966. [PMID: 33314471 PMCID: PMC7848969 DOI: 10.1111/cpr.12966] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer that has a higher risk of distant recurrence and metastasis, leading to a relatively aggressive biological behaviour and poor outcome. So far, the clinical management of TNBC is challenging because of its heterogeneity and paucity of specific targeted therapy. Recently, various studies have identified a lot of differently expressed long non-coding RNAs (lncRNAs) in TNBC. Those lncRNAs have been reported to play important roles in the multistep process of TNBC tumorigenesis. Here, we review the biological characteristics of lncRNAs, and present the current state of knowledge concerning the expression, function and regulation of lncRNAs in TNBC. Accumulating studies explored the potential lncRNAs-based therapeutics in TNBC, including the techniques of genetic modification using antisense oligonucleotides, locked nucleic acid and RNA nanotechnology. In current review, we also discuss the future prospects of studies about lncRNAs in TNBC and development of lncRNA-based strategies for clinical TNBC patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of OncologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiaoxiang Guan
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinhai Tang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
27
|
Sharma U, Barwal TS, Khandelwal A, Malhotra A, Rana MK, Singh Rana AP, Imyanitov EN, Vasquez KM, Jain A. LncRNA ZFAS1 inhibits triple-negative breast cancer by targeting STAT3. Biochimie 2021; 182:99-107. [PMID: 33429003 DOI: 10.1016/j.biochi.2020.12.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer with fewer treatment options than other types of invasive breast cancer due to the loss of the estrogen, progesterone receptors and low levels of the HER2 protein, resulting in a poor prognosis for these patients. Here, we found that the expression of the lncRNA, ZFAS1, was significantly downregulated (∼3.0-fold) in blood samples of TNBC patients (n=40) compared to matched healthy controls (n=40). Functionally, silencing of ZFAS1 promoted cell proliferation and colonization of human MDA-MB-231 TNBC cells by inhibiting the expression levels of the cyclin-dependent kinase (CDK) inhibitors p21 (CDKN1A) and p27 (CDKN1B) compared to the scrambled siRNA control cells. Further, we found that downregulation of ZFAS1 led to decreased protein levels of the epithelial markers, E-cadherin, Claudin-1, and Zo-1, with increased protein levels of the mesenchymal markers, Slug and ZEB1. In addition, by utilizing the bioinformatic tools such as RAID v2.0 (RNA Interactome Database Version 2.0), AnnoLnc (Annotate human lncRNA database), and GEPIA (Gene Expression Profiling Interactive Analysis), we identified a strong negative correlation between ZFAS1 and signal transducer and activator of transcription 3 (STAT3) gene expression (R = -0.11, p-value = 0.0002). Further, we observed that decreased ZFAS1 expression significantly (p < 0.05) increased STAT3 and phosphorylated STAT3 (at Ser727 residue) protein levels in TNBC cells. The composite data indicate that ZFAS1 may function as a tumor-suppressor lncRNA with potential as a diagnostic/prognostic marker and may offer a new target for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, 151001, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, 151001, India
| | - Akanksha Khandelwal
- Department of Biochemistry, Central University of Punjab, Bathinda, 151001, India
| | - Akshay Malhotra
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Manjit Kaur Rana
- Department of Pathology/Lab Medicine, AIIMS, Bathinda, 151001, Punjab, India
| | | | | | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Paediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
28
|
Nafea H, Youness RA, Abou-Aisha K, Gad MZ. LncRNA HEIH/miR-939-5p interplay modulates triple-negative breast cancer progression through NOS2-induced nitric oxide production. J Cell Physiol 2020; 236:5362-5372. [PMID: 33368266 DOI: 10.1002/jcp.30234] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
This study aimed to unravel the regulatory role of noncoding RNAs (ncRNA) on the nitric oxide (NO) machinery system in triple-negative breast cancer (TNBC) patients and to further assess the influence of NO-modulating ncRNAs on TNBC progression, immunogenic profile, and the tumor microenvironment (TME). The results revealed miR-939-5p and lncRNA HEIH as novel ncRNAs modulating NO machinery in TNBC. MiR-939-5p, an underexpressed microRNA (miRNA) in BC patients, showed an inhibitory effect on NOS2 and NOS3 transcript levels on TNBC cells. In contrast, HEIH was found to be markedly upregulated in TNBC patients and showed a modulatory role on miR-939-5p/NOS2/NO axis. Functionally, miR-939-5p was characterized as a tumor suppressor miRNA while HEIH was categorized as a novel oncogenic lncRNA in TNBC. Finally, knocking down of HEIH resulted in improvement of immunogenic profile of TNBC cells through inducing MICA/B and suppressing the immune checkpoint inhibitor PDL1. In the same context, knockdown of HEIH resulted in the alleviation of the immune-suppressive TME by repressing interleukin-10 and tumor necrosis factor-α levels. In conclusion, this study identifies miR-939-5p as a tumor suppressor miRNA while HEIH as an oncogenic lncRNA exhibiting its effect through miR-939-5p/NOS2/NO axis. Therefore, repressing BC hallmarks, improving TNBC immunogenic profile, and trimming TME.
Collapse
Affiliation(s)
- Heba Nafea
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| | - Rana A Youness
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology and Immunology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, Egypt
| |
Collapse
|
29
|
Wang B, Hao X, Li X, Liang Y, Li F, Yang K, Chen H, Lv F, Gao Y. Long noncoding RNA HEIH depletion depresses esophageal carcinoma cell progression by upregulating microRNA-185 and downregulating KLK5. Cell Death Dis 2020; 11:1002. [PMID: 33223519 PMCID: PMC7680792 DOI: 10.1038/s41419-020-03170-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Numerous studies have reported the association of long non-coding RNAs (lncRNAs) in cancers, yet the function of lncRNA high expressed in hepatocellular carcinoma (HEIH) in esophageal carcinoma (EC) has seldom been explored. Here, we aimed to explore the mechanism of HEIH on EC via microRNA-185 (miR-185)/kallikrein-related peptidase 5 (KLK5) modulation. Cancer and non-tumoral tissues were collected, in which HEIH, miR-185 and KLK5 expression were detected, as well as their correlations. Also, the relation between the prognosis of EC patients and HEIH/miR-185/KLK5 expression was clarified. EC cells (KYSE-30 and TE-1) were screened for subsequent gain- and loss-of-function assays and their biological functions were further monitored. Tumor volume and weight in EC mice were also measured. Results from this study indicated that HEIH and KLK5 were elevated and miR-185 was declined in EC. The positive correlation was seen in HEIH and KLK5 expression, while the negative correlation was observed in HEIH or KLK5 and miR-185 expression. High HEIH and KLK5 indicated worse prognosis and high miR-185 suggested better prognosis of EC patients. Depleting HEIH or restoring miR-185 suppressed the malignant phenotypes of EC cells, and delayed tumor growth in EC mice. HEIH was found to bind with miR-185 to regulate KLK5 expression. Overexpressing KLK5 alone promoted EC cell progression while up-regulating miR-185 reversed such effects on EC cells. Collectively, we reveal that HEIH depletion dampens EC progression by upregulating miR-185 and downregulating KLK5, which provides novel treatments for EC.
Collapse
Affiliation(s)
- Bing Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xingkai Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yicheng Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Kun Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Hengqi Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Yushun Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
30
|
Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, Grigorescu C, Stefanescu C, Volovat CC, Augustin I. MiRNA and LncRNA as Potential Biomarkers in Triple-Negative Breast Cancer: A Review. Front Oncol 2020; 10:526850. [PMID: 33330019 PMCID: PMC7716774 DOI: 10.3389/fonc.2020.526850] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Noncoding RNAs (ncRNAs) include a diverse range of RNA species, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs, ncRNAs of approximately 19-25 nucleotides in length, are involved in gene expression regulation either via degradation or silencing of the messenger RNAs (mRNAs) and have roles in multiple biological processes, including cell proliferation, differentiation, migration, angiogenesis, and apoptosis. LncRNAs, which are longer than 200 nucleotides, comprise one of the largest and most heterogeneous RNA families. LncRNAs can activate or repress gene expression through various mechanisms, acting alone or in combination with miRNAs and other molecules as part of various pathways. Until recently, most research has focused on individual lncRNA and miRNA functions as regulators, and there is limited available data on ncRNA interactions relating to the tumor growth, metastasis, and therapy of cancer, acting either on mRNA alone or as competing endogenous RNA (ceRNA) networks. Triple-negative breast cancer (TNBC) represents approximately 10%-20% of all breast cancers (BCs) and is highly heterogenous and more aggressive than other types of BC, for which current targeted treatment options include hormonotherapy, PARP inhibitors, and immunotherapy; however, no targeted therapies for TNBC are available, partly because of a lack of predictive biomarkers. With advances in proteomics, new evidence has emerged demonstrating the implications of dysregulation of ncRNAs in TNBC etiology. Here, we review the roles of lncRNAs and miRNAs implicated in TNBC, including their interactions and regulatory networks. Our synthesis provides insight into the mechanisms involved in TNBC progression and has potential to aid the discovery of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania.,Center of Oncology Euroclinic, Iași, Romania
| | | | | | | | | | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, Craiova, Romania
| | | | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | - Cristina Grigorescu
- Department of Surgery, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | | |
Collapse
|
31
|
Liu J, Zhan Y, Wang J, Wang J, Guo J, Kong D. Long noncoding RNA LINC01578 drives colon cancer metastasis through a positive feedback loop with the NF-κB/YY1 axis. Mol Oncol 2020; 14:3211-3233. [PMID: 33040438 PMCID: PMC7718957 DOI: 10.1002/1878-0261.12819] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis accounts for poor prognosis of cancers and related deaths. Accumulating evidence has shown that long noncoding RNAs (lncRNAs) play critical roles in several types of cancer. However, which lncRNAs contribute to metastasis of colon cancer is still largely unknown. In this study, we found that lncRNA LINC01578 was correlated with metastasis and poor prognosis of colon cancer. LINC01578 was upregulated in colon cancer, associated with metastasis, advanced clinical stages, poor overall survival, disease-specific survival, and disease-free survival. Gain-of-function and loss-of-function assays revealed that LINC01578 enhanced colon cancer cell viability and mobility in vitro and colon cancer liver metastasis in vivo. Mechanistically, nuclear factor kappa B (NF-κB) and Yin Yang 1 (YY1) directly bound to the LINC01578 promoter, enhanced its activity, and activated LINC01578 expression. LINC01578 was shown to be a chromatin-bound lncRNA, which directly bound NFKBIB promoter. Furthermore, LINC01578 interacted with and recruited EZH2 to NFKBIB promoter and further repressed NFKBIB expression, thereby activating NF-κB signaling. Through activation of NF-κB, LINC01578 further upregulated YY1 expression. Through activation of the NF-κB/YY1 axis, LINC01578 in turn enhanced its own promoter activity, suggesting that LINC01578 and NF-κB/YY1 formed a positive feedback loop. Blocking NF-κB signaling abolished the oncogenic roles of LINC01578 in colon cancer. Furthermore, the expression levels of LINC01578, NFKBIB, and YY1 were correlated in clinical tissues. Collectively, this study demonstrated that LINC01578 promoted colon cancer metastasis via forming a positive feedback loop with NF-κB/YY1 and suggested that LINC01578 represents a potential prognostic biomarker and therapeutic target for colon cancer metastasis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yang Zhan
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiefu Wang
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Junfeng Wang
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiansheng Guo
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dalu Kong
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
32
|
Li J, Guan C, Hu Z, Liu L, Su Z, Kang P, Jiang X, Cui Y. Yin Yang 1-induced LINC00667 up-regulates pyruvate dehydrogenase kinase 1 to promote proliferation, migration and invasion of cholangiocarcinoma cells by sponging miR-200c-3p. Hum Cell 2020; 34:187-200. [PMID: 33040228 DOI: 10.1007/s13577-020-00448-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is one of the most aggressive and lethal malignancies. Long noncoding RNAs (lncRNAs) are being found to play crucial roles in CCA progression. This work aims to investigate the roles of long intergenic non-protein coding RNA 667 (LINC00667) in progression of CCA. RT-qPCR and western blot were applied to detect gene expression. Clinical correlation and survival were analyzed by statistical methods. Overexpression and RNA interference approaches were used to investigate the effects of LINC00667 on CCA cells. Tumor xenograft assay was performed to detect the function of LINC00667 in vivo. Transcriptional regulation and competing endogenous RNA (ceRNA) mechanism were predicted via bioinformatics analysis. ChIP, luciferase reporter, and Ago2 RIP assays further confirmed the predicted results. Our data indicated that LINC00667 was highly expressed in CCA tissues and cells, and transcription factor Yin Yang 1 (YY1) induced LINC00667 expression in CCA cells. Up-regulated LINC00667 was significantly associated with lymph node metastasis, advanced TNM stage, and poor prognosis. Knockdown of LINC00667 suppressed the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of CCA cells, while overexpression of LINC00667 acquired opposite effects. Moreover, knockdown of LINC00667 inhibited tumor growth in vivo. In addition, LINC00667 was demonstrated to function as a ceRNA for miR-200c-3p, and then LINC00667 up-regulated pyruvate dehydrogenase kinase 1 (PDK1) to promote CCA development by inhibiting miR-200c-3p. These findings identified a pivotal role of LINC00667 in tumorigenesis and development of CCA. Targeting the YY1/LINC00667/miR-200c-3p/PDK1 axis may provide a new therapeutic strategy for CCA treatment.
Collapse
Affiliation(s)
- Jinglin Li
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Canghai Guan
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Zengtao Hu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Lang Liu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Zhilei Su
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Pengcheng Kang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China.
| | - Yunfu Cui
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, 148 Baojian Street, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
33
|
Huang P, Xue J. Long non‑coding RNA FOXD2‑AS1 regulates the tumorigenesis and progression of breast cancer via the S100 calcium binding protein A1/Hippo signaling pathway. Int J Mol Med 2020; 46:1477-1489. [PMID: 32945354 PMCID: PMC7447301 DOI: 10.3892/ijmm.2020.4699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is one of the most prevalent cancer types and is accompanied by a high incidence and mortality rate, severely threatening women's health globally. Long non‑coding RNA forkhead box D2 adjacent apposite strand RNA 1 (lncRNA FOXD2‑AS1) has been identified to function as an oncogene in human cancers; however, it has rarely been investigated in breast cancer. The aim of the present study was to investigate the role of FOXD2‑AS1 in breast cancer, and to clarify the underlying mechanisms. The expression of FOXD2‑AS1 in breast cancer cell lines was first quantified by reverse transcription‑quantitative PCR, and the biological function of FOXD2‑AS1 was then determined. Cellular proliferative ability was determined by Cell Counting kit‑8 assay, and wound healing and Transwell assays were conducted to assess the cell migratory and invasive ability. Corresponding protein expression levels were determined by western blot analysis. In addition, experimental animal models were established by the subcutaneous injection of MDA‑MB‑468 cells into the right axillary lymph nodes of BALB/c nude mice, and the effects of FOXD2‑AS1 on tumor growth were observed. The results indicated that FOXD2‑AS1 expression was upregulated in breast cancer cell lines, and that FOXD2‑AS1 downregulation significantly inhibited the proliferation, migration and invasiveness of MCF‑7 and MDA‑MB‑468 cells. S100 calcium binding protein A1 (S100A1) was also upregulated in breast cancer cell lines and was positively regulated by FOXD2‑AS1. Furthermore, the inhibition of S100A1 and the overexpression of the serine/threonine‑protein kinase, large tumor suppressor homolog 1 (LATS1), inhibited the FOXD2‑AS1‑induced cellular proliferation, migration and invasiveness in breast cancer. Experimental mouse models revealed that FOXD2‑AS1 downregulation significantly inhibited tumor growth, and that the levels of phosphorylated (p‑)YAP and p‑LATS1 were upregulated by FOXD2‑AS1 knockdown, indicating that the inhibition of FOXD2‑AS1 activated Hippo/yes‑associated protein signaling. On the whole, the findings of the present study suggest that the FOXD2‑AS1/S100A1/Hippo axis is involved in the tumorigenesis and progression of breast cancer. In the future, these may contribution to the identification of more effective breast cancer treatments.
Collapse
Affiliation(s)
- Pei Huang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052
| | - Jinhui Xue
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
34
|
Long non-coding RNA LRRC75A-AS1 facilitates triple negative breast cancer cell proliferation and invasion via functioning as a ceRNA to modulate BAALC. Cell Death Dis 2020; 11:643. [PMID: 32811810 PMCID: PMC7434919 DOI: 10.1038/s41419-020-02821-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
As a common female malignancy, triple-negative breast cancer (TNBC) is the most serious subtype in breast cancer (BC). BAALC binder of MAP3K1 and KLF4 (BAALC) is a common oncogene in acute myelocytic leukemia (AML). We sought to explore the role of BAALC in TNBC. In this study, BAALC was significantly upregulated in TNBC tissues and cells. Then, the results of functional assays disclosed that BAALC facilitated cell proliferation, invasion, and epithelial–mesenchymal transition (EMT) processes, but repressed cell apoptosis in TNBC. Next, miR-380–3p was identified as the upstream of BAALC in TNBC cells. Moreover, LRRC75A-AS1 (also named small nucleolar RNA host gene 29: SNHG29) was verified to act as the sponge of miR-380–3p to elevate BAALC expression in TNBC. Besides, LRRC75A-AS1 could negatively regulate miR-380–3p but positively regulate BAALC expression. Finally, rescue assays elucidated that LRRC75A-AS1 facilitated cell proliferation, invasion, and EMT processes in TNBC by targeting miR-380–3p/BAALC pathway. Taken together, our study revealed a novel ceRNA network of LRRC75A-AS1/miR-380–3p/BAALC in accelerating TNBC development, indicating new promising targets for TNBC treatment.
Collapse
|
35
|
Zhou F, Wang J, Chi X, Zhou X, Wang Z. lncRNA TM4SF1-AS1 Activates the PI3K/AKT Signaling Pathway and Promotes the Migration and Invasion of Lung Cancer Cells. Cancer Manag Res 2020; 12:5527-5536. [PMID: 32765064 PMCID: PMC7369303 DOI: 10.2147/cmar.s254072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Metastasis is a crucial cause of the high mortality in patients with lung cancer. Long non-coding RNAs (lncRNAs) are emerging as important players in the development and progression of human cancers. Here, we aimed to identify metastasis-associated lncRNA and to study its roles in the migration and invasion of lung cancer cells. Materials and Methods We screened differentially expressed lncRNAs between high- and low-metastatic lung cancer cell lines by using microarray and identified the target lncRNA TM4SF1-AS1. The effect of the TM4SF1-AS1 on the invasion and migration was evaluated through the wound healing experiment and transwell assay. The expression of related genes was assessed by RNA sequence and Western blotting. Results TM4SF1-AS1 was highly expressed in high metastatic lung cancer cell line, and it was also significantly up-regulated in lymph node metastatic lung cancer and was associated with lymph node metastasis. Overexpression of TM4SF1-AS1 promoted the migration and invasion of lung cancer cells. Overexpression of TM4SF1-AS1 decreased the expression of E-Cadherin and increased the expression of Vimentin, Snail and Twist, while knockdown of TM4SF1-AS1 exhibited the opposite trend. Furthermore, RNA sequence analysis revealed that some signaling pathways, including PI3K/AKT signaling pathway, were enriched upon TM4SF1-AS1 overexpression. Western blotting further confirmed that the PI3K/AKT signaling pathway was activated by TM4SF1-AS1. Conclusion This study illustrates that TM4SF1-AS1 promotes the migration and invasion of lung cancer cells by activating the PI3K/AKT signaling pathway. TM4SF1-AS1 might be a novel target of molecular treatment for lung cancer.
Collapse
Affiliation(s)
- Fachen Zhou
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, Shandong, People's Republic of China.,Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Jin Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xinming Chi
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xin Zhou
- Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
36
|
Wang D, You D, Pan Y, Liu P. Downregulation of lncRNA-HEIH curbs esophageal squamous cell carcinoma progression by modulating miR-4458/PBX3. Thorac Cancer 2020; 11:1963-1971. [PMID: 32449803 PMCID: PMC7327669 DOI: 10.1111/1759-7714.13489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Background Long non‐coding RNAs (lncRNAs) have been found to play a specific part in the development of esophageal squamous cell carcinoma (ESCC), except for lncRNA HEIH. Here, we aimed to discover the molecular mechanisms of HEIH in ESCC. Methods We detected the expression level of HEIH and miR‐4458 in ESCC tissues and cells using qRT‐PCR assay. A dual luciferase reporter assay was used to check the relationship between HEIH, miR‐4458 or PBX3. Counting Clock Kit‐8 (CCK‐8) assay and transwell assay were used to detect ESCC cell proliferation and invasion capability. Western blot analysis was used to measure the protein expression level of PBX3. Results HEIH was confirmed to be upregulated in both ESCC tissues and cell lines. Inversely, there was a downregulation of miR‐4458 in ESCC tissues and cell lines. Functionally, we noticed that depletion of HEIH restrained ESCC cell viability, and invasion capability. Moreover, PBX silencing was found to restrain ESCC cell progression, while miR‐4458 or HEIH vector both could alleviate its suppressive effect. Conclusions The present study clarified that HEIH regulated ESCC progression by suppressing miR‐4458 and upregulating PBX3. Our findings suggested that HEIH could be a possible therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Radiotherapy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Dong You
- Department of Radiotherapy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Yinghua Pan
- Department of Radiology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| | - Peiji Liu
- Department of Radiotherapy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| |
Collapse
|
37
|
Bi H, Wang G, Li Z, Zhou L, Zhang M, Ye J, Wang Z. Long Noncoding RNA (lncRNA) Maternally Expressed Gene 3 (MEG3) Participates in Chronic Obstructive Pulmonary Disease through Regulating Human Pulmonary Microvascular Endothelial Cell Apoptosis. Med Sci Monit 2020; 26:e920793. [PMID: 32201430 PMCID: PMC7111098 DOI: 10.12659/msm.920793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a general airway disease, is featured by progressive and chronic immunoreaction in the lung. Increasing evidences have showed that cigarette smoking is the main reason in the COPD progression, and human pulmonary microvascular endothelial cell (HPMEC) apoptosis often be observed in COPD, while its pathogenesis is not yet fully described. Upregulation of long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) was observed in COPD patients, but the specific mechanism of lncRNA MEG3 in COPD remains unknown. The objective of this research was to explore the role of lncRNA MEG3 in cigarette smoke extract (CSE)-induced HPMECs. MATERIAL AND METHODS HPMECs were induced by a series of concentrations of CSE (0%, 0.1%, 1%, and 10%). Then cell apoptosis was analyzed by flow cytometry. Cell apoptosis related proteins were tested using western blot assay. Finally, we applied knockdown and over-expression system to explore the lncRNA MEG3 functions in CSE-induced HPMECs. RESULTS Our results indicated that various concentrations of CSE (0%, 0.1%, 1%, and 10%) significantly promoted cell apoptosis, augmented caspase-3 activity, upregulated Bax expression, decreased Bcl-2 expression, and enhanced lncRNA MEG3 level in HPMECs. LncRNA MEG3-plasmid transfection resulted in the upregulation of lncRNA MEG3, more apoptotic HPMECs, and higher caspase-3 activity. While lncRNA MEG3 knockdown presented the opposite effects. Further investigation suggested that all the effects of CSE treatment on HPMECs were markedly reversed by lncRNA MEG3-shRNA (short hairpin RNA). CONCLUSIONS Our study illustrated a protective effect of lncRNA MEG3-shRNA on CSE-induced HPMECs, indicting lncRNA MEG3 can be a new therapeutic approach for COPD treatment.
Collapse
Affiliation(s)
- Hui Bi
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P.R. China
| | - Gui Wang
- Department of Intensive Care Unit, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P.R. China
| | - Zhiying Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P.R. China
| | - Lin Zhou
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P.R. China
| | - Ming Zhang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P.R. China
| | - Jiru Ye
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P.R. China
| | - Zhigang Wang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, P.R. China
| |
Collapse
|
38
|
Li W, Jin X, Zhao Y, Dai J, Cai Y. Long noncoding RNA GAS6-AS2 sponges microRNA-493, thereby enhancing the malignant characteristics of breast cancer cells via upregulation of FUT4. Pathol Res Pract 2019; 216:152772. [PMID: 31839366 DOI: 10.1016/j.prp.2019.152772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
Long noncoding RNA (lncRNA) GAS6-AS2 serves as an oncogenic lncRNA in various types of human cancer. In this study, we attempted to examine the functions of GAS6-AS2 in breast cancer (BC) and explore the potential mechanisms involved. Reverse-transcription quantitative PCR was carried out to determine GAS6-AS2 expression in BC tissues and cell lines. Multiple functional experiments, including a Cell Counting Kit-8 assay, Transwell migration and invasion assays, and an in vivo nude-mouse xenograft experiment, were conducted to evaluate the effects of GAS6-AS2 in BC cells. GAS6-AS2 expression was high in BC tumors, manifesting a strong correlation with tumor size, lymph node metastasis, TNM stage, and shorter overall survival in patients with BC. A knockdown of GAS6-AS2 restricted BC cell proliferation, migration, and invasion in vitro and retarded tumor growth in vivo. With regard to its mechanism, GAS6-AS2 acted as a competing endogenous RNA that sponged microRNA-493 (miR-493), thereby increasing the expression of fucosyltransferase IV (FUT4). Either miR-493 inhibition or FUT4 upregulation abrogated the consequences of GAS6-AS2 knockdown in BC cells. These results revealed that GAS6-AS2 sponges miR-493 to enhance the malignant characteristics of BC in vitro and in vivo by increasing FUT4 expression. Thus, this lncRNA is an effective therapeutic target in BC and a promising diagnostic biomarker of this cancer.
Collapse
Affiliation(s)
- Wanfeng Li
- Department of Breast Surgery, Jilin Tumor Hospital, Jilin, 130012, PR China
| | - Xintian Jin
- Department of Thoracic Neoplasms, Jilin Tumor Hospital, Jilin, 130012, PR China
| | - Yueming Zhao
- Department of Oncology, Jilin Tumor Hospital, Jilin, 130012, PR China
| | - Jixin Dai
- Department of Oncology, Jilin Tumor Hospital, Jilin, 130012, PR China
| | - Yong Cai
- Department of Breast Surgery, Jilin Tumor Hospital, Jilin, 130012, PR China.
| |
Collapse
|