1
|
Liu X, Xu X, Liao Y, Yao W, Geng X, Zeng X, Sun X, Tang A, Yang P. Psychological stress to ovalbumin peptide-specific T-cell receptor transgenic mice impairs the suppressive ability of type 1 regulatory T cell. Immunology 2024; 172:210-225. [PMID: 38366844 DOI: 10.1111/imm.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024] Open
Abstract
Numerous diseases of the immune system can be traced back to the malfunctioning of the regulatory T cells. The aetiology is unclear. Psychological stress can cause disruption to the immune regulation. The synergistic effects of psychological stress and immune response on immune regulation have yet to be fully understood. The intention of this study is to analyse the interaction between psychological stress and immune responses and how it affects the functional status of type 1 regulatory T (Tr1) cells. In this study, ovalbumin peptide T-cell receptor transgenic mice were utilised. Mice were subjected to restraint stress to induce psychological stress. An airway allergy murine model was established, in which a mouse strain with RING finger protein 20 (Rnf20)-deficient CD4+ T cells were used. The results showed that concomitant exposure to restraint stress and immune response could exacerbate endoplasmic reticulum stress in Tr1 cells. Corticosterone was responsible for the elevated expression of X-box protein-1 (XBP1) in mouse Tr1 cells after exposure to both restraint stress and immune response. XBP1 mediated the effects of corticosterone on inducing Rnf20 in Tr1 cells. The reduction of the interleukin-10 expression in Tr1 cells was facilitated by Rnf20. Inhibition of Rnf20 alleviated experimental airway allergy by restoring the immune regulatory ability of Tr1 cells. In conclusion, the functions of Tr1 cells are negatively impacted by simultaneous exposure to psychological stress and immune response. Tr1 cells' immune suppressive functions can be restored by inhibiting Rnf20, which has the translational potential for the treatment of diseases of the immune system.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Ovalbumin/immunology
- Stress, Psychological/immunology
- Mice, Transgenic
- Mice
- Interleukin-10/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- X-Box Binding Protein 1/metabolism
- X-Box Binding Protein 1/genetics
- Corticosterone/blood
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Endoplasmic Reticulum Stress/immunology
- Disease Models, Animal
- Restraint, Physical
- Mice, Knockout
- Mice, Inbred C57BL
- Respiratory Hypersensitivity/immunology
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Shenzhen University Division, Shenzhen, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
| | - Xuejie Xu
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Shenzhen University Division, Shenzhen, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
| | - Yun Liao
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Shenzhen University Division, Shenzhen, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Shenzhen Clinical College, Guangzhou Chinese Traditional Medical University, Shenzhen, China
| | - Wenkai Yao
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Shenzhen University Division, Shenzhen, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
| | - Xiaorui Geng
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Xizhuo Sun
- Department of General Practice Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aifa Tang
- Department of General Practice Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Shenzhen University Division, Shenzhen, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
| |
Collapse
|
2
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Liu D, Luo R, Zhou Q, Li M. RNF20 Reduces Cell Proliferation and Warburg Effect by Promoting NLRP3 Ubiquitination in Liver Cancer. J Environ Pathol Toxicol Oncol 2024; 43:69-80. [PMID: 38608146 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
The present study explored that the effects and its possible mechanisms of ring finger protein 20 (RNF20) in Postoperative survival rate of liver cancer in clinical. All the serum samples were collected from our hospital. Quantitative polymerase chain reaction (PCR) and microarray analysis, and RNA pull down assay were used in this study. We found that the serum RNF20 mRNA expression level in patients with liver cancer were down-regulated. Postoperative survival rate of RNF20 high expression was higher than that of RNF20 low expression. Then, over-expression of RNF20 diminished liver cancer cell proliferation and metastasis. RNF20 reduced Warburg effect of liver cancer. RNF20 expression regulated NOD-like receptor protein 3 (NLRP3) expression and increased NLRP3 Ubiquitination. NLRP3 participated in the effects of RNF20 on cell proliferation, and not affected on Warburg effect of liver cancer. Our study demonstrated that the serum RNF20 expression level was down-regulated in liver cancer, and promoted postoperative survival rate. RNF20 can reduce cancer progression of liver cancer by NLRP3 signal pathway, suggesting that it may prove to be a potential therapeutic target for postoperative survival rate of liver cancer.
Collapse
Affiliation(s)
- Deqin Liu
- Department of Hepatobiliary Surgery, Dayi County People's Hospital, Chengdu City, Sichuan Province, China
| | - Renyin Luo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Panzhihua University, Panzhihua City, Sichuan Province, China
| | - Qian Zhou
- Operating Room, BOE Hospital, Chengdu, Sichuan Province, China
| | - Mei Li
- Panzhihua Central Hospital
| |
Collapse
|
4
|
Shi Y, Qi W. Histone Modifications in NAFLD: Mechanisms and Potential Therapy. Int J Mol Sci 2023; 24:14653. [PMID: 37834101 PMCID: PMC10572202 DOI: 10.3390/ijms241914653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 10/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive condition that encompasses a spectrum of liver disorders, beginning with the simple steatosis, progressing to nonalcoholic steatohepatitis (NASH), and possibly leading to more severe diseases, including liver cirrhosis and hepatocellular carcinoma (HCC). In recent years, the prevalence of NAFLD has increased due to a shift towards energy-dense dietary patterns and a sedentary lifestyle. NAFLD is also strongly associated with metabolic disorders such as obesity and hyperlipidemia. The progression of NAFLD could be influenced by a variety of factors, such as diet, genetic factors, and even epigenetic factors. In contrast to genetic factors, epigenetic factors, including histone modifications, exhibit dynamic and reversible features. Therefore, the epigenetic regulation of the initiation and progression of NAFLD is one of the directions under intensive investigation in terms of pathogenic mechanisms and possible therapeutic interventions. This review aims to discuss the possible mechanisms and the crucial role of histone modifications in the framework of epigenetic regulation in NAFLD, which may provide potential therapeutic targets and a scientific basis for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yulei Shi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Qi
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Li X, Gao W, Zhang Y. FOXM1 promotes TGF-β2-induced injury of human lens epithelial cells by up regulating VEGFA expression. Graefes Arch Clin Exp Ophthalmol 2023; 261:2547-2555. [PMID: 37079092 DOI: 10.1007/s00417-023-06065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023] Open
Abstract
OBJECTIVE To explore whether Fork head box protein M1 (FOXM1) is involved in TGF-β2-induced injury of human lens epithelial cells and its related mechanism. METHODS Human lens epithelium samples from cataract patients and healthy controls were collected. A cellular epithelial injury model was established by treating HLE-B3 cells with TGF-β2. QPCR, immunoblot assays were performed to detect the levels of FOXM1 in human cataract samples and the lens epithelial injury cell model. FOXM1 siRNA and pcDNA3.1-FOXM1 plasmids were transfected into the cells to knockdown and overexpress FOXM1, respectively. MTT and wound closure and transwell assays were performed to analyze cell proliferation and migration in HLE-B3 cells. Immunoblot assays were also conducted to detect the effects of FOXM1 on EMT, VEGFA and MAPK/ERK signaling. RESULTS We found high expression of FOXM1 in lens tissues of cataract patients. Silencing of FOXM1 in TGF-β2-induced HLE-B3 cells suppressed cell proliferation, migration, and the EMT process. Mechanistically, we found that downregulation of FOXM1 inhibited the VEGFA/MAPK signaling pathway in TGF-β2-induced HLE-B3 cells. CONCLUSION FOXM1 promoted TGF-β2-induced injury of human lens epithelial cells (hLECs) by promoting VEGFA expression. FOXM1 could be a potential drug target for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Ophthalmology, Kashgar Prefecture Second People's Hospital, Kashgar, 844000, Xinjiang, China
| | - Wei Gao
- Department of Ophthalmology, Kashgar Prefecture Second People's Hospital, Kashgar, 844000, Xinjiang, China
| | - Yanlai Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, No. 1 Youyi Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
6
|
Ceccherini E, Signore G, Tedeschi L, Vozzi F, Di Giorgi N, Michelucci E, Cecchettini A, Rocchiccioli S. Proteomic Modulation in TGF-β-Treated Cholangiocytes Induced by Curcumin Nanoparticles. Int J Mol Sci 2023; 24:10481. [PMID: 37445659 DOI: 10.3390/ijms241310481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Curcumin is a natural polyphenol that exhibits a variety of beneficial effects on health, including anti-inflammatory, antioxidant, and hepato-protective properties. Due to its poor water solubility and membrane permeability, in the present study, we prepared and characterized a water-stable, freely dispersible nanoformulation of curcumin. Although the potential of curcumin nanoformulations in the hepatic field has been studied, there are no investigations on their effect in fibrotic pathological conditions involving cholangiocytes. Exploiting an in vitro model of transforming growth factor-β (TGF-β)-stimulated cholangiocytes, we applied the Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)-based quantitative proteomic approaches to study the proteome modulation induced by curcumin nanoformulation. Our results confirmed the well-documented anti-inflammatory properties of this nutraceutic, highlighting the induction of programmed cell death as a mechanism to counteract the cellular damages induced by TGF-β. Moreover, curcumin nanoformulation positively influenced the expression of several proteins involved in TGF-β-mediated fibrosis. Given the crucial importance of deregulated cholangiocyte functions during cholangiopathies, our results provide the basis for a better understanding of the mechanisms associated with this pathology and could represent a rationale for the development of more targeted therapies.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Giovanni Signore
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Lorena Tedeschi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Nicoletta Di Giorgi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Institute of Chemistry of Organometallic Compounds, National Research Council, 56124 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
7
|
Cai Q, Gan C, Tang C, Wu H, Gao J. Mechanism and Therapeutic Opportunities of Histone Modifications in Chronic Liver Disease. Front Pharmacol 2021; 12:784591. [PMID: 34887768 PMCID: PMC8650224 DOI: 10.3389/fphar.2021.784591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic liver disease (CLD) represents a global health problem, accounting for the heavy burden of disability and increased health care utilization. Epigenome alterations play an important role in the occurrence and progression of CLD. Histone modifications, which include acetylation, methylation, and phosphorylation, represent an essential part of epigenetic modifications that affect the transcriptional activity of genes. Different from genetic mutations, histone modifications are plastic and reversible. They can be modulated pharmacologically without changing the DNA sequence. Thus, there might be chances to establish interventional solutions by targeting histone modifications to reverse CLD. Here we summarized the roles of histone modifications in the context of alcoholic liver disease (ALD), metabolic associated fatty liver disease (MAFLD), viral hepatitis, autoimmune liver disease, drug-induced liver injury (DILI), and liver fibrosis or cirrhosis. The potential targets of histone modifications for translation into therapeutics were also investigated. In prospect, high efficacy and low toxicity drugs that are selectively targeting histone modifications are required to completely reverse CLD and prevent the development of liver cirrhosis and malignancy.
Collapse
Affiliation(s)
- Qiuyu Cai
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Can Gan
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|