1
|
Li J, Zhou M, Xie J, Chen J, Yang M, Ye C, Cheng S, Liu M, Li R, Tan R. Organoid modeling meets cancers of female reproductive tract. Cell Death Discov 2024; 10:410. [PMID: 39333482 PMCID: PMC11437045 DOI: 10.1038/s41420-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Diseases of the female reproductive system, especially malignant tumors, pose a serious threat to women's health worldwide. One of the key factors limiting research progress in this area is the lack of representative models. Organoid technology, especially tumor organoids, has been increasingly applied in the study of female reproductive system tumors due to their high heterogeneity, close resemblance to the physiological state, easy acquisition and cultivation advantages. They play a significant role in understanding the origin and causes of tumors, drug screening, and personalized treatment and more. This article reviews the organoid models for the female reproductive system, focusing on the cancer research advancements. It discusses the methods for constructing tumor organoids of the female reproductive tract and summarizes the limitations of current research. The aim is to offer a reference for future development and application of these organoid models, contributing to the advancement of anti-tumor drugs and treatment strategies for female reproductive tract cancer patients.
Collapse
Affiliation(s)
- Jiao Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Mengting Zhou
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Xie
- Information Technology Center, West China Hospital of Sichuan University, Sichuan University, Chengdu, China
| | - Jiani Chen
- Chongqing Medical University, Chongqing, China
| | - Mengni Yang
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changjun Ye
- Rehabilitation Department, Changgeng Yining Hospital, Wenzhou, China
| | - Shihu Cheng
- Geriatric Department, Changgeng Yining Hospital, Wenzhou, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
2
|
Wang Y, Qiu H, Lin R, Hong W, Lu J, Ling H, Sun X, Yang C. Advancements in the Understanding of Small-Cell Neuroendocrine Cervical Cancer: Where We Stand and What Lies Ahead. J Pers Med 2024; 14:462. [PMID: 38793044 PMCID: PMC11122604 DOI: 10.3390/jpm14050462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Small-cell neuroendocrine cervical carcinoma (SCNCC) is a rare yet aggressive gynecological malignancy associated with dismal clinical outcomes. Its rarity has led to a limited number of retrospective studies and an absence of prospective research, posing significant challenges for evidence-based treatment approaches. As a result, most gynecologic oncology centers have limited experience with this tumor, emphasizing the urgent need for a comprehensive review and summary. This article systematically reviews the pathogenesis, immunohistochemical and molecular characteristics, prognostic factors, and clinical management of gynecologic SCNCC. We specifically focused on reviewing the distinct genomic characteristics of SCNCC identified via next-generation sequencing technologies, including loss of heterozygosity (LOH), somatic mutations, structural variations (SVs), and microRNA alterations. The identification of these actionable genomic events offers promise for discovering new molecular targets for drug development and enhancing therapeutic outcomes. Additionally, we delve deeper into key clinical challenges, such as determining the optimal treatment modality between chemoradiation and surgery for International Federation of Gynecology and Obstetrics (FIGO) stage I phase patients within a precision stratification framework, as well as the role of targeted therapy within the homologous recombination (HR) pathway, immune checkpoint inhibitors (ICIs), and prophylactic cranial irradiation (PCI) in the management of SCNCC. Finally, we anticipate the utilization of multiple SCNCC models, including cancer tissue-originated spheroid (CTOS) lines and patient-derived xenografts (PDXs), to decipher driver events and develop individualized therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Yan Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People’s Hospital, Hangzhou 310006, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Qiu
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Rongjie Lin
- Department of Radiotherapy, West China Xiamen Hospital of Sichuan University, Xiamen 361021, China
| | - Weiwei Hong
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiahao Lu
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huan Ling
- Department of Ultrasound in Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoge Sun
- Department of Radiation Oncology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 750306, China
| | - Chunxu Yang
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Masuda M, Iida K, Iwabuchi S, Tanaka M, Kubota S, Uematsu H, Onuma K, Kukita Y, Kato K, Kamiura S, Nakajima A, Coppo R, Kanda M, Yoshino K, Ueda Y, Morii E, Kimura T, Kondo J, Okada-Hatakeyama M, Hashimoto S, Inoue M. Clonal Origin and Lineage Ambiguity in Mixed Neuroendocrine Carcinoma of the Uterine Cervix. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:415-429. [PMID: 38103888 DOI: 10.1016/j.ajpath.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Small-cell neuroendocrine carcinoma (SCNEC) of the cervix is a rare disease characterized by a high incidence of mixed tumors with other types of cancer. The mechanism underlying this mixed phenotype is not well understood. This study established a panel of organoid lines from patients with SCNEC of the cervix and ultimately focused on one line, which retained a mixed tumor phenotype, both in vitro and in vivo. Histologically, both organoids and xenograft tumors showed distinct differentiation into either SCNEC or adenocarcinoma in some regions and ambiguous differentiation in others. Tracking single cells indicated the existence of cells with bipotential differentiation toward SCNEC and adenocarcinomas. Single-cell transcriptional analysis identified three distinct clusters: SCNEC-like, adenocarcinoma-like, and a cluster lacking specific differentiation markers. The expression of neuroendocrine markers was enriched in the SCNEC-like cluster but not exclusively. Human papillomavirus 18 E6 was enriched in the SCNEC-like cluster, which showed higher proliferation and lower levels of the p53 pathway. After treatment with anticancer drugs, the expression of adenocarcinoma markers increased, whereas that of SCNEC decreased. Using a reporter system for keratin 19 expression, changes in the differentiation of each cell were shown to be associated with the shift in differentiation induced by drug treatment. These data suggest that mixed SCNEC/cervical tumors have a clonal origin and are characterized by an ambiguous and flexible differentiation state.
Collapse
Affiliation(s)
- Masamune Masuda
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keita Iida
- Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mie Tanaka
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Kubota
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Hiroyuki Uematsu
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoji Kukita
- Department of Molecular and Medical Genetics, Osaka International Cancer Institute, Osaka, Japan
| | - Kikuya Kato
- Department of Molecular and Medical Genetics, Osaka International Cancer Institute, Osaka, Japan
| | - Shoji Kamiura
- Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan
| | - Aya Nakajima
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan; Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Roberto Coppo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mizuki Kanda
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yutaka Ueda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jumpei Kondo
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | | | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Masahiro Inoue
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|
4
|
Yang R, Yu Y. Patient-derived organoids in translational oncology and drug screening. Cancer Lett 2023; 562:216180. [PMID: 37061121 DOI: 10.1016/j.canlet.2023.216180] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Patient-derived organoids (PDO) are a new biomedical research model that can reconstruct phenotypic and genetic characteristics of the original tissue and are useful for research on pathogenesis and drug screening. To introduce the progression in this field, we review the key factors of constructing organoids derived from epithelial tissues and cancers, covering culture medium and matrix, morphological characteristics, genetic profiles, high-throughput drug screening, and application potential. We also discuss the co-culture system of cancer organoids with tumor microenvironment (TME) associated cells. The co-culture system is widely used in evaluating crosstalk of cancer cells with TME components, such as fibroblasts, endothelial cells, immune cells, and microorganisms. The article provides a prospective for standardized cultivation mode, automatic morphological evaluation, and drug sensitivity screening using high-throughput methods.
Collapse
Affiliation(s)
- Ruixin Yang
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|