1
|
Wei F, Bi S, Li M, Yu J. Lymph node metastasis determined miRNAs in esophageal squamous cell carcinoma. Aging (Albany NY) 2024; 16:13104-13116. [PMID: 39401765 PMCID: PMC11552642 DOI: 10.18632/aging.206122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE There is no golden noninvasive and effective technique to diagnose lymph node metastasis (LNM) for esophageal squamous cell carcinoma (ESCC) patients. Here, a classifier was proposed consisting of miRNAs to screen ESCC patients with LNM from the ones without LNM. METHODS miRNA expression and clinical data files of 93 ESCC samples were downloaded from TCGA as the discovery set and 119 ESCC samples with similar dataset GSE43732 as the validation set. Differentially expressed miRNAs (DE-miRNAs) were analyzed between patients with LNM and without LNM. LASSO regression was performed for selecting the DE-miRNA pair to consist the classifier. To validate the accuracy and reliability of the classifier, the SVM and AdaBoost algorithms were applied. The CCK-8 and wound healing assay were used to evaluate the role of the miRNA in ESCC cells. RESULT There were 43 DE miRNAs between the LNM+ group and LNM- group. Among them, miR-224-5p, miR-99a-5p, miR-100-5p, miR-34c-5p, miR-503-5p, and miR-452-5p were identified by LASSO to establish the classifier. SVM and AdaBoost showed that the model could classify the ESCC patients with LNM from the ones without LNM precisely and reliably in 2 data sets. miR-224-5p in the classifier as the top contributor to discriminate the two groups of patients based on AdaBoost, promoted ESCC cell proliferation and migration in vitro. CONCLUSION The classifier based on these 6 miRNAs could classify the ESCC patients with LNM from the ones without LNM successfully.
Collapse
Affiliation(s)
- Feng Wei
- Department of Critical Care Medicine, Affiliated Hospital of Chifeng University, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Shufeng Bi
- Department of Chronic Disease, Chifeng Center for Disease Control and Prevention, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Mengmeng Li
- Department of Chronic Disease, Chifeng Center for Disease Control and Prevention, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Jia Yu
- Department of Chronic Disease, Chifeng Center for Disease Control and Prevention, Chifeng 024000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
2
|
Gonzalez-Candia A, Figueroa EG, Krause BJ. Pharmacological and molecular mechanisms of miRNA-based therapies for targeting cardiovascular dysfunction. Biochem Pharmacol 2024; 228:116318. [PMID: 38801924 DOI: 10.1016/j.bcp.2024.116318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Advances in understanding gene expression regulation through epigenetic mechanisms have contributed to elucidating the regulatory mechanisms of noncoding RNAs as pharmacological targets in several diseases. MicroRNAs (miRs) are a class of evolutionarily conserved, short, noncoding RNAs regulating in a concerted manner gene expression at the post-transcriptional level by targeting specific sequences of the 3'-untranslated region of mRNA. Conversely, mechanisms of cardiovascular disease (CVD) remain largely elusive due to their life-course origins, multifactorial pathophysiology, and co-morbidities. In this regard, CVD treatment with conventional medications results in therapeutic failure due to progressive resistance to monotherapy, which overlooks the multiple factors involved, and reduced adherence to poly-pharmacology approaches. Consequently, considering its role in regulating complete gene pathways, miR-based drugs have appreciably progressed into preclinical and clinical testing. This review summarizes the current knowledge about the mechanisms of miRs in cardiovascular disease, focusing specifically on describing how clinical chemistry and physics have improved the stability of the miR molecule. In addition, a comprehensive review of the main miRs involved in cardiovascular disease and the clinical trials in which these molecules are used as active pharmacological molecules is provided.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Esteban G Figueroa
- Laboratory of Fetal Neuroprogramming (www.neurofetal-lab.cl), Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile
| | - Bernardo J Krause
- Institute of Health Sciences, Universidad de O'Higgins, Rancagua, Chile.
| |
Collapse
|
3
|
Li J, Sun S, Zhu D, Mei X, Lyu Y, Huang K, Li Y, Liu S, Wang Z, Hu S, Lutz HJ, Popowski KD, Dinh PUC, Butte AJ, Cheng K. Inhalable Stem Cell Exosomes Promote Heart Repair After Myocardial Infarction. Circulation 2024; 150:710-723. [PMID: 39186525 PMCID: PMC11349039 DOI: 10.1161/circulationaha.123.065005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/25/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Exosome therapy shows potential for cardiac repair after injury. However, intrinsic challenges such as short half-life and lack of clear targets hinder the clinical feasibility. Here, we report a noninvasive and repeatable method for exosome delivery through inhalation after myocardial infarction (MI), which we called stem cell-derived exosome nebulization therapy (SCENT). METHODS Stem cell-derived exosomes were characterized for size distribution and surface markers. C57BL/6 mice with MI model received exosome inhalation treatment through a nebulizer for 7 consecutive days. Echocardiographies were performed to monitor cardiac function after SCENT, and histological analysis helped with the investigation of myocardial repair. Single-cell RNA sequencing of the whole heart was performed to explore the mechanism of action by SCENT. Last, the feasibility, efficacy, and general safety of SCENT were demonstrated in a swine model of MI, facilitated by 3-dimensional cardiac magnetic resonance imaging. RESULTS Recruitment of exosomes to the ischemic heart after SCENT was detected by ex vivo IVIS imaging and fluorescence microscopy. In a mouse model of MI, SCENT ameliorated cardiac repair by improving left ventricular function, reducing fibrotic tissue, and promoting cardiomyocyte proliferation. Mechanistic studies using single-cell RNA sequencing of mouse heart after SCENT revealed a downregulation of Cd36 in endothelial cells (ECs). In an EC-Cd36fl/- conditional knockout mouse model, the inhibition of CD36, a fatty acid transporter in ECs, led to a compensatory increase in glucose utilization in the heart and higher ATP generation, which enhanced cardiac contractility. In pigs, cardiac magnetic resonance imaging showed an enhanced ejection fraction (Δ=11.66±5.12%) and fractional shortening (Δ=5.72±2.29%) at day 28 after MI by SCENT treatment compared with controls, along with reduced infarct size and thickened ventricular wall. CONCLUSIONS In both rodent and swine models, our data proved the feasibility, efficacy, and general safety of SCENT treatment against acute MI injury, laying the groundwork for clinical investigation. Moreover, the EC-Cd36fl/- mouse model provides the first in vivo evidence showing that conditional EC-CD36 knockout can ameliorate cardiac injury. Our study introduces a noninvasive treatment option for heart disease and identifies new potential therapeutic targets.
Collapse
Affiliation(s)
- Junlang Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (J.L., Y.L., Y.L., Z.W.)
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
- Xsome Biotech Inc, Raleigh, NC (J.L.)
| | - Shenghuan Sun
- Bakar Computational Health Sciences Institute, University of California, San Francisco (S.S., A.J.B.)
| | - Dashuai Zhu
- Department of Biomedical Engineering (D.Z., S.L., S.H., K.C.), Columbia University, New York, NY
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA (X.M.)
| | - Yongbo Lyu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (J.L., Y.L., Y.L., Z.W.)
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Ke Huang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Yuan Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (J.L., Y.L., Y.L., Z.W.)
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Shuo Liu
- Department of Biomedical Engineering (D.Z., S.L., S.H., K.C.), Columbia University, New York, NY
| | - Zhenzhen Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (J.L., Y.L., Y.L., Z.W.)
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Shiqi Hu
- Department of Biomedical Engineering (D.Z., S.L., S.H., K.C.), Columbia University, New York, NY
| | - Halle J Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh (J.L., Y.L., K.H., Y.L., Z.W., H.J.L., K.D.P., P.-U.C.D.)
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco (S.S., A.J.B.)
| | - Ke Cheng
- Department of Biomedical Engineering (D.Z., S.L., S.H., K.C.), Columbia University, New York, NY
- Herbert Irving Comprehensive Cancer Center (K.C.), Columbia University, New York, NY
| |
Collapse
|
4
|
Liu H, Chen Y, Huang Y, Wei L, Ran J, Li Q, Tian Y, Luo Z, Yang L, Liu H, Yin G, Xie Q. Macrophage-derived mir-100-5p orchestrates synovial proliferation and inflammation in rheumatoid arthritis through mTOR signaling. J Nanobiotechnology 2024; 22:197. [PMID: 38644475 PMCID: PMC11034106 DOI: 10.1186/s12951-024-02444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by synovial inflammation, causing substantial disability and reducing life quality. While macrophages are widely appreciated as a master regulator in the inflammatory response of RA, the precise mechanisms underlying the regulation of proliferation and inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS) remain elusive. Here, we provide extensive evidence to demonstrate that macrophage contributes to RA microenvironment remodeling by extracellular vesicles (sEVs) and downstream miR-100-5p/ mammalian target of rapamycin (mTOR) axis. RESULTS We showed that bone marrow derived macrophage (BMDM) derived-sEVs (BMDM-sEVs) from collagen-induced arthritis (CIA) mice (cBMDM-sEVs) exhibited a notable increase in abundance compared with BMDM-sEVs from normal mice (nBMDM-sEVs). cBMDM-sEVs induced significant RA-FLS proliferation and potent inflammatory responses. Mechanistically, decreased levels of miR-100-5p were detected in cBMDM-sEVs compared with nBMDM-sEVs. miR-100-5p overexpression ameliorated RA-FLS proliferation and inflammation by targeting the mTOR pathway. Partial attenuation of the inflammatory effects induced by cBMDM-sEVs on RA-FLS was achieved through the introduction of an overexpression of miR-100-5p. CONCLUSIONS Our work reveals the critical role of macrophages in exacerbating RA by facilitating the transfer of miR-100-5p-deficient sEVs to RA-FLS, and sheds light on novel disease mechanisms and provides potential therapeutic targets for RA interventions.
Collapse
Affiliation(s)
- Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yupeng Huang
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, 610041, China
| | - Ling Wei
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous region, Chengdu, 610041, China
| | - Jingjing Ran
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianwei Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongling Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Leiyi Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of General Practice, West China Hospital, General Practice Medical Center, Sichuan University, Chengdu, 610041, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Elsakka EGE, Abulsoud AI, El-Mahdy HA, Ismail A, Elballal MS, Mageed SSA, Khidr EG, Mohammed OA, Sarhan OM, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Doghish AA, Doghish AS. miRNAs orchestration of cardiovascular diseases - Particular emphasis on diagnosis, and progression. Pathol Res Pract 2023; 248:154613. [PMID: 37327567 DOI: 10.1016/j.prp.2023.154613] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
6
|
Aravindraja C, Jeepipalli S, Vekariya KM, Botello-Escalante R, Chan EKL, Kesavalu L. Oral Spirochete Treponema denticola Intraoral Infection Reveals Unique miR-133a, miR-486, miR-126-3p, miR-126-5p miRNA Expression Kinetics during Periodontitis. Int J Mol Sci 2023; 24:12105. [PMID: 37569480 PMCID: PMC10418472 DOI: 10.3390/ijms241512105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
miRNAs are major regulators of eukaryotic gene expression and host immunity, and play an important role in the inflammation-mediated pathways in periodontal disease (PD) pathogenesis. Expanding our previous observation with the global miRNA profiling using partial human mouth microbes, and lack of in vivo studies involving oral spirochete Treponema denticola-induced miRNAs, this study was designed to delineate the global miRNA expression kinetics during progression of periodontitis in mice infected with T. denticola by using NanoString nCounter® miRNA panels. All of the T. denticola-infected male and female mice at 8 and 16 weeks demonstrated bacterial colonization (100%) on the gingival surface, and an increase in alveolar bone resorption (p < 0.0001). A total of 70 miRNAs with at least 1.0-fold differential expression/regulation (DE) (26 upregulated and 44 downregulated) were identified. nCounter miRNA expression profiling identified 13 upregulated miRNAs (e.g., miR-133a, miR-378) and 25 downregulated miRNAs (e.g., miR-375, miR-34b-5p) in T. denticola-infected mouse mandibles during 8 weeks of infection, whereas 13 upregulated miRNAs (e.g., miR-486, miR-126-5p) and 19 downregulated miRNAs (miR-2135, miR-142-3p) were observed during 16 weeks of infection. One miRNA (miR-126-5p) showed significant difference between 8 and 16 weeks of infection. Interestingly, miR-126-5p has been presented as a potential biomarker in patients with periodontitis and coronary artery disease. Among the upregulated miRNAs, miR-486, miR-126-3p, miR-126-5p, miR-378a-3p, miR-22-3p, miR-151a-3p, miR-423-5p, and miR-221 were reported in human gingival plaques and saliva samples from periodontitis and with diabetes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed various functional pathways of DE miRNAs, such as bacterial invasion of epithelial cells, Ras signaling, Fc gamma R-mediated phagocytosis, osteoclast differentiation, adherens signaling, and ubiquitin mediated proteolysis. This is the first study of DE miRNAs in mouse mandibles at different time-points of T. denticola infection; the combination of three specific miRNAs, miR-486, miR-126-3p, and miR-126-5p, may serve as an invasive biomarker of T. denticola in PD. These miRNAs may have a significant role in PD pathogenesis, and this research establishes a link between miRNA, periodontitis, and systemic diseases.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.)
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.)
| | - Ruben Botello-Escalante
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.)
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Afonso GJM, Cavaleiro C, Valero J, Mota SI, Ferreiro E. Recent Advances in Extracellular Vesicles in Amyotrophic Lateral Sclerosis and Emergent Perspectives. Cells 2023; 12:1763. [PMID: 37443797 PMCID: PMC10340215 DOI: 10.3390/cells12131763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, 37007 Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
8
|
Zhan Q, Zhao J, Liu L, Wang B, Hui J, Lin Q, Qin Y, Xue B, Xu F. Integrated network pharmacology and molecular docking analyses of the mechanisms underlying the antihypertensive effects of lotusine. Eur J Pharmacol 2023; 945:175622. [PMID: 36863553 DOI: 10.1016/j.ejphar.2023.175622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Hypertension is a modifiable cardiovascular risk factor and cause of death worldwide. Lotusine, an alkaloid extracted from a plant used in traditional Chinese Medicine, has shown anti-hypertensive effects. However, its therapeutic efficacy requires further investigation. We adopted integrated network pharmacology and molecular docking approaches with the aim of investigating lotusine's antihypertensive effects and mechanisms of action in rat models. After identifying the optimal intravenous dosage, we observed the effects of lotusine administration on two-kidney, one-clip (2K1C) rats and spontaneously hypertensive rats (SHRs). Based on network pharmacology and molecular docking analyses, we measured renal sympathetic nerve activity (RSNA) to evaluate lotusine's effect. Finally, an abdominal aortic coarctation (AAC) model was established to evaluate lotusine's long-term effects. The network pharmacology analysis identified 21 intersection targets; of these, 17 were also implicated by the neuroactive live receiver interaction. Further integrated analysis showed high lotusine affinity for the cholinergic receptor nicotinic alpha 2 subunit, adrenoceptor beta 2, and adrenoceptor alpha 1B. Blood pressure of the 2K1C rats and SHRs decreased after treatment with 2.0 and 4.0 mg/kg of lotusine (P < 0.001 versus saline control). We also observed RSNA decreases consistent with the network pharmacology and molecular docking analysis results. Results from the AAC rat model indicated that myocardial hypertrophy was decreased with lotusine administration, demonstrated by echocardiography and hematoxylin and eosin and Masson staining. This study provides insights into the antihypertensive effects and underlying mechanisms of lotusine; lotusine may exert long-term protective effects against myocardial hypertrophy caused by elevated blood pressure.
Collapse
Affiliation(s)
- Qiuxiao Zhan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Junnan Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Lu Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Biqing Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Jiaqi Hui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Quan Lin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yuxuan Qin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Bing Xue
- Core Facility Center, Capital Medical University, Beijing, 100069, China.
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
9
|
The miR-100-5p Targets SMARCA5 to Regulate the Apoptosis and Intracellular Survival of BCG in Infected THP-1 Cells. Cells 2023; 12:cells12030476. [PMID: 36766816 PMCID: PMC9914254 DOI: 10.3390/cells12030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) is the causative agent of tuberculosis (TB) that leads to millions of deaths each year. Extensive evidence has explored the involvement of microRNAs (miRNAs) in M. tb infection. Limitedly, the concrete function of microRNA-100-5p (miR-100-5p) in M. tb remains unexplored and largely elusive. In this study, using Bacillus Calmette-Guérin (BCG) as the model strain, we validated that miR-100-5p was significantly decreased in BCG-infected THP-1 cells. miR-100-5p inhibition effectively facilitated the apoptosis of infected THP-1 cells and reduced BCG survival by regulating the phosphatidylinositol 3-kinase/AKT pathway. Further, SMARCA5 was the target of miR-100-5p and reduced after miR-100-5p overexpression. Since BCG infection down-regulated miR-100-5p in THP-1 cells, the SMARCA5 expression was up-regulated, which in turn increased apoptosis through caspase-3 and Bcl-2 and, thereby, reducing BCG intracellular survival. Collectively, the study uncovered a new molecular mechanism of macrophage to suppress mycobacterial infection through miR-100-5p and SMARCA5 pathway.
Collapse
|
10
|
Shi S, Jiang P. Therapeutic potentials of modulating autophagy in pathological cardiac hypertrophy. Biomed Pharmacother 2022; 156:113967. [DOI: 10.1016/j.biopha.2022.113967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
11
|
Smolka C, Schlösser D, Koentges C, Tarkhnishvili A, Gorka O, Pfeifer D, Bemtgen X, Asmussen A, Groß O, Diehl P, Moser M, Bode C, Bugger H, Grundmann S, Pankratz F. Cardiomyocyte-specific miR-100 overexpression preserves heart function under pressure overload in mice and diminishes fatty acid uptake as well as ROS production by direct suppression of Nox4 and CD36. FASEB J 2021; 35:e21956. [PMID: 34605573 DOI: 10.1096/fj.202100829rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
MicroRNAs are key regulators of the cardiac response to injury. MiR-100 has recently been suggested to be involved in different forms of heart failure, but functional studies are lacking. In the present study, we examined the impact of transgenic miR-100 overexpression on cardiac structure and function during physiological aging and pathological pressure-overload-induced heart failure in mice after transverse aortic constriction surgery. MiR-100 was moderately upregulated after induction of pressure overload in mice. While in our transgenic model the cardiomyocyte-specific overexpression of miR-100 did not result in an obvious cardiac phenotype in unchallenged mice, the transgenic mouse strain exhibited less left ventricular dilatation and a higher ejection fraction than wildtype animals, demonstrating an attenuation of maladaptive cardiac remodeling by miR-100. Cardiac transcriptome analysis identified a repression of several regulatory genes related to cardiac metabolism, lipid peroxidation, and production of reactive oxygen species (ROS) by miR-100 overexpression, possibly mediating the observed functional effects. While the modulation of ROS-production seemed to be indirectly affected by miR-100 via Alox5-and Nox4-downregulation, we demonstrated that miR-100 induced a direct repression of the scavenger protein CD36 in murine hearts resulting in a decreased uptake of long-chain fatty acids and an alteration of mitochondrial respiratory function with an enhanced glycolytic state. In summary, we identified miR-100 as a modulator of cardiac metabolism and ROS production without an apparent cardiac phenotype at baseline but a protective effect under conditions of pressure-overload-induced cardiac stress, providing new insight into the mechanisms of heart failure.
Collapse
Affiliation(s)
- Christian Smolka
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Delia Schlösser
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Koentges
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aleksandre Tarkhnishvili
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Xavier Bemtgen
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Asmussen
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Moser
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Sebastian Grundmann
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Pankratz
- Department of Cardiology and Angiology I, Heart Center Freiburg University, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|