1
|
Liu X, Hyun Kim J, Li X, Liu R. Application of mesenchymal stem cells exosomes as nanovesicles delivery system in the treatment of breast cancer. Int J Pharm 2024; 666:124732. [PMID: 39304093 DOI: 10.1016/j.ijpharm.2024.124732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
As people's living standards continue to improve and human life span expectancy increases, the incidence and mortality rates of breast cancer are continuously rising. Early detection of breast cancer and targeted therapy for different breast cancer subtypes can significantly reduce the mortality rate and alleviate the suffering of patients. Exosomes are extracellular vesicles secreted by various cells in the body. They participate in physiological and pathological responses by releasing active substances and play an important role in regulating intercellular communication. In recent years, research on exosomes has gradually expanded, and their special membrane structure and targetable characteristics are being increasingly applied in various clinical studies. Mesenchymal stem cells (MSCs)-derived exosomes play an important role in regulating the progression of breast cancer. In this review, we summarize the current treatment methods for breast cancer, the connection between MSCs, exosomes, and breast cancer, as well as the application of exosomes derived from MSCs from different sources in cancer treatment. We highlight how the rational design of modified MSCs-derived exosomes (MSCs-Exos) delivery systems can overcome the uncertainties of stem cell therapy and overcome the clinical translation challenges of nanomaterials. This work aims to promote future research on the application of MSCs-Exos in breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofan Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea; Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - June Hyun Kim
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
| | - Rui Liu
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| |
Collapse
|
2
|
Hu S, Zhang C, Ma Q, Li M, Yu X, Zhang H, Lv S, Shi Y, He X. Unveiling the multifaceted roles of microRNAs in extracellular vesicles derived from mesenchymal stem cells: implications in tumor progression and therapeutic interventions. Front Pharmacol 2024; 15:1438177. [PMID: 39161894 PMCID: PMC11330784 DOI: 10.3389/fphar.2024.1438177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have the capacity to migrate to tumor sites in vivo and transmit paracrine signals by secreting extracellular vesicles (EVs) to regulate tumor biological behaviors. MSC-derived EVs (MSC-EVs) have similar tumor tropism and pro- or anti-tumorigenesis as their parental cells and exhibit superior properties in drug delivery. MSC-EVs can transfer microRNAs (miRNAs) to tumor cells, thereby manipulating multiple key cancer-related pathways, and further playing a vital role in the tumor growth, metastasis, drug resistance and other aspects. In addition, tumor cells can also influence the behaviors of MSCs in the tumor microenvironment (TME), orchestrating this regulatory process via miRNAs in EVs (EV-miRNAs). Clarifying the specific mechanism by which MSC-derived EV-miRNAs regulate tumor progression, as well as investigating the roles of EV-miRNAs in the TME will contribute to their applications in tumor pharmacotherapy. This article mainly reviews the multifaceted roles and mechanism of miRNAs in MSC-EVs affecting tumor progression, the crosstalk between MSCs and tumor cells caused by EV-miRNAs in the TME. Eventually, the clinical applications of miRNAs in MSC-EVs in tumor therapeutics are illustrated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Wang L, Wang G, Song J, Yao D, Wang Y, Chen T. A comprehensive analysis of the prognostic characteristics of microRNAs in breast cancer. Front Genet 2024; 15:1293824. [PMID: 38572416 PMCID: PMC10987719 DOI: 10.3389/fgene.2024.1293824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Both overall survival (OS) and disease-specific survival (DSS) are significant when determining a patient's prognosis for breast cancer (BC). The effect of DSS-related microRNAs on BC susrvival, however, is not well understood. Here, we spotted differentially expressed miRNAs (DEMs) in the TCGA database of BC DSS, identified eight DSS-related miRNAs, and constructed a risk model. AUC values at 1, 3, and 5 years were 0.852, 0.861, and 0.868, respectively, indicating a risk model's excellent prognostic prediction ability. Then, we validated miRNA roles in BC OS and finally defined miR-551b as an independently prognostic miRNA in BC. According to function analysis, miR-551b is strongly linked with the emergence and spread of cancer, including protein ubiquitination, intracellular protein transport, metabolic pathways, and cancer pathways. Moreover, we confirmed the low expression of miR-551b in BC tissue and cells. After miR-551b inhibition or overexpression, cell function was either dramatically increased or diminished, respectively, indicating that miR-551b could regulate BC proliferation, invasion, and migration. In conclusion, we thoroughly clarified BC-related miRNAs on DSS and OS and verified miR-551b as a crucial regulator in the development and prognosis of cancer. These results can offer fresh ideas for BC therapy.
Collapse
Affiliation(s)
- Lingying Wang
- Department of Thoracic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Gui Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiahong Song
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Di Yao
- Department of Thoracic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yong Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tianyou Chen
- Department of Thoracic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Li J, He D, Bi Y, Liu S. The Emerging Roles of Exosomal miRNAs in Breast Cancer Progression and Potential Clinical Applications. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:825-840. [PMID: 38020052 PMCID: PMC10658810 DOI: 10.2147/bctt.s432750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Breast cancer remains the leading malignancy in terms of morbidity and mortality today. The tumor microenvironment of breast cancer includes multiple cell types, secreted proteins, and signaling components such as exosomes. Among these, exosomes have a lipid bilayer structure. Exosomes can reflect the biological traits of the parent cell and carry a variety of biologically active components, including proteins, lipids, small molecules, and non-coding RNAs, which include miRNA, lncRNA, and circRNA. MiRNAs are a group of non-coding RNAs of approximately 20-23 nucleotides in length encoded by the genome, triggering silencing and functional repression of target genes. MiRNAs have been shown to play a significant role in the development of cancer owing to their role in the prognosis, pathogenesis, diagnosis, and treatment of cancer. MiRNAs in exosomes can serve as effective mediators of information transfer from parental cells to recipient cells and trigger changes in biological traits such as proliferation, invasion, migration, and drug resistance. These changes can profoundly alter the progression of breast cancer. Therefore, here, we systematically summarize the association of exosomal miRNAs on breast cancer progression, diagnosis, and treatment in the hope of providing novel strategies and directions for subsequent breast cancer treatment.
Collapse
Affiliation(s)
- Jie Li
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518067, People’s Republic of China
| | - Dejiao He
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Yajun Bi
- Department of Pediatrics, Dalian Municipal Women and Children’s Medical Center (Group), Dalian Medical University, Dalian, Liaoning Province, 116011, People’s Republic of China
| | - Shengxuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People’s Republic of China
| |
Collapse
|
5
|
Aseervatham J. Dynamic Role of Exosome microRNAs in Cancer Cell Signaling and Their Emerging Role as Noninvasive Biomarkers. BIOLOGY 2023; 12:biology12050710. [PMID: 37237523 DOI: 10.3390/biology12050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Exosomes are extracellular vesicles that originate from endosomes and are released by all cells irrespective of their origin or type. They play an important role in cell communication and can act in an autocrine, endocrine, or paracrine fashion. They are 40-150 nm in diameter and have a similar composition to the cell of origin. An exosome released by a particular cell is unique since it carries information about the state of the cell in pathological conditions such as cancer. miRNAs carried by cancer-derived exosomes play a multifaceted role by taking part in cell proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, apoptosis, and immune evasion. Depending on the type of miRNA that it carries as its cargo, it can render cells chemo- or radiosensitive or resistant and can also act as a tumor suppressor. Since the composition of exosomes is affected by the cellular state, stress, and changes in the environment, they can be used as diagnostic or prognostic biomarkers. Their unique ability to cross biological barriers makes them an excellent choice as vehicles for drug delivery. Because of their easy availability and stability, they can be used to replace cancer biopsies, which are invasive and expensive. Exosomes can also be used to follow the progression of diseases and monitor treatment strategies. A better understanding of the roles and functions of exosomal miRNA can be used to develop noninvasive, innovative, and novel treatments for cancer.
Collapse
Affiliation(s)
- Jaya Aseervatham
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Tang H, Xiong Q, Yin M, Feng H, Yao F, Xiao X, Hu F, Liao Y. LncRNA PVT1 delays skin photoaging by sequestering miR-551b-3p to release AQP3 expression via ceRNA mechanism. Apoptosis 2023; 28:912-924. [PMID: 37000315 DOI: 10.1007/s10495-023-01834-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
Understanding human skin photoaging requires in-depth knowledge of the molecular and functional mechanisms. Human dermal fibroblasts (HDFs) gradually lose their ability to produce collagen and renew intercellular matrix with aging. Therefore, our study aims to reveal the mechanistic actions of a novel ceRNA network in the skin photoaging by regulating HDF activities. Photoaging-related genes were obtained in silico, followed by GO and KEGG enrichment analyses. Differentially expressed lncRNAs and miRNAs were screened from the GEO database to construct the ceRNA co-expression network. In skin photoaging samples, PVT1 and AQP3 were poorly expressed, while miR-551b-3p was highly expressed. The relationships among the lncRNA, miRNA and mRNA were explored through the ENCORI database and dual luciferase reporter assay. Mechanistically, PVT1 could sequester miR-551b-3p to upregulate the expression of AQP3, which further inactivated the ERK/p38 MAPK signaling pathway. HDFs were selected to construct an in vitro cell skin photoaging model, where the senescence, cell cycle distribution and viability of young and senescent HDFs were detected by SA-β-gal staining, flow cytometry and CCK-8 assay. In vitro cell experiments confirmed that overexpression of PVT1 or AQP3 enhanced viability of young and senescent HDFs and inhibited HDF senescence, while miR-551b-3p upregulation counteracted the effect of PVT1. In conclusion, PVT1-driven suppression of miR-551b-3p induces AQP3 expression to inactivate the ERK/p38 MAPK signaling pathway, thereby inhibiting HDF senescence and ultimately delaying the skin photoaging.
Collapse
Affiliation(s)
- Hua Tang
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Qi Xiong
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Ming Yin
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Fang Yao
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Feng Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Yangying Liao
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China.
| |
Collapse
|
7
|
Hu S, Liu Y, Guan S, Qiu Z, Liu D. Natural products exert anti-tumor effects by regulating exosomal ncRNA. Front Oncol 2022; 12:1006114. [PMID: 36203417 PMCID: PMC9530706 DOI: 10.3389/fonc.2022.1006114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Currently, more than 60% of the approved anti-cancer drugs come from or are related to natural products. Natural products and exosomal non-coding RNAs (ncRNAs) exert anti-cancer effects through various regulatory mechanisms, which are of great research significance. Exosomes are a form of intercellular communication and contain ncRNAs that can act as intercellular signaling molecules involved in the metabolism of tumor cells. This review exemplifies some examples of natural products whose active ingredients can play a role in cancer prevention and treatment by regulating exosomal ncRNAs, with the aim of illustrating the mechanism of action of exosomal ncRNAs in cancer prevention and treatment. Meanwhile, the application of exosomes as natural drug delivery systems and predictive disease biomarkers in cancer prevention and treatment is introduced, providing research ideas for the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
| | | | | | | | - Da Liu
- *Correspondence: Zhidong Qiu, ; Da Liu,
| |
Collapse
|