1
|
Zahra W, Birla H, Singh SS, Rathore AS, Dilnashin H, Singh R, Keshri PK, Gautam P, Singh SP. Neuroprotection by Mucuna pruriens in Neurodegenerative Diseases. Neurochem Res 2022; 47:1816-1829. [PMID: 35380400 DOI: 10.1007/s11064-022-03591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
The medicinal plant Mucuna pruriens (Fabaceae) is widely known for its anti-oxidative and anti-inflammatory properties. It is a well-established drug in Ayurveda and has been widely used for the treatment of neurological disorders and male infertility for ages. The seeds of the plant have potent medicinal value and its extract has been tested in different models of neurodegenerative diseases, especially Parkinson's disease (PD). Apart from PD, Mucuna pruriens is now being studied in models of other nervous systems disorders such as Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and stroke because of its neuroprotective importance. This review briefly discusses the pathogenesis of PD, AD, ALS and stroke. It aims to summarize the medicinal importance of Mucuna pruriens in treatment of these diseases, and put forward the potential targets where Mucuna pruriens can act for therapeutic interventions. In this review, the effect of Mucuna pruriens on ameliorating the neurodegeneration evident in PD, AD, ALS and stroke is briefly discussed. The potential targets for neuroprotection by the plant are delineated, which can be studied further to validate the hypothesis regarding the use of Mucuna pruriens for the treatment of these diseases.
Collapse
Affiliation(s)
- Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Gautam
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Rajagopal M, Paul AK, Lee MT, Joykin AR, Por CS, Mahboob T, Salibay CC, Torres MS, Guiang MMM, Rahmatullah M, Jahan R, Jannat K, Wilairatana P, de Lourdes Pereira M, Lim CL, Nissapatorn V. Phytochemicals and Nano-Phytopharmaceuticals Use in Skin, Urogenital and Locomotor Disorders: Are We There? PLANTS 2022; 11:plants11091265. [PMID: 35567266 PMCID: PMC9099949 DOI: 10.3390/plants11091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/02/2022]
Abstract
Nanomedicines emerged from nanotechnology and have been introduced to bring advancements in treating multiple diseases. Nano-phytomedicines are synthesized from active phytoconstituents or plant extracts. Advancements in nanotechnology also help in the diagnosis, monitoring, control, and prevention of various diseases. The field of nanomedicine and the improvements of nanoparticles has been of keen interest in multiple industries, including pharmaceutics, diagnostics, electronics, communications, and cosmetics. In herbal medicines, these nanoparticles have several attractive properties that have brought them to the forefront in searching for novel drug delivery systems by enhancing efficacy, bioavailability, and target specificity. The current review investigated various therapeutic applications of different nano-phytopharmaceuticals in locomotor, dermal, reproductive, and urinary tract disorders to enhance bioavailability and efficacy of phytochemicals and herbal extracts in preclinical and in vitro studies. There is a lack of clinical and extensive preclinical studies. The research in this field is expanding but strong evidence on the efficacy of these nano-phytopharmaceuticals for human use is still limited. The long-term efficacy and safety of nano-phytopharmaceuticals must be ensured with priority before these materials emerge as common human therapeutics. Overall, this review provides up-to-date information on related contemporary research on nano-phytopharmaceuticals and nano-extracts in the fields of dermatological, urogenital, and locomotor disorders.
Collapse
Affiliation(s)
- Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Ming-Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Anabelle Rose Joykin
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Choo-Shiuan Por
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Tooba Mahboob
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Cristina C. Salibay
- Biologica Sciences Department, College of Science and Computer Studies, De La Salle University, Dasmarinas 4114, Philippines; (C.C.S.); (M.S.T.)
| | - Mario S. Torres
- Biologica Sciences Department, College of Science and Computer Studies, De La Salle University, Dasmarinas 4114, Philippines; (C.C.S.); (M.S.T.)
| | - Maria Melanie M. Guiang
- Department of Biology, College of Arts and Sciences, Central Mindanao University, Bukidnon 8710, Philippines;
- Center of Biodiversity Research and Extension in Mindanao (CEBREM), Central Mindanao University, Bukidnon 8710, Philippines
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (R.J.); (K.J.)
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (R.J.); (K.J.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (R.J.); (K.J.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (V.N.)
| | - Maria de Lourdes Pereira
- CICECO—Aveiro Institute of Materials, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Correspondence: (P.W.); (V.N.)
| |
Collapse
|
3
|
Compounds from Mucuna pruriens Seeds and their Neuroprotective Effects. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
5
|
Concessao P, Bairy LK, Raghavendra AP. Protective effect of Mucuna pruriens against arsenic-induced liver and kidney dysfunction and neurobehavioral alterations in rats. Vet World 2020; 13:1555-1566. [PMID: 33061227 PMCID: PMC7522945 DOI: 10.14202/vetworld.2020.1555-1566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Intoxication of arsenic in rats is known to result in neurological effects as well as liver and kidney dysfunction. Mucuna pruriens has been identified for its medicinal properties. The aim of the study was to investigate the protective effect of aqueous seed extract of M. pruriens on sodium arsenite-induced memory impairment, liver, and kidney functions in rats. MATERIALS AND METHODS The experiment was divided into short-term treatment (45 days) and long-term treatment (90 days), with each group divided into nine sub-groups consisting of six animals each. Sub-groups 1 and 2 served as normal, and N-acetylcysteine (NAC) controls, respectively. Sub-groups 3-9 received sodium arsenite in drinking water (50 mg/L). In addition, sub-group 4 received NAC (210 mg/kg b.wt) orally once daily, sub-groups 5-7 received aqueous seed extract of M. pruriens (350 mg/kg b.wt, 530 mg/kg b.wt, and 700 mg/kg b.wt) orally once daily and sub-groups 8 and 9 received a combination of NAC and aqueous seed extract of M. pruriens (350 mg/kg b.wt and 530 mg/kg b.wt) orally once daily. Following the treatment, the blood was drawn retro-orbitally to assess the liver (serum alanine transaminase [ALT], serum aspartate transaminase, and serum alkaline phosphatase) and kidney (serum urea and serum creatinine) functions. Learning and memory were assessed by passive avoidance test. Animals were sacrificed by an overdose of ketamine, and their Nissl stained hippocampal sections were analyzed for alterations in neural cell numbers in CA1 and CA3 regions. RESULTS In the short-term treatment, groups administered with M. pruriens 530 mg/kg b.wt alone and combination of NAC + M. pruriens 350 mg/kg b.wt exhibited a significant improvement in memory retention, less severe neurodegeneration, and decrease in serum ALT levels. In long-term treatment, groups administered with M. pruriens 700 mg/kg b.wt alone and combination of NAC+M. pruriens 350 mg/kg b.wt, respectively, showed better memory retention, decreased neural deficits, and reduced levels of kidney and liver enzymes. CONCLUSION The seed extract of M. pruriens showed significant enhancement in memory and learning. The number of surviving neurons in the CA1 and CA3 regions also increased on treatment with M. pruriens. Serum ALT, serum urea, and serum creatinine levels showed significant improvement on long-term treatment with M. pruriens.
Collapse
Affiliation(s)
- Preethi Concessao
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Laxminarayana Kurady Bairy
- Department of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Archana Parampalli Raghavendra
- Department of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Pathania R, Chawla P, Khan H, Kaushik R, Khan MA. An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural food legume. 3 Biotech 2020; 10:261. [PMID: 32477848 DOI: 10.1007/s13205-020-02253-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
Mucuna pruriens belongs to the Fabaceae family and is ordinarily known as velvet bean, in English cowitch and Hindi Kawaanch. The restorative quality of this bean makes it an excellent component in pharmaceutical and therapeutic applications. Apart from high protein and starch content, these beans contain (l-Dopa) 3, 4-dihydroxy-l-phenylalanine, which exhibits several medicinal properties. However, it is poisonous when ingested by ruminants. The obstruction to the advancement of Mucuna as nutrition or food is the nearness of antinutrients, which are high as opposed to other uncommon vegetables. Also, this legume is considered as a future restorative herb because of its anticholesterolemic, anti-Parkinson, antioxidant, antidiabetic, sexual enhancing, anti-inflammatory, antimicrobial, and antivenom activities. It also exhibits anticancer activities, but very few studies have been done. The seeds of Mucuna pruriens also contain a vast range of phytochemical constituents such as alkaloids, glycosides, saponins, reducing sugars, and tannins, which provide an avenue to explore it for wider applications. This review sheds light on the possible mechanism of action of Mucuna pruriens on some diseases (hypoglycemia, Parkinson's disease, microbial diseases and tumor). and also fills the gap in the studies of Mucuna pruriens. and Further more in vitro and in vivo studies should be done to explore the potential of these seeds against many diseases, its application as a food source, its antinutrient, and harmful properties as well as its nutraceutical perspective.
Collapse
|
7
|
Baroli B, Loi E, Solari P, Kasture A, Moi L, Muroni P, Kasture S, Setzu MD, Liscia A, Zavattari P. Evaluation of oxidative stress mechanisms and the effects of phytotherapic extracts on Parkinson's disease Drosophila PINK1B9 model. FASEB J 2019; 33:11028-11034. [PMID: 31291788 DOI: 10.1096/fj.201901010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress is commonly observed in both idiopathic and genetic cases of Parkinson's disease (PD). It plays an important role in the degeneration of dopaminergic neurons, and it has been associated with altered telomere length (TL). There is currently no cure for PD, and extracts of antioxidative plant, such as Mucuna pruriens and Withania somnifera, are commonly used in Ayurveda to treat patients with PD. In this study, we evaluated 2 enzymatic markers of oxidative stress, glutathione (GSH) system and superoxide dismutase (SOD), and TL in a Drosophila melanogaster model for PD [phosphatase and tensin homolog-induced putative kinase 1 (PINK1)B9]. This evaluation was also performed after treatment with the phytoextracts. PINK1B9 mutants showed a decrease in GSH amount and SOD activity and unexpected longer telomeres compared with wild-type flies. M. pruriens treatment seemed to have a beneficial effect on the oxidative stress conditions. On the other hand, W. somnifera treatment did not show any improvements in the studied oxidative stress mechanisms and even seemed to favor the selection of flies with longer telomeres. In summary, our study suggests the importance of testing antioxidant phytoextracts in a PINK1B9 model to identify beneficial effects for PD.-Baroli, B., Loi, E., Solari, P., Kasture, A., Moi, L., Muroni, P., Kasture, S., Setzu, M. D., Liscia, A., Zavattari, P. Evaluation of oxidative stress mechanisms and the effects of phytotherapic extracts on Parkinson's disease Drosophila PINK1B9 model.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Eleonora Loi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ameya Kasture
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Loredana Moi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Patrizia Zavattari
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Solari P, Maccioni R, Marotta R, Catelani T, Debellis D, Baroli B, Peddio S, Muroni P, Kasture S, Solla P, Stoffolano JG, Liscia A. The imbalance of serotonergic circuitry impairing the crop supercontractile muscle activity and the mitochondrial morphology of PD PINK1 B9Drosophila melanogaster are rescued by Mucuna pruriens. JOURNAL OF INSECT PHYSIOLOGY 2018; 111:32-40. [PMID: 30393142 DOI: 10.1016/j.jinsphys.2018.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Despite its great potentiality, little attention has been paid to modelling gastrointestinal symptoms of Parkinson's disease (PD) in Drosophila melanogaster (Dm). Our previous studies on standardized Mucuna pruriens extract (Mpe) have shown usefulness in the Drosophila model of PD. In this communication, we provide new information on the effect of Mpe on basal and serotonin treated contractions in the crop (i.e., an important and essential part of the gut) in Drosophila PD mutant for PTEN-induced putative kinase 1 (PINK1B9) gene. The effect of Mpe on PINK1B9 supplied with standard diet to larvae and/or adults, were assayed on 10-15 days old flies. Conversely from what we observed in the wild type flies, recordings demonstrated that exogenous applications of serotonin on crop muscles of untreated PINK1B9 affect neither the frequency nor the amplitude of the crop contraction, while the same muscle parameters are enhanced following brain injections of serotonin, thus suggesting that PINK1B9 mutants may likely have an impairment in the serotonergic pathways. Also, the mitochondrial morphology in the crop muscles is strongly compromised, as demonstrated by the transmission electron microscopy analysis. The Mpe treatment rescued the crop muscle parameters and also the mitochondrial morphology when supplied to both larvae and adults. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the gastrointestinal symptoms in PD and also confirms the useful employment of M. pruriens for PD treatment.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Riccardo Maccioni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Roberto Marotta
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Tiziano Catelani
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Doriana Debellis
- Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Biancamaria Baroli
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Stefania Peddio
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Patrizia Muroni
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | | | - Paolo Solla
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Italy
| | - John G Stoffolano
- Stockbridge School of Agriculture, College of Natural Sciences, University of Massachusetts, Amherst, MA, United States
| | - Anna Liscia
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy.
| |
Collapse
|
9
|
Levodopa-Reduced Mucuna pruriens Seed Extract Shows Neuroprotective Effects against Parkinson's Disease in Murine Microglia and Human Neuroblastoma Cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients 2018; 10:nu10091139. [PMID: 30131460 PMCID: PMC6164394 DOI: 10.3390/nu10091139] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Mucuna pruriens (Mucuna) has been prescribed in Ayurveda for various brain ailments including 'kampavata' (tremors) or Parkinson's disease (PD). While Mucuna is a well-known natural source of levodopa (L-dopa), published studies suggest that other bioactive compounds may also be responsible for its anti-PD effects. To investigate this hypothesis, an L-dopa reduced (<0.1%) M. pruriens seeds extract (MPE) was prepared and evaluated for its anti-PD effects in cellular (murine BV-2 microglia and human SH-SY5Y neuroblastoma cells), Caenorhabditis elegans, and Drosophila melanogaster models. In BV-2 cells, MPE (12.5⁻50 μg/mL) reduced hydrogen peroxide-induced cytotoxicity (15.7-18.6%), decreased reactive oxygen species production (29.1-61.6%), and lowered lipopolysaccharide (LPS)-induced nitric oxide species release by 8.9⁻60%. MPE (12.5-50 μg/mL) mitigated SH-SY5Y cell apoptosis by 6.9-40.0% in a non-contact co-culture assay with cell-free supernatants from LPS-treated BV-2 cells. MPE (12.5-50 μg/mL) reduced 6-hydroxydopamine (6-OHDA)-induced cell death of SH-SY5Y cells by 11.85⁻38.5%. Furthermore, MPE (12.5-50 μg/mL) increased median (25%) and maximum survival (47.8%) of C. elegans exposed to the dopaminergic neurotoxin, methyl-4-phenylpyridinium. MPE (40 μg/mL) ameliorated dopaminergic neurotoxin (6-OHDA and rotenone) induced precipitation of innate negative geotaxis behavior of D. melanogaster by 35.3 and 32.8%, respectively. Therefore, MPE contains bioactive compounds, beyond L-dopa, which may impart neuroprotective effects against PD.
Collapse
|
10
|
Aware C, Patil R, Gaikwad S, Yadav S, Bapat V, Jadhav J. Evaluation of l -dopa, proximate composition with in vitro anti-inflammatory and antioxidant activity of Mucuna macrocarpa beans: A future drug for Parkinson treatment. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
11
|
Kean JD, Downey LA, Stough C. Systematic Overview of Bacopa monnieri (L.) Wettst. Dominant Poly-Herbal Formulas in Children and Adolescents. MEDICINES (BASEL, SWITZERLAND) 2017; 4:medicines4040086. [PMID: 29165401 PMCID: PMC5750610 DOI: 10.3390/medicines4040086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 01/07/2023]
Abstract
Background: The Ayurvedic medicinal system employs a holistic approach to health, utilising the synergistic properties of organic resources. Research into the Ayurvedic herb Bacopa monnieri (L.) Wettst. (B.monnieri) has reported improvements in cognitive outcomes in child and adult populations. The aim of current review is to systematically assess and critically summarize clinical trials investigating B.monnieri-dominant poly-herbal formulas and their effects on the cognition, memory, learning, and behaviour in children and adolescents. Methods: Key word searches were performed using PubMed, Scopus, Cochrane Library, DHARA, and CINAHL for publications meeting inclusion criteria up to November 2017. There were no restrictions in study design. Effect sizes were calculated for all significant findings to allow for direct comparisons, and each study was evaluated on design quality. Cognitive and behavioural outcomes were grouped into validated constructs for cross-study comparison. Results: Nine trials met inclusion criteria. Five studies reported sufficient data for effect size analysis with most improvements reported in behavioural outcomes. True cognitive abilities and behavioural constructs were reviewed in six studies, with visual perception, impulsivity, and attention demonstrating the greatest improvements. The veracity of the evidence for the formulations reviewed is weakened by inconsistent statistical design and under-reporting of safety and tolerability data (44%). Conclusions: The current review extends research supporting B.monnieri as a cognitive enhancer and provides modest evidence for the use of B.monnieri in poly-herbal preparations for improving cognitive and behavioural outcomes in child and adolescent populations. Greater emphasis on statistical vigour and the reporting of tolerability data are essential for future trials to adequately document poly-herbal treatment efficacy.
Collapse
Affiliation(s)
- James D Kean
- Centre for Human Psychopharmacology, Swinburne University, Melbourne 3122, Australia.
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne 3122, Australia.
- Institute for Breathing and Sleep, Austin Hospital, Melbourne 3084, Australia.
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University, Melbourne 3122, Australia.
| |
Collapse
|
12
|
Cilia R, Laguna J, Cassani E, Cereda E, Pozzi NG, Isaias IU, Contin M, Barichella M, Pezzoli G. Mucuna pruriens in Parkinson disease: A double-blind, randomized, controlled, crossover study. Neurology 2017; 89:432-438. [PMID: 28679598 PMCID: PMC5539737 DOI: 10.1212/wnl.0000000000004175] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/05/2017] [Indexed: 11/15/2022] Open
Abstract
Objective: To investigate whether Mucuna pruriens (MP), a levodopa-containing leguminous plant growing in all tropical areas worldwide, may be used as alternative source of levodopa for indigent individuals with Parkinson disease (PD) who cannot afford long-term therapy with marketed levodopa preparations. Methods: We investigated efficacy and safety of single-dose intake of MP powder from roasted seeds obtained without any pharmacologic processing. Eighteen patients with advanced PD received the following treatments, whose sequence was randomized: (1) dispersible levodopa at 3.5 mg/kg combined with the dopa-decarboxylase inhibitor benserazide (LD+DDCI; the reference treatment); (2) high-dose MP (MP-Hd; 17.5 mg/kg); (3) low-dose MP (MP-Ld; 12.5 mg/kg); (4) pharmaceutical preparation of LD without DDCI (LD−DDCI; 17.5 mg/kg); (5) MP plus benserazide (MP+DDCI; 3.5 mg/kg); (6) placebo. Efficacy outcomes were the change in motor response at 90 and 180 minutes and the duration of on state. Safety measures included any adverse event (AE), changes in blood pressure and heart rate, and the severity of dyskinesias. Results: When compared to LD+DDCI, MP-Ld showed similar motor response with fewer dyskinesias and AEs, while MP-Hd induced greater motor improvement at 90 and 180 minutes, longer ON duration, and fewer dyskinesias. MP-Hd induced less AEs than LD+DDCI and LD−DDCI. No differences in cardiovascular response were recorded. Conclusion: Single-dose MP intake met all noninferiority efficacy and safety outcome measures in comparison to dispersible levodopa/benserazide. Clinical effects of high-dose MP were similar to levodopa alone at the same dose, with a more favorable tolerability profile. ClinicalTrials.gov identifier: NCT02680977.
Collapse
Affiliation(s)
- Roberto Cilia
- From the Parkinson Institute (R.C., E. Cassani, M.B., G.P.), ASST Gaetano Pini-CTO, Milan, Italy; Neurology Clinic (J.L.), Clinica Niño Jesus, Santa Cruz, Bolivia; Nutrition and Dietetics Service (E. Cereda), Fondazione IRCCS Policlinico San Matteo, Pavia; Department of Pathophysiology and Transplantation (N.G.P., I.U.I.), LAMB Pierfranco & Luisa Mariani, University of Milan, Italy; Department of Neurology (N.G.P., I.U.I.), University Hospital Würzburg and Julius-Maximilians-University, Würzburg, Germany; IRCCS-Institute of Neurological Sciences of Bologna (M.C.); and Department of Biomedical and Neuromotor Sciences (M.C.), University of Bologna, Italy.
| | - Janeth Laguna
- From the Parkinson Institute (R.C., E. Cassani, M.B., G.P.), ASST Gaetano Pini-CTO, Milan, Italy; Neurology Clinic (J.L.), Clinica Niño Jesus, Santa Cruz, Bolivia; Nutrition and Dietetics Service (E. Cereda), Fondazione IRCCS Policlinico San Matteo, Pavia; Department of Pathophysiology and Transplantation (N.G.P., I.U.I.), LAMB Pierfranco & Luisa Mariani, University of Milan, Italy; Department of Neurology (N.G.P., I.U.I.), University Hospital Würzburg and Julius-Maximilians-University, Würzburg, Germany; IRCCS-Institute of Neurological Sciences of Bologna (M.C.); and Department of Biomedical and Neuromotor Sciences (M.C.), University of Bologna, Italy
| | - Erica Cassani
- From the Parkinson Institute (R.C., E. Cassani, M.B., G.P.), ASST Gaetano Pini-CTO, Milan, Italy; Neurology Clinic (J.L.), Clinica Niño Jesus, Santa Cruz, Bolivia; Nutrition and Dietetics Service (E. Cereda), Fondazione IRCCS Policlinico San Matteo, Pavia; Department of Pathophysiology and Transplantation (N.G.P., I.U.I.), LAMB Pierfranco & Luisa Mariani, University of Milan, Italy; Department of Neurology (N.G.P., I.U.I.), University Hospital Würzburg and Julius-Maximilians-University, Würzburg, Germany; IRCCS-Institute of Neurological Sciences of Bologna (M.C.); and Department of Biomedical and Neuromotor Sciences (M.C.), University of Bologna, Italy
| | - Emanuele Cereda
- From the Parkinson Institute (R.C., E. Cassani, M.B., G.P.), ASST Gaetano Pini-CTO, Milan, Italy; Neurology Clinic (J.L.), Clinica Niño Jesus, Santa Cruz, Bolivia; Nutrition and Dietetics Service (E. Cereda), Fondazione IRCCS Policlinico San Matteo, Pavia; Department of Pathophysiology and Transplantation (N.G.P., I.U.I.), LAMB Pierfranco & Luisa Mariani, University of Milan, Italy; Department of Neurology (N.G.P., I.U.I.), University Hospital Würzburg and Julius-Maximilians-University, Würzburg, Germany; IRCCS-Institute of Neurological Sciences of Bologna (M.C.); and Department of Biomedical and Neuromotor Sciences (M.C.), University of Bologna, Italy
| | - Nicolò G Pozzi
- From the Parkinson Institute (R.C., E. Cassani, M.B., G.P.), ASST Gaetano Pini-CTO, Milan, Italy; Neurology Clinic (J.L.), Clinica Niño Jesus, Santa Cruz, Bolivia; Nutrition and Dietetics Service (E. Cereda), Fondazione IRCCS Policlinico San Matteo, Pavia; Department of Pathophysiology and Transplantation (N.G.P., I.U.I.), LAMB Pierfranco & Luisa Mariani, University of Milan, Italy; Department of Neurology (N.G.P., I.U.I.), University Hospital Würzburg and Julius-Maximilians-University, Würzburg, Germany; IRCCS-Institute of Neurological Sciences of Bologna (M.C.); and Department of Biomedical and Neuromotor Sciences (M.C.), University of Bologna, Italy
| | - Ioannis U Isaias
- From the Parkinson Institute (R.C., E. Cassani, M.B., G.P.), ASST Gaetano Pini-CTO, Milan, Italy; Neurology Clinic (J.L.), Clinica Niño Jesus, Santa Cruz, Bolivia; Nutrition and Dietetics Service (E. Cereda), Fondazione IRCCS Policlinico San Matteo, Pavia; Department of Pathophysiology and Transplantation (N.G.P., I.U.I.), LAMB Pierfranco & Luisa Mariani, University of Milan, Italy; Department of Neurology (N.G.P., I.U.I.), University Hospital Würzburg and Julius-Maximilians-University, Würzburg, Germany; IRCCS-Institute of Neurological Sciences of Bologna (M.C.); and Department of Biomedical and Neuromotor Sciences (M.C.), University of Bologna, Italy
| | - Manuela Contin
- From the Parkinson Institute (R.C., E. Cassani, M.B., G.P.), ASST Gaetano Pini-CTO, Milan, Italy; Neurology Clinic (J.L.), Clinica Niño Jesus, Santa Cruz, Bolivia; Nutrition and Dietetics Service (E. Cereda), Fondazione IRCCS Policlinico San Matteo, Pavia; Department of Pathophysiology and Transplantation (N.G.P., I.U.I.), LAMB Pierfranco & Luisa Mariani, University of Milan, Italy; Department of Neurology (N.G.P., I.U.I.), University Hospital Würzburg and Julius-Maximilians-University, Würzburg, Germany; IRCCS-Institute of Neurological Sciences of Bologna (M.C.); and Department of Biomedical and Neuromotor Sciences (M.C.), University of Bologna, Italy
| | - Michela Barichella
- From the Parkinson Institute (R.C., E. Cassani, M.B., G.P.), ASST Gaetano Pini-CTO, Milan, Italy; Neurology Clinic (J.L.), Clinica Niño Jesus, Santa Cruz, Bolivia; Nutrition and Dietetics Service (E. Cereda), Fondazione IRCCS Policlinico San Matteo, Pavia; Department of Pathophysiology and Transplantation (N.G.P., I.U.I.), LAMB Pierfranco & Luisa Mariani, University of Milan, Italy; Department of Neurology (N.G.P., I.U.I.), University Hospital Würzburg and Julius-Maximilians-University, Würzburg, Germany; IRCCS-Institute of Neurological Sciences of Bologna (M.C.); and Department of Biomedical and Neuromotor Sciences (M.C.), University of Bologna, Italy
| | - Gianni Pezzoli
- From the Parkinson Institute (R.C., E. Cassani, M.B., G.P.), ASST Gaetano Pini-CTO, Milan, Italy; Neurology Clinic (J.L.), Clinica Niño Jesus, Santa Cruz, Bolivia; Nutrition and Dietetics Service (E. Cereda), Fondazione IRCCS Policlinico San Matteo, Pavia; Department of Pathophysiology and Transplantation (N.G.P., I.U.I.), LAMB Pierfranco & Luisa Mariani, University of Milan, Italy; Department of Neurology (N.G.P., I.U.I.), University Hospital Würzburg and Julius-Maximilians-University, Würzburg, Germany; IRCCS-Institute of Neurological Sciences of Bologna (M.C.); and Department of Biomedical and Neuromotor Sciences (M.C.), University of Bologna, Italy
| |
Collapse
|
13
|
Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS. Sci Rep 2017; 7:41059. [PMID: 28102336 PMCID: PMC5244478 DOI: 10.1038/srep41059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/15/2016] [Indexed: 11/15/2022] Open
Abstract
The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally, mitochondrial alterations were any more present in Wse- but not in Mpe-treated hSOD1 mutants. Hence, given the role of inflammation in the development of ALS, the high translational impact of the model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use, these results suggest that the application of Wse and Mpe might represent a valuable pharmacological strategy to counteract the progression of ALS and related symptoms.
Collapse
|
14
|
Mucuna pruriens in Parkinson Disease: A Kinetic-Dynamic Comparison With Levodopa Standard Formulations. Clin Neuropharmacol 2016; 38:201-3. [PMID: 26366963 DOI: 10.1097/wnf.0000000000000098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We compared levodopa (LD) kinetic-dynamic profile of a dose of LD/aromatic amino acid decarboxylase peripheral inhibitors versus a nominally equivalent dose of a commercial Mucuna pruriens (Mucuna) seeds extract in 2 patients with Parkinson disease chronically taking LD standard combined with self-prescribed Mucuna. METHODS Patients were challenged with a fasting morning dose of 100 mg LD/25 mg carbidopa (patient 1) or benserazide (patient 2) versus 100 mg LD from Mucuna capsules in 2 different sessions, after a 12-hour standard LD formulations' washout. They underwent kinetic-dynamic LD monitoring based on LD dose intake and simultaneous serial assessments of plasma drug concentrations and motor test performances. Quantitative analysis of LD in Mucuna capsules was also performed. RESULTS Levodopa bioavailability was markedly lower after Mucuna administration compared with LD standard formulations: in patient 1, peak plasma LD concentration (Cmax) decreased from 2.0 to 1.0 mg/L and the area under the plasma concentration time curve from 137 to 33.6 mg/L per minute; in patient 2, Cmax was 0.7 mg/L after LD/benserazide and nearly undetectable after Mucuna. In patient 1, impaired LD bioavailability from Mucuna resulted in reduced duration and overall extent of drug response compared with LD/carbidopa. In patient 2, no significant subacute LD motor response was observed in either condition. Quantitative analysis of Mucuna formulation confirmed the 100 mg LD content for the utilized capsules. CONCLUSIONS Our results show an impaired LD bioavailability from Mucuna preparation, as expected by the lacking aromatic amino acid decarboxylase inhibitors coadministration, which might explain the suggested lower dyskinetic potential of Mucuna compared with standard LD formulations.
Collapse
|
15
|
Cassani E, Cilia R, Laguna J, Barichella M, Contin M, Cereda E, Isaias IU, Sparvoli F, Akpalu A, Budu KO, Scarpa MT, Pezzoli G. Mucuna pruriens for Parkinson's disease: Low-cost preparation method, laboratory measures and pharmacokinetics profile. J Neurol Sci 2016; 365:175-80. [PMID: 27206902 DOI: 10.1016/j.jns.2016.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/17/2016] [Accepted: 04/03/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurological condition. Levodopa (LD) is the gold standard therapy for PD patients. Most PD patients in low-income areas cannot afford long-term daily Levodopa therapy. The aim of our study was to investigate if Mucuna pruriens (MP), a legume with high LD content that grows in tropical regions worldwide, might be potential alternative for poor PD patients. METHODS We analyzed 25 samples of MP from Africa, Latin America and Asia. We measured the content in LD in various MP preparations (dried, roasted, boiled). LD pharmacokinetics and motor response were recorded in four PD patients, comparing MP vs. LD+Dopa-Decarboxylase Inhibitor (DDCI) formulations. RESULTS Median LD concentration in dried MP seeds was 5.29%; similar results were obtained in roasted powder samples (5.3%), while boiling reduced LD content up to 70%. Compared to LD+DDCI, MP extract at similar LD dose provided less clinical benefit, with a 3.5-fold lower median AUC. CONCLUSION Considering the lack of a DDCI, MP therapy may provide clinical benefit only when content of LD is at least 3.5-fold the standard LD+DDCI. If long-term MP proves to be safe and effective in controlled clinical trials, it may be a sustainable alternative therapy for PD in low-income countries.
Collapse
Affiliation(s)
- Erica Cassani
- Parkinson Institute, ASST G.Pini-CTO, ex ICP, Milan, Italy.
| | - Roberto Cilia
- Parkinson Institute, ASST G.Pini-CTO, ex ICP, Milan, Italy
| | - Janeth Laguna
- Neurology Clinic, Clinica Niño Jesus, Santa Cruz, Bolivia
| | | | - Manuela Contin
- IRCCS-Institute of Neurological Sciences of Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Emanuele Cereda
- Nutrition and Dietetics Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ioannis U Isaias
- Department of Pathophysiology and Transplantation, LAMB Pierfranco & Luisa Mariani, University of Milan, Milan, Italy
| | | | | | - Kwabena Ofosu Budu
- Institute of Agricultural Research, College of Agriculture & Consumer Sciences, University of Ghana, Ghana
| | | | - Gianni Pezzoli
- Parkinson Institute, ASST G.Pini-CTO, ex ICP, Milan, Italy
| |
Collapse
|
16
|
De Rose F, Marotta R, Poddighe S, Talani G, Catelani T, Setzu MD, Solla P, Marrosu F, Sanna E, Kasture S, Acquas E, Liscia A. Functional and Morphological Correlates in the Drosophila LRRK2 loss-of-function Model of Parkinson's Disease: Drug Effects of Withania somnifera (Dunal) Administration. PLoS One 2016; 11:e0146140. [PMID: 26727265 PMCID: PMC4699764 DOI: 10.1371/journal.pone.0146140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
The common fruit fly Drosophila melanogaster (Dm) is a simple animal species that contributed significantly to the development of neurobiology whose leucine-rich repeat kinase 2 mutants (LRRK2) loss-of-function in the WD40 domain represent a very interesting tool to look into physiopathology of Parkinson's disease (PD). Accordingly, LRRK2 Dm have also the potential to contribute to reveal innovative therapeutic approaches to its treatment. Withania somnifera Dunal, a plant that grows spontaneously also in Mediterranean regions, is known in folk medicine for its anti-inflammatory and protective properties against neurodegeneration. The aim of this study was to evaluate the neuroprotective effects of its standardized root methanolic extract (Wse) on the LRRK2 loss-of-function Dm model of PD. To this end mutant and wild type (WT) flies were administered Wse, through diet, at different concentrations as larvae and adults (L+/A+) or as adults (L-/A+) only. LRRK2 mutants have a significantly reduced lifespan and compromised motor function and mitochondrial morphology compared to WT flies 1% Wse-enriched diet, administered to Dm LRRK2 as L-/A+and improved a) locomotor activity b) muscle electrophysiological response to stimuli and also c) protected against mitochondria degeneration. In contrast, the administration of Wse to Dm LRRK2 as L+/A+, no matter at which concentration, worsened lifespan and determined the appearance of increased endosomal activity in the thoracic ganglia. These results, while confirming that the LRRK2 loss-of-function in the WD40 domain represents a valid model of PD, reveal that under appropriate concentrations Wse can be usefully employed to counteract some deficits associated with the disease. However, a careful assessment of the risks, likely related to the impaired endosomal activity, is required.
Collapse
Affiliation(s)
| | - Roberto Marotta
- Nanochemistry Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Simone Poddighe
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Talani
- Institute of Neuroscience, National Research Council (CNR), Monserrato, Cagliari, Italy
| | - Tiziano Catelani
- Nanochemistry Department, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Paolo Solla
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Francesco Marrosu
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Enrico Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | | | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Liscia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
17
|
Neuroprotective effects of cuscutae semen in a mouse model of Parkinson's disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:150153. [PMID: 25140184 PMCID: PMC4129928 DOI: 10.1155/2014/150153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/15/2014] [Accepted: 07/03/2014] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder that is characterized by the progressive degeneration of the dopaminergic (DA) pathway. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes damage to the DA neurons, and 1-4-methyl-4-phenylpyridinium (MPP(+)) causes cell death in differentiated PC12 cells that is similar to the degeneration that occurs in PD. Moreover, MPTP treatment increases the activity of the brain's immune cells, reactive oxygen species- (ROS-) generating processes, and glutathione peroxidase. We recently reported that Cuscutae Semen (CS), a widely used traditional herbal medicine, increases cell viability in a yeast model of PD. In the present study, we examined the inhibitory effect of CS on the neurotoxicity of MPTP in mice and on the MPP+-induced cell death in differentiated PC12 cells. The MPTP-induced loss of nigral DA neurons was partly inhibited by CS-mediated decreases in ROS generation. The activation of microglia was slightly inhibited by CS, although this effect did not reach statistical significance. Furthermore, CS may reduce the MPP+ toxicity in PC12 cells by suppressing glutathione peroxidase activation. These results suggest that CS may be beneficial for the treatment of neurodegenerative diseases such as PD.
Collapse
|