1
|
Nair AC, Kuriakose BB, Biju A, Surendran S, Sudheesh MS, Lakshmi PK. Pharmacological effects of herbal ingredients of Manasamitra vatakam in the treatment of Alzheimer's disease: A review. J Ayurveda Integr Med 2025; 16:101041. [PMID: 39799838 DOI: 10.1016/j.jaim.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 01/15/2025] Open
Abstract
Multi-targeted drug therapy has received substantial attention for the treatment of diseases of multi-factorial origin, including neurodegenerative and autoimmune diseases. It seems reasonable to argue that the complex pathology of neurodegenerative diseases (ND) cannot be reduced to a single target to modulate a broad range of cellular signaling, associated pathologies, and symptoms. It is this idea that has brought the attention of the scientific world towards phytochemicals and traditional drugs that are notoriously multi-targeted. A systematic study of these formulations and establishing the molecular pathways of individual molecules can lead to a standardized multi-component product that can modulate a broad range of activities on different targets of ND. This could provide an accessible and affordable solution to the significant disease burden of ND. With this idea in mind, a systematic review was carried out on an Ayurvedic product Manasamitra Vatakam (MMV), known to be a neuroprotective formulation and highly effective against Alzheimer's disease. MMV can be a source of phytomolecules for treating neurodegenerative diseases. The multifactorial nature of these diseases makes them suitable candidates for testing phytochemicals due to the inherent multitargeting capabilities of these compounds. The primary objective of this review is to provide a comprehensive understanding of the phytomolecules from MMV that are responsible for its multitargeted effect against neurodegenerative diseases. From the reported literature, it is clear that many phytoconstituents and extracts of the herbal ingredients from MMV have demonstrated their efficacy against AD models. However, the combination of these molecules in AD models has never been tested. Scientific studies should be done to explore the bioactive compounds in the formulation and the druggability of these identified compounds can be evaluated using experimental methods.
Collapse
Affiliation(s)
- Anju C Nair
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Kingdom of Saudi Arabia
| | - Aswini Biju
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Sarika Surendran
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus Kochi, Kerala, 682041, India
| | - P K Lakshmi
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India.
| |
Collapse
|
2
|
Zhang X, Nizamani MM, Jiang C, Fang F, Zhao K. Potential planting regions of Pterocarpus santalinus (Fabaceae) under current and future climate in China based on MaxEnt modeling. Ecol Evol 2024; 14:e11409. [PMID: 38826162 PMCID: PMC11139971 DOI: 10.1002/ece3.11409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
This study modeled the habitat distribution of Pterocarpus santalinus, a valuable rosewood species, across China under current and future climate scenarios (SSPs126, SSPs245, and SSPs585) using MaxEnt. Our findings reveal that the current suitable habitat, spanning approximately 409,600 km2, is primarily located in the central and southern parts of Guangdong, Guangxi, Fujian, and Yunnan, as well as in the Hainan provinces, along with the coastal regions of Taiwan, and the Sichuan-Chongqing border. The habitat's distribution is significantly influenced by climatic factors such as temperature seasonality (bio4), mean temperature of the wettest quarter (bio8), annual mean temperature (bio1), and annual precipitation (bio12), while terrain and soil factors play a lesser role. Under future climate scenarios, the suitable habitat for P. santalinus is projected to expand, with a northeastward shift in its distribution center. This research not only sheds light on the geoecological characteristics and geographical distribution of P. santalinus in China but also offers a scientific basis for planning its cultivation areas and enhancing cultivation efficiency under changing climate conditions.
Collapse
Affiliation(s)
- Xiao‐Feng Zhang
- Hainan Academy of Forestry (Hainan Academy of Mangrove)HaikouChina
| | | | - Chao Jiang
- Jinxian County No. 3 Middle SchoolNanchangChina
| | - Fa‐Zhi Fang
- Hainan Academy of Forestry (Hainan Academy of Mangrove)HaikouChina
| | - Kun‐Kun Zhao
- Tropical Crops Genetic Resources InstituteChinese Academy of Tropical Agricultural SciencesHaikouChina
| |
Collapse
|
3
|
Nguyen LTH, Nguyen NPK, Tran KN, Choi HJ, Moon IS, Shin HM, Yang IJ. Essential oil of Pterocarpus santalinus L. alleviates behavioral impairments in social defeat stress-exposed mice by regulating neurotransmission and neuroinflammation. Biomed Pharmacother 2024; 171:116164. [PMID: 38242042 DOI: 10.1016/j.biopha.2024.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Pterocarpus santalinus L. essential oil (PSEO) is traditionally employed for treating fever and mental aberrations. We aim to explore the antidepressant potential of intranasal PSEO in social defeat stress (SDS)-expose mice and identify its mechanisms and components. METHODS PSEO components were analyzed using gas chromatography-mass spectrometry (GC-MS). C57BL/6 mice underwent a 10-day SDS with intranasal PSEO (10, 20 mg/kg) for 21 days. Efficacy was evaluated through changes in behaviors and serum corticosterone (CORT), hippocampal neurotransmitter, and inflammatory cytokine levels. In vitro effects were examined using primary hippocampal neurons, PC12 and BV2 cells. RESULTS GC-MS identified 22 volatile compounds in PSEO, and (+)-ledene (16.7%), cedrol (13.5%), and isoaromadendrene epoxide (7.0%) as major components. PSEO (20 mg/kg) significantly reversed SDS-induced social withdrawal, increased open-area explorations in the open field test (OFT) and elevated plus maze (EPM) test, and reduced immobility time in the tail suspension test (TST) and forced swimming test (FST). PSEO downregulated serum CORT and hippocampal interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels, while increasing hippocampal gamma-aminobutyric acid (GABA), norepinephrine (NE), and serotonin (5-HT) levels. PSEO (0.1, 1, 10 µg/mL) reduced neurotoxicity and neuroinflammation in PC12 and BV2 cells, respectively. PSEO (10 µg/mL) enhanced glutamic acid decarboxylase 6 (GAD6)- and GABA B receptor 1 (GABABR1)-positive puncta in the hippocampal neurons and FM1-43 fluorescence intensity. CONCLUSION Intranasal PSEO exhibited antidepressant-like effects on SDS-exposed mice, potentially through modulating stress hormone, neurotransmission, and neuroinflammation. Further investigation into the pharmacokinetics, bioavailability, and mechanisms of (+)-ledene, cedrol, and isoaromadendrene epoxide is needed.
Collapse
Affiliation(s)
- Ly Thi Huong Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea
| | - Khoa Nguyen Tran
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, and Medical Institute of Dongguk University, Gyeongju, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, Dongguk University College of Korean Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
4
|
Natalia P, Zwirchmayr J, Rudžionytė I, Pulsinger A, Breuss JM, Uhrin P, Rollinger JM, de Martin R. Pterocarpus santalinus Selectively Inhibits a Subset of Pro-Inflammatory Genes in Interleukin-1 Stimulated Endothelial Cells. Front Pharmacol 2022; 12:802153. [PMID: 35115943 PMCID: PMC8804362 DOI: 10.3389/fphar.2021.802153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Based on the traditional use and scientific reports on the anti-inflammatory potential of red sandalwood, i.e., the heartwood of Pterocarpus santalinus L., we investigated its activity in a model of IL-1 stimulated endothelial cells. Endothelial cells were stimulated with IL-1 with or without prior incubation with a defined sandalwoodextract (PS), and analyzed for the expression of selected pro-inflammatory genes. The activity of NF-κB, a transcription factor of central importance for inflammatory gene expression was assessed by reporter gene analysis, Western blotting of IκBα, and nuclear translocation studies. In addition, microarray studies were performed followed by verification of selected genes by qPCR and supplemented by bioinformatics analysis. Our results show that PS is able to suppress the induction of E-selectin and VCAM-1, molecules that mediate key steps in the adhesion of leukocytes to the endothelium. It also suppressed the activity of an NF-κB reporter, IκBα phosphorylation and degradation, and the nuclear translocation of NF-κB RelA. In contrast, it stimulated JNK phosphorylation indicating the activation of the JNK signaling pathway. Gene expression profiling revealed that PS inhibits only a specific subset of IL-1 induced genes, while others remain unaffected. Most strongly suppressed genes were the signal transducer TRAF1 and the chemokine CX3CL1, whereas IL-8 was an example of a non-affected gene. Notably, PS also stimulated the expression of certain genes, including ones with negative regulatory function, e.g., members of the NR4A family, the mRNA destabilizing protein TTP as well as the transcription factors ATF3 and BHLHB40. These results provide mechanistic insight into the anti-inflammatory activity of PS, and suggest that it acts through the interplay of negative and positive regulators to achieve a differential inhibition of inflammatory gene expression.
Collapse
Affiliation(s)
- Priscilla Natalia
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Julia Zwirchmayr
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ieva Rudžionytė
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Alexandra Pulsinger
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes M. Breuss
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Judith M. Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Hanuma Kumar GEN, Kumar SS, Balaji M, Maurya DK, Kesavulu M. Pterocarpus santalinus L. extract mitigates gamma radiation-inflicted derangements in BALB/c mice by Nrf2 upregulation. Biomed Pharmacother 2021; 141:111801. [PMID: 34146850 DOI: 10.1016/j.biopha.2021.111801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/24/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Plant-based natural extracts contain several nutrients and bioactive compounds, such as phenolics and flavonoids, that possess various health-promoting activities. This study investigated the effects of polyphenols from Pterocarpus santalinus hydroalcoholic extract (PSHE) against gamma radiation-induced derangements via the upregulation of Nrf2. Ultra High Performance Liquid Chromatography Coupled to High Resolution Mass Spectrometry (UHPLC-HRMS/MS) analysis was performed to identify the possible radioprotectors. In vivo and in vitro studies, namely Real-Time-PCR (RT-PCR) analysis, Reactive Oxygen Species (ROS) scavenging activity, lipid peroxidation and GSH levels, DNA damage and cell death studies, anti-inflammatory (Sandwich ELISA), immunomodulatory studies (antibody staining), and model free radical scavenging assays, were performed. Vanillic acid, protocatechuic acid, para-hydroxybenzoic acid, chlorogenic acid, TNF-α inhibitor (Eudesmin), isoflavone (Daidzein 7-o-glucoside), astragalin (Kaempferol 3-o-glycoside), and other polyphenols were identified in PSHE using UHPLC-HRMS/MS analysis. Prophylactic administration of PSHE (-1 h) rendered more than 33% survival in mice exposed to 8 Gy whole-body-irradiation with increased mice survival and recovery of bone marrow and spleen cellularity. Real-time RT-PCR analysis showed that PSHE treatment (50 µg/mL) upregulated Nrf2, HO-1, and GPX-1 in mice splenocytes. At 50 µg/mL, PSHE reduced ROSscavenging activity, mitochondrial and spleen membrane lipid peroxidation levels, DNA damage, and cell death, and increased GSH levels. At 10 µg/mL, PSHE treatment diminished the content of IL-6 and TNF-α. At 50 µg/mL, PSHE suppressed lymphocyte proliferation. These findings indicate that polyphenols of PSHE possess marked antioxidant, anti-inflammatory, and immunomodulatory capacities, which play important roles in the prevention of radiation damage.
Collapse
Affiliation(s)
- Ghali E N Hanuma Kumar
- Department of Biochemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Sandopu Sravan Kumar
- Department of Biochemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Meriga Balaji
- Department of Biochemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India.
| | - Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| | - Muppuru Kesavulu
- Sree Vidyanikethan Engineering College, Tirupati 517102, Andhra Pradesh, India
| |
Collapse
|
6
|
Ghali EHK, Maurya DK, Meriga B. Radioprotective Properties ofPterocarpus santalinusChloroform Extract in Murine Splenic Lymphocytes and Possible Mechanism. Cancer Biother Radiopharm 2018; 33:427-437. [PMID: 31287718 DOI: 10.1089/cbr.2018.2532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | - Balaji Meriga
- Department of Biochemistry, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
7
|
Modulatory role of Pterocarpus santalinus against alcohol-induced liver oxidative/nitrosative damage in rats. Biomed Pharmacother 2016; 83:1057-1063. [DOI: 10.1016/j.biopha.2016.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022] Open
|
8
|
Bulle S, Reddyvari H, Nallanchakravarthula V, Vaddi DR. Therapeutic Potential of Pterocarpus santalinus L.: An Update. Pharmacogn Rev 2016; 10:43-9. [PMID: 27041873 PMCID: PMC4791987 DOI: 10.4103/0973-7847.176575] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Recently there has been increasing interest in plants and plant-derived compounds as raw food and medicinal agents. In Ayurveda, an Indian system of traditional medicine, a wide spectrum of medicinal properties of Pterocarpus santalinus is described. Many important bioactive phytocompounds have been extracted and identified from the heartwood of P. santalinus. Bioactive compounds typically occur in small amounts and have more subtle effects than nutrients. These bioactive compounds influence cellular activities that modify the risk of disease rather than prevent deficiency diseases. A wide array of biological activities and potential health benefits of P. santalinus have been reported, including antioxidative, antidiabetic, antimicrobial, anticancer, and anti-inflammatory properties, and protective effects on the liver, gastric mucosa, and nervous system. All these protective effects were attributed to bioactive compounds present in P. santalinus. The major bioactive compounds present in the heartwood of P. santalinus are santalin A and B, savinin, calocedrin, pterolinus K and L, and pterostilbenes. The bioactive compounds have potentially important health benefits: These compounds can act as antioxidants, enzyme inhibitors and inducers, inhibitors of receptor activities, and inducers and inhibitors of gene expression, among other actions. The present review aims to understand the pharmacological effects of P. santalinus on health and disease with "up-to-date" discussion.
Collapse
Affiliation(s)
- Saradamma Bulle
- Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | | | | | - Damodara Reddy Vaddi
- Department of Biochemistry, Oil Technological Research Institute, Anantapur, Andhra Pradesh, India
| |
Collapse
|