1
|
Shleeva MO, Demina GR, Savitsky AP. A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections. Adv Drug Deliv Rev 2024; 215:115472. [PMID: 39549920 DOI: 10.1016/j.addr.2024.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) emerges as a viable treatment strategy for infections resistant to conventional antibiotics. A complex interplay of factors, including intracellular photosensitizer (PS) accumulation, photochemical reaction type, and oxygen levels, determines the efficacy of aPDT. Recent progress includes the development of modified PSs with enhanced lipophilicity and target-specific strategies to improve bacterial cell wall penetration and targeting. Nanotechnology-based approaches, such as using nanomaterials for targeted PS delivery, have shown promise in enhancing aPDT efficacy. Advancements in light delivery methods for aPDT, such as transillumination of large lesions and local light delivery using fiber optic techniques, are also being explored to optimize treatment efficacy in clinical settings. The limited number of animal models and clinical trials specifically designed to assess the efficacy of aPDT for lung infections highlights the need for further research in this critical area. The potential prospects of aPDT for lung tissue infections originating from antibiotic-resistant bacterial infections are also discussed in this review.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia.
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Zhou H, Zhang C, Li Z, Xia M, Li Z, Wang Z, Tan GY, Luo Y, Zhang L, Wang W. Systematic development of a highly efficient cell factory for 5-aminolevulinic acid production. Trends Biotechnol 2024; 42:1479-1502. [PMID: 39112275 DOI: 10.1016/j.tibtech.2024.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 11/17/2024]
Abstract
The versatile applications of 5-aminolevulinic acid (5-ALA) across the fields of agriculture, livestock, and medicine necessitate a cost-efficient biomanufacturing process. In this study, we achieved the economic viability of biomanufacturing this compound through a systematic engineering framework. First, we obtained a 5-ALA synthase (ALAS) with superior performance by exploring its natural diversity with divergent evolution. Subsequently, using a genome-scale model, we identified and modified four key targets from distinct pathways in Escherichia coli, resulting in a final enhancement of 5-ALA titers up to 21.82 g/l in a 5-l bioreactor. Furthermore, recognizing that an imbalance of redox equivalents hindered further titer improvement, we developed a dynamic control system that effectively balances redox status and carbon flux. Ultimately, we collaboratively optimized the artificial redox homeostasis system at the transcription level with other cofactors at the feeding level, demonstrating the highest recorded performance to date with a titer of 63.39 g/l for the biomanufacturing of 5-ALA.
Collapse
Affiliation(s)
- Houming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Menglei Xia
- Metabolism and Fermentation Process Control, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenghong Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Zdubek A, Maliszewska I. On the Possibility of Using 5-Aminolevulinic Acid in the Light-Induced Destruction of Microorganisms. Int J Mol Sci 2024; 25:3590. [PMID: 38612403 PMCID: PMC11011456 DOI: 10.3390/ijms25073590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a method that specifically kills target cells by combining a photosensitizer and irradiation with light at the appropriate wavelength. The natural amino acid, 5-aminolevulinic acid (5-ALA), is the precursor of endogenous porphyrins in the heme biosynthesis pathway. This review summarizes the recent progress in understanding the biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts. The effectiveness of 5-ALA-aPDI in destroying various groups of pathogens (viruses, fungi, yeasts, parasites) was presented, but greater attention was focused on the antibacterial activity of this technique. Finally, the clinical applications of 5-ALA in therapies using 5-ALA and visible light (treatment of ulcers and disinfection of dental canals) were described.
Collapse
Affiliation(s)
| | - Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
4
|
Seyedi FS, Nafchi MG, Reezi S. Effects of light spectra on morphological characteristics, primary and specialized metabolites of Thymus vulgaris L. Heliyon 2024; 10:e23032. [PMID: 38148820 PMCID: PMC10750077 DOI: 10.1016/j.heliyon.2023.e23032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Light is a crucial environmental factor that profoundly influences the growth and development of plants. However, the precise mechanisms by which light affects biochemical processes and growth and development factors in Thymus vulgaris remain unknown, necessitating further investigation. Hence, this study aimed to investigate the impact of different light spectra, including red, blue, red-blue, and white lights, on the morphological characteristics, primary, and specialized metabolites of T. vulgaris. Compared to white light, red light significantly increased leaf area (by 64 %), the number of branches (by 132 %), and dry weight (by 6.2 %), although a 40 % reduction in fresh weight was observed under red light conditions. Red-blue light notably enhanced canopy width, fresh weight, and dry weight. Gas chromatography/mass spectrometry (GC/MS) analysis of the plant's essential oil (EO) revealed that p-Cymene and γ-Terpinene were present at the highest levels. Notably, p-Cymene exhibited the highest concentrations under white light and blue light treatments, reaching 60.92 % and 59.53 %, respectively. Moreover, under the same light conditions, phenol and antioxidant levels were significantly elevated. Overall, these findings indicate that red and red-blue light spectra are the most favorable for thyme production.
Collapse
Affiliation(s)
- Forouh Sadat Seyedi
- Department of Horticulture Science, College of Agriculture, Shahrekord University, Iran
| | - Mehdi Ghasemi Nafchi
- Department of Horticulture Science, College of Agriculture, Shahrekord University, Iran
| | - Saeed Reezi
- Department of Horticulture Science, College of Agriculture, Shahrekord University, Iran
| |
Collapse
|
5
|
Feng C, Wang L, Gu L, Hong Z, Wei Y, Wu D, Qiu L. Effect of topical 5-aminolevulinic acid photodynamic therapy versus therapy combined with CO2 laser pretreatment for patients with cervical high-grade squamous intraepithelial lesions. Photodiagnosis Photodyn Ther 2023; 43:103721. [PMID: 37506746 DOI: 10.1016/j.pdpdt.2023.103721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVE To evaluate the effect of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) combined with CO2 laser pretreatment (Laser+ALA-PDT) on patients with cervical high-grade squamous intraepithelial lesions (HSILs). METHODS A total of 114 patients treated by ALA-PDT or Laser+ALA-PDT at 3 centers were retrospectively reviewed. The effective rate, cure rate of lesions as well as high-risk human papillomavirus (HR-HPV) regression rate and persistent infection rate in the 2 groups were compared according to 3-6 month and 9-12 months follow-ups. The characteristics and risk factors for ineffective cases were evaluated by regression analysis. RESULTS At the 3-6month follow-up, the effective rate was significantly higher in the Laser+ALA-PDT group than in the ALA-PDT group (96.6% vs. 81.3%, p = 0.048). A total of 79.3% of the laser+ALA-PDT patients achieved cure rate compared with 61.3% of the ALA-PDT patients (p = 0.082). In the Laser+ALA-PDT group, the HR-HPV-negative rate was significantly higher (72.4% vs. 50.7%, p = 0.045), while the persistence rate was significantly lower (20.7% vs. 42.7%, p = 0.037). At the 9-12month follow-up, the cure rate was 83% in the ALA-PDT group, 17% lower than that in the Laser+ALA-PDT group (p = 0.055). A total of 20.8% of patients in the ALA-PDT group and 5.3% in the Laser+ALA-PDT group showed persistent HR-HPV infection (p = 0.120). Pretreatment HR-HPV type, multiple infections and treatment modality were relevant factors for PDT outcome. CONCLUSIONS For patients with cervical HSIL, laser+ALA-PDT shows better efficiency and HPV regression compared with ALA-PDT. HPV16/18 and multi-infection may be risk factors for ineffective treatment with ALA-PDT.
Collapse
Affiliation(s)
- Chunyang Feng
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lifeng Wang
- Central Hospital of Minhang District, Fudan University, Shanghai, China
| | - Liying Gu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zubei Hong
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yingting Wei
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Dan Wu
- Cervical Center of The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai, China.
| | - Lihua Qiu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, China.
| |
Collapse
|
6
|
Pihl C, Lerche CM, Andersen F, Bjerring P, Haedersdal M. Improving the efficacy of photodynamic therapy for actinic keratosis: A comprehensive review of pharmacological pretreatment strategies. Photodiagnosis Photodyn Ther 2023; 43:103703. [PMID: 37429460 DOI: 10.1016/j.pdpdt.2023.103703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is approved for treatment of actinic keratoses (AKs) and field-cancerisation. Pretreatment with pharmacological compounds holds potential to improve PDT efficacy, through direct interaction with PpIX formation or through an independent response, both of which may improve PDT treatment. OBJECTIVE To present the currently available clinical evidence of pharmacological pretreatments prior to PDT and to associate potential clinical benefits with the pharmacological mechanisms of action of the individual compounds. METHODS A comprehensive search on the Embase, MEDLINE, and Web of Science databases was performed. RESULTS In total, 16 studies investigated 6 pretreatment compounds: 5-fluorouracil (5-FU), diclofenac, retinoids, salicylic acid, urea, and vitamin D. Two of these, 5-FU and vitamin D, robustly increased the efficacy of PDT across multiple studies, illustrated by mean increases in clearance rates of 21.88% and 12.4%, respectively. Regarding their mechanisms, 5-FU and vitamin D both increased PpIX accumulation, while 5-FU also induced a separate anticarcinogenic response. Pretreatment with diclofenac for four weeks improved the clearance rate in one study (24.9%), administration of retinoids had a significant effect in one of two studies (16.25%), while salicylic acid and urea did not lead to improved PDT efficacy. Diclofenac and retinoids demonstrated independent cytotoxic responses, whereas salicylic acid and urea acted as penetration enhancers to increase PpIX formation. CONCLUSION 5-FU and vitamin D are well-tested, promising candidates for pharmacological pretreatment prior to PDT. Both compounds affect the haem biosynthesis, providing a target for potential pretreatment candidates. KEY WORDS Photodynamic Therapy, Actinic Keratosis,Pre-tretment,Review,enhancement.
Collapse
Affiliation(s)
- Celina Pihl
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark & Department of Pharmacy, University of Copenhagen, Nielsine Nielsens Vej 17, Entrance 9, 2nd floor, Copenhagen 2400, Denmark.
| | - Catharina M Lerche
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark & Department of Pharmacy, University of Copenhagen, Nielsine Nielsens Vej 17, Entrance 9, 2nd floor, Copenhagen 2400, Denmark
| | - Flemming Andersen
- Private Hospital Molholm, Brummersvej 1, Vejle 7100, Denmark; Department of Dermatology, Aalborg University Hospital, Hobrovej 18-22, Aalborg 9100, Denmark
| | - Peter Bjerring
- Department of Dermatology, Aalborg University Hospital, Hobrovej 18-22, Aalborg 9100, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark & Department of Clinical Medicine, University of Copenhagen, Nielsine Nielsens Vej 17, Entrance 9, 2nd floor, Copenhagen 2400, Denmark
| |
Collapse
|
7
|
Alavi N, Maghami P, Pakdel AF, Rezaei M, Avan A. Antibody-modified Gold Nanobiostructures: Advancing Targeted Photodynamic Therapy for Improved Cancer Treatment. Curr Pharm Des 2023; 29:3103-3122. [PMID: 37990429 DOI: 10.2174/0113816128265544231102065515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/03/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) is an innovative, non-invasive method of treating cancer that uses light-activated photosensitizers to create reactive oxygen species (ROS). However, challenges associated with the limited penetration depth of light and the need for precise control over photosensitizer activation have hindered its clinical translation. Nanomedicine, particularly gold nanobiostructures, offers promising solutions to overcome these limitations. This paper reviews the advancements in PDT and nanomedicine, focusing on applying antibody-modified gold nanobiostructures as multifunctional platforms for enhanced PDT efficacy and improved cancer treatment outcomes. The size, shape, and composition of gold nanobiostructures can significantly influence their PDT efficacy, making synthetic procedures crucial. Functionalizing the surface of gold nanobiostructures with various molecules, such as antibodies or targeting agents, bonding agents, PDT agents, photothermal therapy (PTT) agents, chemo-agents, immunotherapy agents, and imaging agents, allows composition modification. Integrating gold nanobiostructures with PDT holds immense potential for targeted cancer therapy. Antibody-modified gold nanobiostructures, in particular, have gained significant attention due to their tunable plasmonic characteristics, biocompatibility, and surface functionalization capabilities. These multifunctional nanosystems possess unique properties that enhance the efficacy of PDT, including improved light absorption, targeted delivery, and enhanced ROS generation. Passive and active targeting of gold nanobiostructures can enhance their localization near cancer cells, leading to efficient eradication of tumor tissues upon light irradiation. Future research and clinical studies will continue to explore the potential of gold nanobiostructures in PDT for personalized and effective cancer therapy. The synthesis, functionalization, and characterization of gold nanobiostructures, their interaction with light, and their impact on photosensitizers' photophysical and photochemical properties, are important areas of investigation. Strategies to enhance targeting efficiency and the evaluation of gold nanobiostructures in vitro and in vivo studies will further advance their application in PDT. The integrating antibody-modified gold nanobiostructures in PDT represents a promising strategy for targeted cancer therapy. These multifunctional nanosystems possess unique properties that enhance PDT efficacy, including improved light absorption, targeted delivery, and enhanced ROS generation. Continued research and development in this field will contribute to the advancement of personalized and effective cancer treatment approaches.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane 4059, Australia
| |
Collapse
|
8
|
Huang J, Zheng C, Luo R, Cao X, Liu M, Gu Q, Li F, Li J, Wu X, Yang Z, Shen X, Li X. Integrative analysis of multiomics data identifies selenium-related gene ALAD associating with keshan disease. Free Radic Biol Med 2022; 193:702-719. [PMID: 36395956 DOI: 10.1016/j.freeradbiomed.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Keshan disease is an endemic fatal dilated cardiomyopathy that can cause heart enlargement, heart failure, and cardiogenic death. Selenium deficiency is considered to be the main cause of Keshan disease. However, the molecular mechanism underlying Keshan disease remains unclear. Our whole-exome sequencing from 68 patients with Keshan disease and 100 controls found 199 candidate genes by gene-level burden tests. Interestingly, using multiomics data, the selenium-related gene ALAD (δ-aminolevulinic acid dehydratase) was the only candidate causative gene identified by three different analysis approaches. Based on single-cell transcriptome data, ALAD was highly expressed in cardiomyocytes and double mutations of human ALAD dramatically reduced its enzyme activity in vitro compared to negative control. Functional analysis of ALAD inhibition in mice resulted in a Keshan phenotype with left ventricular enlargement and cardiac dysfunction, whereas administration of sodium selenite markedly reversed the changes caused by ALAD inhibition. In addition, sodium selenite reversed Keshan phenotypes by affecting energy metabolism and mitochondrial function in mice as shown by the transcriptomic and proteomic data and the ultrastructure of cardiac myocytes. Our findings are the first to demonstrate that the selenium-related gene ALAD is essential for cardiac function by maintaining normal mitochondrial activity, providing strong molecular evidence supporting the hypothesis of selenium deficiency in Keshan disease. These results identified ALAD as a novel target for therapeutic intervention in Keshan disease and Keshan disease-related dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jichang Huang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chenqing Zheng
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xin Cao
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingjiang Liu
- Department of Cardiology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Qingquan Gu
- Shenzhen Rare Disease Engineering Research Center of Metabolomics in Precision Medicine, Shenzhen, China; Shenzhen Aone Medical Laboratory Co, Ltd, Shenzhen, China
| | - Feng Li
- Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Jinshu Li
- The Center for Heart Development, Hunan Normal University, Changsha, Hunan, China
| | - Xiushan Wu
- The Center for Heart Development, Hunan Normal University, Changsha, Hunan, China; Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xia Shen
- Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, China.
| | - Xiaoping Li
- Department of Cardiology, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Zhang C, Zhao X, Li D, Ji F, Dong A, Chen X, Zhang J, Wang X, Zhao Y, Chen X. Advances in 5-aminoketovaleric acid(5-ALA) nanoparticle delivery system based on cancer photodynamic therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Pinto MAF, Ferreira CBR, de Lima BES, Molon ÂC, Ibarra AMC, Cecatto RB, Dos Santos Franco AL, Rodrigues MFSD. Effects of 5-ALA mediated photodynamic therapy in oral cancer stem cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112552. [PMID: 36088836 DOI: 10.1016/j.jphotobiol.2022.112552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to investigate the effects of PDT using the photosensitizer 5-aminoulevulinic acid (5-ALA) in oral squamous cell carcinoma (OSCC) behavior, mainly regarding its role on the cancer stem cell (CSC) phenotypes and in maintenance of the stem cell properties. Two OSCC cell lines were used and divided in the groups: Control, 5-ALA, LED 6 J/cm2 and PDT. MTT and Neutral red assays were used to access cellular viability, cell migration was evaluated by the wound healing assay. The stem cell phenotype was analyzed by flow cytometry to evaluate the CD44high/ESAhigh, CD44high/ESAlow and CD44low populations, by the clonogenic and tumor sphere formation assays as well as by RT-qPCR. The presence of Protoporphyrin IX in each CSC fraction was evaluated by flow cytometry. The OSCC cell lines showed a significant decrease in cell viability and migration after PDT. The percentage of CD44high/ESAhigh cells decreased after PDT, which was associated with an increase in the CD44low cells and with a functional decrease in the colony and sphere formation capacity. CD44high/ESAhigh cells showed increased PpIX, which contributed for their greater sensitivity to PDT. INV gene increased significantly after PDT, indicating cellular differentiation. Altogether, our results demonstrate that 5-ALA mediated PDT decreases not only the fraction of oral CSC but also their functional capabilities, inducing their differentiation.
Collapse
Affiliation(s)
| | - Cássia Bosi Ribeiro Ferreira
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo, Brazil
| | - Bárbara Evelyn Santos de Lima
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo, Brazil
| | - Ângela Cristina Molon
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo, Brazil
| | - Ana Melissa Coppa Ibarra
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo, Brazil
| | - Rebeca Boltes Cecatto
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Su A, Yu Q, Luo Y, Yang J, Wang E, Yuan H. Metabolic engineering of microorganisms for the production of multifunctional non-protein amino acids: γ-aminobutyric acid and δ-aminolevulinic acid. Microb Biotechnol 2021; 14:2279-2290. [PMID: 33675575 PMCID: PMC8601173 DOI: 10.1111/1751-7915.13783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) and delta-aminolevulinic acid (ALA), playing important roles in agriculture, medicine and other fields, are multifunctional non-protein amino acids with similar and comparable properties and biosynthesis pathways. Recently, microbial synthesis has become an inevitable trend to produce GABA and ALA due to its green and sustainable characteristics. In addition, the development of metabolic engineering and synthetic biology has continuously accelerated and increased the GABA and ALA yield in microorganisms. Here, focusing on the current trends in metabolic engineering strategies for microbial synthesis of GABA and ALA, we analysed and compared the efficiency of various metabolic strategies in detail. Moreover, we provide the insights to meet challenges of realizing industrially competitive strains and highlight the future perspectives of GABA and ALA production.
Collapse
Affiliation(s)
- Anping Su
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Qijun Yu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Ying Luo
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| | - Entao Wang
- Departamento de MicrobiologíaEscuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico City11340Mexico
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil MicrobiologyMinistry of AgricultureCollege of Biological SciencesChina Agricultural UniversityNo.2 Yuanmingyuan West RoadHaidian DistrictBeijing100193China
| |
Collapse
|
13
|
Recent Advances in Photodynamic Imaging and Therapy in Hepatobiliary Malignancies: Clinical and Experimental Aspects. Curr Oncol 2021; 28:4067-4079. [PMID: 34677263 PMCID: PMC8534451 DOI: 10.3390/curroncol28050345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
The therapeutic and diagnostic modalities of light are well known, and derivative photodynamic reactions with photosensitizers (PSs), specific wavelengths of light exposure and the existence of tissue oxygen have been developed since the 20th century. Photodynamic therapy (PDT) is an effective local treatment for cancer-specific laser ablation in malignancies of some organs, including the bile duct. Although curability for extrahepatic cholangiocarcinoma is expected with surgery alone, patients with unresectable or remnant biliary cancer need other effective palliative therapies, including PDT. The effectiveness of PDT for cholangiocarcinoma has been reported experimentally or clinically, but it is not the standard option now due to problems with accompanied photosensitivity, limited access routes of irradiation, tumor hypoxia, etc. Novel derivative treatments such as photoimmunotherapy have not been applied in the field hepatobiliary system. Photodynamic diagnosis (PDD) has been more widely applied in the clinical diagnoses of liver malignancies or liver vascularization. At present, 5-aminolevulinic acid (ALA) and indocyanine green (ICG) dyes are mainly used as PSs in PDD, and ICG has been applied for detecting liver malignancies or vascularization. However, no ideal tools for combining both PDD and PDT for solid tumors, including hepatobiliary malignancies, have been clinically developed. To proceed with experimental and clinical trials, it is necessary to clarify the effective photosensitive drugs that are feasible for photochemical diagnosis and local treatment.
Collapse
|
14
|
Srinivasulu YG, Mozhi A, Goswami N, Yao Q, Xie J. Traceable Nanocluster–Prodrug Conjugate for Chemo-photodynamic Combinatorial Therapy of Non-small Cell Lung Cancer. ACS APPLIED BIO MATERIALS 2021; 4:3232-3245. [DOI: 10.1021/acsabm.0c01611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuvasri Genji Srinivasulu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| | - Anbu Mozhi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, Odisha 751013, India
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| |
Collapse
|
15
|
Wang T, Wu L, Wang Y, Song J, Zhang F, Zhu X. Hexyl-aminolevulinate ethosome-mediated photodynamic therapy against acne: in vitro and in vivo analyses. Drug Deliv Transl Res 2021; 12:325-332. [PMID: 33730323 DOI: 10.1007/s13346-021-00942-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 12/20/2022]
Abstract
Biofilm formation by Propionibacterium acnes is known to cause failure of anti-acne treatment. Conventional therapies for acne are typically inadequate. Accordingly, in this study, we evaluated the therapeutic potential of photodynamic therapy (PDT) using hexyl-aminolevulinate (HAL)-loaded ethosomes (ESs) against the biofilms of P. acnes in vitro and P. acnes-induced inflammatory acne model in vivo. The antibacterial effects of HAL ESs were evaluated using XTT colorimetric assays and scanning electron microscopic observations of morphological changes. P. acnes was intradermally injected into the ears of Sprague-Dawley rats, and the anti-inflammatory effects of HAL ESs were measured by determining changes in appearance, histology, and the antibacterial effects by P. acnes abundance in ear tissues compared with blank control ESs, HAL alone, and 5-aminolevulinic acid (ALA) alone. The highest reduction in viability in P. acnes biofilms was observed after treatment with 5 mg/mL HAL ESs. Notably, blank control ESs also showed significant inhibitory effects. Furthermore, HAL ESs had superior therapeutic effects in the rat model compared with HAL or ALA solutions. The observed therapeutic effects of HAL ESs against P. acnes biofilms and P. acnes-induced inflammation suggest that PDT with HAL-loaded ESs may have potential applications in the treatment of acne.
Collapse
Affiliation(s)
- Tai Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China
| | - Lifang Wu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China
| | - Yingzhe Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China
| | - Jinru Song
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China
| | - Feiyin Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China
| | - Xiaoliang Zhu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou Guangdong, 510515, China.
| |
Collapse
|
16
|
Pogue BW, Rosenthal EL. Review of successful pathways for regulatory approvals in open-field fluorescence-guided surgery. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210023VR. [PMID: 33715318 PMCID: PMC7955139 DOI: 10.1117/1.jbo.26.3.030901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE The modern use of fluorescence in surgery came iteratively through new devices and pre-existing imaging agents, with indications that were paved via regulatory approvals and device clearances. These events led to a growing set of surgery subspecialty uses. AIM This article outlines the key milestones that initiated commercially marketed systems and agents by highlighting temporal sequences and strategic decisions between them, with the goal of helping to inform future successes. APPROACH A review of successful regulatory approvals and the sequences between them was completed for companies that achieved US Food and Drug Administration (FDA) premarket approval or new drug approvals (NDAs) or device clearances in the fields of fluorescent imaging agents, open surgery imaging devices, and their approved medical indications. RESULTS Angiography agents, indocyanine green and fluorescein, were approved for human use as absorbing dyes, and this use in retinal imaging was the precursor to lateral translation into tissue perfusion imaging in the last two decades with a growing number of devices. Many FDA cleared devices for open fluorescence-guided surgery used the predicate created by the SPY SP2000 system. This first system was 510(k) cleared for angiography imaging with a unique split predicate from x-ray imaging of vasculature and retinal fluorescence angiography. Since that time, the lateral spread of open surgery devices being cleared for new indications has been occurring with a growth of adoption in surgical subspecialties. Growth into new surgical subspecialties has been achieved by leveraging different NDAs and clearances between indications, such that medical uses have broadened over time. CONCLUSIONS Key decisions made by developers to advance specific device clearances and NDAs have been based upon existing optical fluorescent agents. The historical lessons and regulatory trends in newer indications and contrast agents can help the field evolve via successful investment in new systems and applications.
Collapse
Affiliation(s)
- Brian W. Pogue
- Thayer School of Engineering at Dartmouth, Center for Imaging Medicine, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - Eben L. Rosenthal
- Stanford University School of Medicine, Palo Alto, California, United States
| |
Collapse
|
17
|
Wang X, Li S, Liu H. Co-delivery of chitosan nanoparticles of 5-aminolevulinic acid and shGBAS for improving photodynamic therapy efficacy in oral squamous cell carcinomas. Photodiagnosis Photodyn Ther 2021; 34:102218. [PMID: 33592329 DOI: 10.1016/j.pdpdt.2021.102218] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The improvement of gene therapy provides hope for the treatment of cancer. However, malignant tumor is a multifactorial disease, which remains difficult to be cured with a single therapy. Our previous study reported that mitochondrial genes glioblastoma-amplified sequence (GBAS) plays a role in the development and treatment of oral squamous cell carcinoma (OSCC). The current study focused on building a mitochondrial-targeting drug co-delivery system for combined photodynamic therapy (PDT) and gene therapy. METHODS 5-aminolevulinic acid (ALA) photosensitizer loaded chitosan (CS) nanoparticles were prepared using ionic crosslinking method, and further synthesized with the GBAS gene plasmid DNA (shGBAS) by electrostatic attraction. We detected the effects of PDT using the co-delivery system (CS-ALA-shGBAS) on cell proliferation and mitochondrial injury by MTT and reactive oxygen species (ROS) assays, respectively. Additionally, a oral cancer Xenograft model of nude mice was built to test its inhibitive effect on the cancerous growth in vivo. RESULTS A novel nanocomposite, CS-ALA-shGBAS, was found to be spherical structures and had good dispersion, stability and hypotoxicity. Gel retardation assay showed that CS-ALA nanoparticle could synthesize shGBAS at and above Nanoparticle/Plasmid ratios of 1/2. Excitingly, the co-delivery system was suitable for transfected cells and displayed a superior mitochondrially targeted killing effect on OSCC in vitro and in vivo. CONCLUSION Our study provides evidence that the chitosan-based co-delivery system of ALA-induced protoporphyrin IX (PpIX) photosensitizer and GBAS gene may be a novel mode of combined therapy for OSCC.
Collapse
Affiliation(s)
- Xing Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China; Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - Shufang Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hongwei Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
18
|
Tewari KM, Dondi R, Yaghini E, Pourzand C, MacRobert AJ, Eggleston IM. Peptide-targeted dendrimeric prodrugs of 5-aminolevulinic acid: A novel approach towards enhanced accumulation of protoporphyrin IX for photodynamic therapy. Bioorg Chem 2021; 109:104667. [PMID: 33611140 DOI: 10.1016/j.bioorg.2021.104667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is a promising approach for the targeted treatment of cancer and various other human disorders. An effective, clinically approved approach in PDT involves the administration of 5-aminolevulinic acid (ALA) to generate elevated levels of the natural photosensitiser protoporphyrin IX (PpIX). The development of prodrugs of ALA is of considerable interest as a means to enhance the efficiency and cell selectivity of PpIX accumulation for PDT applications. In this work a novel peptide-targeted dendrimeric prodrug of 5-aminolevulinic acid (ALA) 13 was synthesised which displays nine copies of ALA on a core structure that is linked to a homing peptide for targeted delivery to a specific cancer cell type. The synthesis was accomplished effectively via a flexible, modular solid phase and solution phase route, using a combination of solid phase peptide synthesis and copper-catalysed azide-alkyne cycloaddition chemistry. The prodrug system shows a sustained and enhanced production of protoporphyrin IX (PpIX) in the MDA-MB-231 cell line that over-expresses the epidernal growth factor receptor (EGFR+) in comparison to equimolar ALA and the corresponding non-targeted ALA dendrimer (nine copies of ALA). This study provides a proof of concept for the development of a new generation of prodrugs for ALA-based photodynamic therapy that can deliver an enhanced ALA payload to specific tissue types.
Collapse
Affiliation(s)
- K M Tewari
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - R Dondi
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - E Yaghini
- Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PE, UK
| | - C Pourzand
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - A J MacRobert
- Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PE, UK
| | - I M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
19
|
Collier NJ, Rhodes LE. Photodynamic Therapy for Basal Cell Carcinoma: The Clinical Context for Future Research Priorities. Molecules 2020; 25:molecules25225398. [PMID: 33218174 PMCID: PMC7698957 DOI: 10.3390/molecules25225398] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 01/11/2023] Open
Abstract
Photodynamic therapy (PDT) is an established treatment option for low-risk basal cell carcinoma (BCC). BCC is the most common human cancer and also a convenient cancer in which to study PDT treatment. This review clarifies challenges to researchers evident from the clinical use of PDT in BCC treatment. It outlines the context of PDT and how PDT treatments for BCC have been developed hitherto. The sections examine the development of systemic and subsequently topical photosensitizers, light delivery regimens, and the use of PDT in different patient populations and subtypes of BCC. The outcomes of topical PDT are discussed in comparison with alternative treatments, and topical PDT applications in combination and adjuvant therapy are considered. The intention is to summarize the clinical relevance and expose areas of research need in the BCC context, ultimately to facilitate improvements in PDT treatment.
Collapse
|
20
|
ALA-PDT combined with cystoscopy: A method to eliminate refractory HPV infection in a patient with condyloma acuminata. Photodiagnosis Photodyn Ther 2020; 31:101763. [PMID: 32276115 DOI: 10.1016/j.pdpdt.2020.101763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Condyloma acuminata is a common sexually transmitted disease for which an underlying chronic human papillomavirus (HPV) infection is an important cause of recurrence. 5-aminolaevulinic acid-mediated photodynamic therapy (ALA-PDT) has become an effective method to treat condyloma acuminata. Urinary tract condyloma acuminata are not considered common, but warts in the bladder can be detected by cystoscopy. OBJECTIVE To treat a urinary tract HPV infection in a 35 years old woman diagnosed with condyloma acuminata and to eliminate HPV infection. METHOD A total of six sessions of ALA-PDT to the cervix and seven sessions of ALA-PDT to the vagina were executed, and the patient subsequently had a cystoscope examination. The wart in the bladder was found by cystoscopy and cauterized with radiofrequency. RESULT Internal urethra, urethral orifice, cervical, vaginal, and vulvar HPV-DNA detection eventually all returned negative results, and there was no recurrence with two years of follow-up.
Collapse
|
21
|
Ma L, Yang X, Yao X, Weng W. Solubilization of Hexyl Aminolevulinate by Surfactants for Tumor Fluorescence Detection. Photochem Photobiol 2020; 96:1088-1095. [PMID: 32125708 DOI: 10.1111/php.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
Hexyl aminolevulinate (HAL) is a lipophilic derivative of 5-aminolevulinic acid (5-ALA) and can induce more protoporphyrin IX (PpIX) formation and stronger fluorescence intensity (FI) than 5-ALA, which will greatly facilitate photodynamic diagnosis and therapy. The main drawback of HAL is its low solubility in neutral aqueous media. In this study, surfactants were used to increase HAL solubility in the cell culture medium and serum, followed by in vitro fluorescence formation measurement in human pancreatic cancer cells (SW1990) and in vivo fluorescence detection in tumor-bearing mice. The results showed that Tween 80 (TW80) and Kolliphor® HS 15 (HS15) increased the solubility of HAL in the selected media. Although TW80 and HS15 exhibited in vitro cytotoxicity at high concentrations (5 mg mL-1 ), they facilitated fluorescent signal formation at the early stage of cell incubation. When surfactants were used, the FI should be determined without the routine washing process because surfactant-containing culture medium caused the loss of synthesized PpIX during the washing process. When HAL dissolved in TW80 solution was injected intraperitoneally into pancreatic cancer-bearing mice at a dose of 50 mg kg-1 , the tumors exhibited red fluorescence, which indicated that systemic administration of surfactant-solubilized HAL might be applicable for tumor fluorescence detection in vivo.
Collapse
Affiliation(s)
- Lirong Ma
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xuanlin Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiuzhong Yao
- Department of Radiology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiyu Weng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
22
|
Metalloporphyrin Pd(T4) Exhibits Oncolytic Activity and Cumulative Effects with 5-ALA Photodynamic Treatment against C918 Cells. Int J Mol Sci 2020; 21:ijms21020669. [PMID: 31968535 PMCID: PMC7013453 DOI: 10.3390/ijms21020669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy is a non-invasive method where light activates a photosensitizer bound to cancer cells, generating reactive oxygen species and resulting in cell death. This study assessed the oncolytic potential of photodynamic therapy, comparing European Medicines Agency and United States Food and Drug Administration-approved 5-aminolevulinic acid (5-ALA) to a metalloporphyrin, Pd(T4), against a highly invasive uveal melanoma cell line (C918) in two- and three-dimensional models in vitro. Epithelial monolayer studies displayed strong oncolytic effects (>70%) when utilizing Pd(T4) at a fraction of the concentration, and reduced pre-illumination time compared to 5-ALA post-405 nm irradiance. When analyzed at sub-optimal concentrations, application of Pd(T4) and 5-ALA with 405 nm displayed cumulative effects. Lethality from Pd(T4)-photodynamic therapy was maintained within a three-dimensional model, including the more resilient vasculogenic mimicry-forming cells, though at lower rates. At high concentrations, modality of cell death exhibited necrosis partially dependent on reactive oxygen species. However, sub-optimal concentrations of photosensitizer exhibited an apoptotic protein expression profile characterized by increased Bax/Bcl-2 ratio and endoplasmic stress-related proteins, along with downregulation of apoptotic inhibitors CIAP-1 and -2. Together, our results indicate Pd(T4) as a strong photosensitizer alone and in combination with 5-ALA against C918 cells.
Collapse
|
23
|
Cui Z, Jiang Z, Zhang J, Zheng H, Jiang X, Gong K, Liang Q, Wang Q, Qi Q. Stable and Efficient Biosynthesis of 5-Aminolevulinic Acid Using Plasmid-Free Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1478-1483. [PMID: 30644739 DOI: 10.1021/acs.jafc.8b06496] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
5-Aminolevulinic acid (5-ALA) is a key metabolic intermediate of the heme biosynthesis pathway, which has broad application prospects in agriculture and medicine. However, segregational instability of plasmid-based expression systems and low yield have hampered large-scale manufacture of 5-ALA. In this study, two important genes of the 5-ALA C5 biosynthesis pathway, hemA and hemL, were integrated into Escherichia coli MG1655 for chemically induced chromosomal evolution (CIChE). The highest hemA and hemL copy-number, 98 per genome, was obtained in CIChE strain MG136. The 5-ALA titer of this strain reached 2724 mg/L in optimized condition. Then, after undergoing adaptative evolution and the deletion of recA, strain MG136a ΔrecA::FRT could stably produce 4550 mg/L 5-ALA from glucose, 450 times the amount produced by hemA- hemL single copy strain MG1655-hemAL. This study constructed a plasmid-free E. coli strain for 5-ALA production, which will provide the basis for further manipulation of metabolic regulation and optimization of fermentation.
Collapse
Affiliation(s)
- Zhiyong Cui
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Zhennan Jiang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Jinhong Zhang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Huihui Zheng
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Xin Jiang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Kai Gong
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center , Shandong University , Qingdao 266237 , P. R. China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Qingdao 266101 , P. R. China
| |
Collapse
|
24
|
Mahoney CE, Pirman D, Chubukov V, Sleger T, Hayes S, Fan ZP, Allen EL, Chen Y, Huang L, Liu M, Zhang Y, McDonald G, Narayanaswamy R, Choe S, Chen Y, Gross S, Cianchetta G, Padyana AK, Murray S, Liu W, Marks KM, Murtie J, Dorsch M, Jin S, Nagaraja N, Biller SA, Roddy T, Popovici-Muller J, Smolen GA. A chemical biology screen identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. Nat Commun 2019; 10:96. [PMID: 30626880 PMCID: PMC6327044 DOI: 10.1038/s41467-018-07959-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Aberrant metabolism of cancer cells is well appreciated, but the identification of cancer subsets with specific metabolic vulnerabilities remains challenging. We conducted a chemical biology screen and identified a subset of neuroendocrine tumors displaying a striking pattern of sensitivity to inhibition of the cholesterol biosynthetic pathway enzyme squalene epoxidase (SQLE). Using a variety of orthogonal approaches, we demonstrate that sensitivity to SQLE inhibition results not from cholesterol biosynthesis pathway inhibition, but rather surprisingly from the specific and toxic accumulation of the SQLE substrate, squalene. These findings highlight SQLE as a potential therapeutic target in a subset of neuroendocrine tumors, particularly small cell lung cancers.
Collapse
Affiliation(s)
| | - David Pirman
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Victor Chubukov
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Taryn Sleger
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Sebastian Hayes
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Zi Peng Fan
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Eric L Allen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Ying Chen
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | - Lingling Huang
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | - Meina Liu
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | - Yingjia Zhang
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | | | | | - Sung Choe
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Yue Chen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Stefan Gross
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | | | - Anil K Padyana
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Stuart Murray
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Wei Liu
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Kevin M Marks
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Joshua Murtie
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Marion Dorsch
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Shengfang Jin
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | | | - Scott A Biller
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Thomas Roddy
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Janeta Popovici-Muller
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
- Decibel Therapeutics, 1325 Boylston Street, Suite 500, Boston, MA, 02215, USA
| | - Gromoslaw A Smolen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA.
- Celsius Therapeutics, 215 First Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
25
|
Courrol LC, de Oliveira Gonçalves K, Vieira DP. Emerging Role of Aminolevulinic Acid and Gold Nanoparticles Combination in Theranostic Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Zhang X, Chen L, Gao L, Gao X, Li N, Song Y, Huang X, Lin S, Wang X. Comparative Study of the Effects of Ferrochelatase-siRNA Transfection Mediated by Ultrasound Microbubbles and Polyethyleneimine in Combination with Low-dose ALA to Enhance PpIX Accumulation in Human Endometrial Cancer Xenograft Nude Mice Models. Photochem Photobiol 2018; 95:1045-1051. [PMID: 30582757 DOI: 10.1111/php.13076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023]
Abstract
Comparison of the fluorescence intensity caused by the accumulation of PpIX in endometrial cancer xenografts in nude mice after low-dose 5-Aminolevulinic acid (ALA) injection combined with siRNA transfection was mediated by ultrasound microbubbles and polyethyleneimine (PEI) to explore the feasibility of the ultrasound microbubble technique as transfection agents. Knockdown of ferrochelatase (FECH) in human endometrial cancer xenografts in nude mice was performed by transfection with FECH-siRNA mediated by PEI and ultrasound microbubbles alone or in combination; then, low-dose ALA was injected. Subsequently, an in vivo animal imaging system was employed to detect the fluorescence intensity in xenografts. Red fluorescence was observed in xenografts given more than 6.25 mg kg-1 of ALA. When the dose of ALA was greater than 50 mg kg-1 , there was a significant difference in the fluorescence between tumor and other tissues. After the nude mice were transfected with siRNA and treated with low-dose ALA (1.0 mg kg-1 ), apparent PpIX fluorescence of the xenografts was observed, and the fluorescence intensity was PEI+ ultrasound microbubbles > PEI > ultrasound microbubbles. Ultrasound microbubbles in combination with PEI could generate a higher fluorescence intensity of PpIX than that obtained with ultrasound microbubbles or PEI alone, and ultrasound microbubbles could wholly or partially replace PEI under certain conditions.
Collapse
Affiliation(s)
- Xian Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Longfei Chen
- The First People's Hospital of Foshan, Foshan, China
| | - Lvfen Gao
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xuesong Gao
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Nan Li
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuwei Song
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xinke Huang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shaoqiang Lin
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoyu Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Lim HW. Shedding light on photodynamic therapy for basal cell carcinoma. Br J Dermatol 2018; 179:1240-1241. [PMID: 30508235 DOI: 10.1111/bjd.17187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Henry Ford Medical Center - New Center One, 3031 West Grand Blvd, Suite 800, Detroit, MI, 48202, U.S.A
| |
Collapse
|
28
|
Thermal photodynamic therapy increases apoptosis and reactive oxygen species generation in cutaneous and mucosal squamous cell carcinoma cells. Sci Rep 2018; 8:12599. [PMID: 30135507 PMCID: PMC6105655 DOI: 10.1038/s41598-018-30908-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/30/2018] [Indexed: 11/08/2022] Open
Abstract
Thermal photodynamic therapy (PDT) is an emerging modality to optimize treatment of pre-cancerous squamous cell carcinoma (SCC) lesions, known as actinic keratoses. Thermal PDT involves heating the tissue, skin, or mucosa above normal skin temperature during 5-aminolevulinic (5-ALA) incubation and irradiating with blue light, which leads to cell apoptosis and reactive oxygen species (ROS) generation. To our knowledge, thermal PDT has not been studied for the treatment of cutaneous or mucosal SCC. We incubated two SCC cell lines with 5-ALA for 30 minutes at temperatures between 21 °C and 42 °C and then irradiated cells with 1000 seconds of blue light. We measured changes in apoptosis, necrosis, and ROS. At 36 °C, there was a dose-dependent increase in apoptosis and ROS generation. Thermal incubation of 5-ALA at 39° and 42 °C followed by blue light increased cell apoptosis and ROS generation compared to untreated control samples incubated at the same temperatures. Thermal PDT may represent a new treatment option for cutaneous and mucosal SCC cancer. Thermal PDT is associated with an increase in SCC cellular apoptosis and is associated with an upregulation in ROS. Clinical trials are required to determine optimal thermal PDT treatment parameters and efficacy for cutaneous and mucosal SCC.
Collapse
|
29
|
Yu X, Zheng H, Chan MTV, Wu WKK. Immune consequences induced by photodynamic therapy in non-melanoma skin cancers: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:20569-20574. [PMID: 29948701 DOI: 10.1007/s11356-018-2426-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Photodynamic therapy (PDT) is widely used in dermatology to treat precancerous skin lesions and superficial non-melanoma skin cancers (NMSCs), including premalignant actinic keratosis, cutaneous squamous cell carcinoma in situ, and superficial basal cell carcinoma. The long-term cure rates of PDT range from 70 to 90% in NMSC patients, with excellent cosmetic results and good tolerance. However, the mechanism of action of PDT on tumors is complex. PDT not only kills tumor cells directly but also rapidly recruits immune cells to release inflammatory mediators to activate antitumor immunity. PDT-induced tumor death, also called immunogenic cell death, can trigger both innate and adaptive immune response, further enhancing the antitumor effect. For instance, inoculation of tumor cells killed via PDT to animals triggered a stronger antitumor immunity in vivo than tumor cell lysates produced by other treatments. More importantly, many immunotherapy regimens based on the immune effect of PDT have been developed and demonstrated to be a promising therapeutic method for cancer in pre-clinical trials. Therefore, increasing efforts have been undertaken to investigate the immune responses associated with PDT. In the present review, we first introduce the antitumor effect and the associated mechanisms of PDT in cancers. Then, we summarize studies on the immune responses induced by PDT in NMSCs. We also discuss the potential mechanisms underlying the process.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China.
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
30
|
Tewari KM, Eggleston IM. Chemical approaches for the enhancement of 5-aminolevulinic acid-based photodynamic therapy and photodiagnosis. Photochem Photobiol Sci 2018; 17:1553-1572. [DOI: 10.1039/c8pp00362a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of photodynamic therapy and photodiagnosis with 5-aminolevulinic acid presents a number of challenges that can be addressed by applying chemical insight and a range of novel prodrug strategies.
Collapse
Affiliation(s)
- Kunal M. Tewari
- Department of Pharmacy and Pharmacology
- University of Bath
- Bath BA2 7AY
- UK
| | - Ian M. Eggleston
- Department of Pharmacy and Pharmacology
- University of Bath
- Bath BA2 7AY
- UK
| |
Collapse
|
31
|
In vitro assessment of anti-tumorigenic mechanisms and efficacy of NanoALA, a nanoformulation of aminolevulic acid designed for photodynamic therapy of cancer. Photodiagnosis Photodyn Ther 2017; 20:62-70. [PMID: 28838760 DOI: 10.1016/j.pdpdt.2017.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND The development of nanocarriers is an important approach to increase the bioavailability of hydrophilic drugs in target cells. In this work, we evaluated the anti-tumorigenic mechanisms and efficacy of NanoALA, a novel nanoformulation of aminolevulic acid (ALA) based on poly(lactide-co-glycolide) (PLGA) nanocapsules designed for anticancer photodynamic therapy (PDT). METHODS For this purpose, physicochemical characterization, prodrug incorporation kinetics, biocompatibility and photocytotoxicity tests, analysis of the cell death type and mitochondrial function, measurement of the intracellular reactive oxygen species production and DNA fragmentation were performed in murine mammary carcinoma (4T1) cells. RESULTS NanoALA formulation, stable over a period of 90days following synthesis, presented hydrodynamic diameter of 220±8.7nm, zeta potential of -30.6mV and low value of polydispersity index (0.28). The biological assays indicated that the nanostructured product promotes greater ALA uptake by 4T1 cells and consequently more cytotoxicity in the PDT process. For the first time in the scientific literature, there is a therapeutic efficacy report of approximately 80%, after only 1h of incubation with 100μgmL-1 prodrug (0.6mM ALA equivalent). The mitochondria are probably the initial target of treatment, culminating in energy metabolism disorders and cell death by apoptosis. CONCLUSIONS NanoALA emerges as a promising strategy for anticancer PDT. Besides being effective against a highly aggressive tumor cell line, the treatment may be economically advantageous because it allows a reduction in the dose and frequency of application compared to free ALA.
Collapse
|
32
|
Wen X, Li Y, Hamblin MR. Photodynamic therapy in dermatology beyond non-melanoma cancer: An update. Photodiagnosis Photodyn Ther 2017. [PMID: 28647616 DOI: 10.1016/j.pdpdt.2017.06.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photodynamic therapy (PDT) employs a photosensitizer (PS) and visible light in the presence of oxygen, leading to production of cytotoxic reactive oxygen species, which can damage the cellular organelles and cause cell death. In dermatology, PDT has usually taken the form of topical application of a precursor in the heme biosynthesis pathway, called 5-aminolevulinic acid (or its methyl ester), so that an active PS, protoporphyrin IX accumulates in the skin. As PDT enhances dermal remodeling and resolves chronic inflamation, it has been used to treat cutaneous disorders include actinic keratoses, acne, viral warts, skin rejuvenation, psoriasis, localized scleroderma, some non-melanoma skin cancers and port-wine stains. Efforts are still needed to mitigate the side effects (principally pain) and improve the overall procedure.
Collapse
Affiliation(s)
- Xiang Wen
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu, Sichuan,610041,China; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Yong Li
- Department of Dermatology, West China Hospital of Sichuan University, Chengdu, Sichuan,610041,China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
33
|
Peng X, Qian W, Hou J. 5-aminolevulinic acid (5-ALA) fluorescence-guided Mohs surgery resection of penile-scrotal extramammary Paget's disease. Biosci Trends 2017; 11:595-599. [DOI: 10.5582/bst.2017.01224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaoqiong Peng
- Department of Urology Research Institute, Huashan Hospital Affiliated to Fudan University
| | - Wei Qian
- Department of Urology Research Institute, Huashan Hospital Affiliated to Fudan University
| | - Jiangang Hou
- Department of Urology Research Institute, Huashan Hospital Affiliated to Fudan University
| |
Collapse
|