1
|
Mohammadi MA, Alizadeh AM, Mousavi M, Hashempour-Baltork F, Kooki S, Shadan MR, Hosseini SM, McClements DJ. Advances and applications of crosslinked electrospun biomacromolecular nanofibers. Int J Biol Macromol 2024; 271:132743. [PMID: 38821308 DOI: 10.1016/j.ijbiomac.2024.132743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Electrospinning is a technology for fabricating ultrafine fibers from natural or synthetic polymers that have novel or enhanced functional properties. These fibers have found applications in a diverse range of fields, including the food, medicine, cosmetics, agriculture, and chemical industries. However, the tendency for electrospun nanofibers to dissociate when exposed to certain environmental conditions limits many of their practical applications. The structural integrity and functional attributes of these nanofibers can be improved using physical and/or chemical crosslinking methods. This review article discusses the formation of polymeric nanofibers using electrospinning and then describes how different crosslinking methods can be used to enhance their mechanical, thermal, and biological attributes. Methods for optimizing the crosslinking reactions are discussed, including proper selection of crosslinker type and reaction conditions. Then, food, medical, and separation applications of crosslinked electrospun fibers are assessed, including in bone and skin tissue engineering, wound healing, drug delivery, air filtration, water filtration, oil removal, food packaging, food preservation, and bioactive delivery. Finally, areas where future research are needed are highlighted, as well as possible future applications of crosslinked nanofibers.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Malihe Mousavi
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fataneh Hashempour-Baltork
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Safa Kooki
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Reza Shadan
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Technology, Faculty of Nutrition Science and Food Technology, Nutritional, and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
2
|
Quinaz T, Freire TF, Olmos A, Martins M, Ferreira FBN, de Moura MFSM, Zille A, Nguyễn Q, Xavier J, Dourado N. The Influence of Hydroxyapatite Crystals on the Viscoelastic Behavior of Poly(vinyl alcohol) Braid Systems. Biomimetics (Basel) 2024; 9:93. [PMID: 38392139 PMCID: PMC10886535 DOI: 10.3390/biomimetics9020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Composites of poly(vinyl alcohol) (PVA) in the shape of braids, in combination with crystals of hydroxyapatite (HAp), were analyzed to perceive the influence of this bioceramic on both the quasi-static and viscoelastic behavior under tensile loading. Analyses involving energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) allowed us to conclude that the production of a homogeneous layer of HAp on the braiding surface and the calcium/phosphate atomic ratio were comparable to those of natural bone. The maximum degradation temperature established by thermogravimetric analysis (TGA) showed a modest decrease with the addition of HAp. By adding HAp to PVA braids, an increase in the glass transition temperature (Tg) is noticed, as demonstrated by dynamic mechanical analysis (DMA) and differential thermal analysis (DTA). The PVA/HAp composite braids' peaks were validated by Fourier transform infrared (FTIR) spectroscopy to be in good agreement with common PVA and HAp patterns. PVA/HAp braids, a solution often used in the textile industry, showed superior overall mechanical characteristics in monotonic tensile tests. Creep and relaxation testing showed that adding HAp to the eight and six-braided yarn architectures was beneficial. By exhibiting good mechanical performance and most likely increased biological qualities that accompany conventional care for bone applications in the fracture healing field, particularly multifragmentary ones, these arrangements can be applied as a fibrous fixation system.
Collapse
Affiliation(s)
- Tiago Quinaz
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Tânia F Freire
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Andrea Olmos
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Marcos Martins
- INESC TEC, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando B N Ferreira
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Marcelo F S M de Moura
- Departamento de Engenharia Mecânica, Faculdade de Engenharia da Universidade do Porto, 4200-464 Porto, Portugal
| | - Andrea Zille
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - Quyền Nguyễn
- 2C2T-Centro de Ciência e Tecnologia Têxtil, Departamento de Engenharia Têxtil, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
| | - José Xavier
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- LASI, Intelligent Systems Associate Laboratory, 4800-058 Guimarães, Portugal
| | - Nuno Dourado
- CMEMS-UMinho, Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4804-533 Guimarães, Portugal
- LABBELS-Laboratório Associado, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Lv H, Wang C, He D, Zhao H, Zhao M, Xu E, Jin Z, Yuan C, Guo L, Wu Z, Liu P, Cui B. Intelligent food tag: A starch-anthocyanin-based pH-sensitive electrospun nanofiber mat for real-time food freshness monitoring. Int J Biol Macromol 2024; 256:128384. [PMID: 38029905 DOI: 10.1016/j.ijbiomac.2023.128384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
A starch-based nanofiber mat was prepared for real-time monitoring of food freshness for the first time. UV-vis results showed that roselle anthocyanins (RS) conferred a wide pH sensing range on the nanofiber mat. The prepared nanofiber mats demonstrated good color visibility (total color difference value (ΔE) increased to 56.4 ± 0.7) and a reversible response (within 120 s). Scanning electron microscopy and Fourier transform infrared spectroscopy results suggested that the nanofibers had smooth surfaces without beaded fibers and that RS was well embedded into the nanofibers. The introduction of RS improved the thermal stability of the nanofibers. Color stability tests revealed that the nanofibers exhibited excellent color stability (maximum change ΔE = 1.57 ± 0.03) after 14 days of storage. Pork and shrimp freshness tests verified that the nanofibers could effectively reflect the dynamic freshness of pork and shrimp. Nontoxic, degradable and responsive characteristics make the pH-sensitive nanofiber mat a smart food label with great application potential.
Collapse
Affiliation(s)
- Haowei Lv
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chenxi Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Deyun He
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Meng Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
4
|
Shaabani A, Bizari D, Khoshmohabat H. PEGylated curcumin-loaded poly(vinyl alcohol)/Zwitterionic poly(sulfobetaine vinylimidazole)-grafted chitosan nanofiber as a second-degree burn wound dressing. Carbohydr Polym 2023; 321:121307. [PMID: 37739537 DOI: 10.1016/j.carbpol.2023.121307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 09/24/2023]
Abstract
Burn injuries damage skin function and increased the risk of infection. Using natural-inspired antibiotic-free nanofibrous in wound healing has attracted increasing attention. Here, mPEG-Curcumin (mPEG-CUR) was synthesized through a novel, cheap, and high-efficiency method, and incorporated onto poly(vinyl alcohol) (PVA)/zwitterionic poly(sulfobetaine vinylimidazole)-grafted chitosan (CS-g-PNVIS) nanofiber. Due to the lack of electrospinning capability of CS-g-PNVIS and its brittleness, to obtain nanofibers with uniform and bead-free morphology, PVA was used as an electrospinning aid polymer, so that the prepared nanofibers have suitable mechanical properties with an average diameter between 115 ± 18-157 ± 39 nm. The heat-treated nanofibers have adequate swelling and dimensional stability. Time-killing assay proved the antibacterial activity of the mPEG-CUR-loaded nanofibers towards Gram-positive and Gram-negative bacterium. The MTT investigation illustrated the non-cytotoxicity and biocompatibility of the nanofibers. In vivo studies exhibited significant improvement in the mean wound area closure by applying mPEG-CUR nanofibers. The mPEG-CUR-loaded nanofibers showed the highest antioxidant (86 %) power after 40 min. Moreover, nanofibers possess a desirable WVT rate (3.4 ± 0.24-5.5 ± 0.3 kg/m2.d) and good breathability and had the potential to supply a suitable moist environment in the wounded area. This approach can be the beginning of a new path in designing a new generation of nanofiber mats for wound healing applications.
Collapse
Affiliation(s)
- Alireza Shaabani
- Trauma Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davood Bizari
- Trauma Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hadi Khoshmohabat
- Trauma Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Scaffaro R, Settanni L, Gulino EF. Release Profiles of Carvacrol or Chlorhexidine of PLA/Graphene Nanoplatelets Membranes Prepared Using Electrospinning and Solution Blow Spinning: A Comparative Study. Molecules 2023; 28:molecules28041967. [PMID: 36838955 PMCID: PMC9962789 DOI: 10.3390/molecules28041967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Nanofibrous membranes are often the core components used to produce devices for a controlled release and are frequently prepared by electrospinning (ES). However, ES requires high production times and costs and is not easy to scale. Recently, solution blow spinning (SBS) has been proposed as an alternative technique for the production of nanofibrous membranes. In this study, a comparison between these two techniques is proposed. Poly (lactic acid)-based nanofibrous membranes were produced by electrospinning (ES) and solution blow spinning (SBS) in order to evaluate the different effect of liquid (carvacrol, CRV) or solid (chlorhexidine, CHX) molecules addition on the morphology, structural properties, and release behavior. The outcomes revealed that both ES and SBS nanofibrous mat allowed for obtaining a controlled release up to 500 h. In detail, the lower wettability of the SBS system allowed for slowing down the CRV release kinetics, compared to the one obtained for ES membranes. On the contrary, with SBS, a faster CHX release can be obtained due to its more hydrophilic behavior. Further, the addition of graphene nanoplatelets (GNP) led to a decrease in wettability and allowed for a slowing down of the release kinetics in the whole of the systems.
Collapse
Affiliation(s)
- Roberto Scaffaro
- Department of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, PA, Italy
- Correspondence: (R.S.); (E.F.G.)
| | - Luca Settanni
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, PA, Italy
| | - Emmanuel Fortunato Gulino
- Department of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, PA, Italy
- Correspondence: (R.S.); (E.F.G.)
| |
Collapse
|
6
|
Homer WJA, Lisnenko M, Gardner AC, Kostakova EK, Valtera J, Wall IB, Jencova V, Topham PD, Theodosiou E. Assessment of thermally stabilized electrospun poly(vinyl alcohol) materials as cell permeable membranes for a novel blood salvage device. BIOMATERIALS ADVANCES 2022; 144:213197. [PMID: 36462387 DOI: 10.1016/j.bioadv.2022.213197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
The use of Intraoperative Cell Salvage (ICS) is currently limited in oncological surgeries, due to safety concerns associated with the ability of existing devices to successfully remove circulating tumour cells. In this work, we present the first stages towards the creation of an alternative platform to current cell savers, based on the extremely selective immunoaffinity membrane chromatography principle. Non-woven membranes were produced via electrospinning using poly(vinyl alcohol) (PVA), and further heat treated at 180 °C to prevent their dissolution in aqueous environments and preserve their fibrous morphology. The effects of the PVA degree of hydrolysis (DH) (98 % vs 99 %), method of electrospinning (needleless DC vs AC), and heat treatment duration (1-8 h) were investigated. All heat treated supports maintained their cytocompatibility, whilst tensile tests indicated that the 99 % hydrolysed DC electrospun mats were stronger compared to their 98 % DH counterparts. Although, and at the described conditions, AC electrospinning produced fibres with more than double the diameter compared to those from DC electrospinning, it was not chosen for subsequent experiments because it is still under development. Evidence of unimpeded passage of SY5Y neuroblastoma cells and undiluted defibrinated sheep's blood in flow-through filtration experiments confirmed the successful creation of 3D networks with minimum resistance to mass transfer and lack of non-specific cell binding to the base material, paving the way for the development of novel, highly selective ICS devices for tumour surgeries.
Collapse
Affiliation(s)
- W Joseph A Homer
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Maxim Lisnenko
- Dpt. Of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Adrian C Gardner
- The Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham, UK; College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Eva K Kostakova
- Dpt. Of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Jan Valtera
- Dpt. Of Textile Machine Design, Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Ivan B Wall
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Vera Jencova
- Dpt. Of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Liberec, Czech Republic
| | - Paul D Topham
- Chemical Engineering and Applied Chemistry, College of Engineering and Physical Sciences, Aston University, Birmingham, UK
| | - Eirini Theodosiou
- Engineering for Health Research Centre, College of Engineering and Physical Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
7
|
Forghani S, Zeynali F, Almasi H, Hamishehkar H. Characterization of electrospun nanofibers and solvent-casted films based on Centaurea arvensis anthocyanin-loaded PVA/κ-carrageenan and comparing their performance as colorimetric pH indicator. Food Chem 2022; 388:133057. [PMID: 35483293 DOI: 10.1016/j.foodchem.2022.133057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/04/2022]
Abstract
In this research, PVA/Ҡ-carrageenan-based colorimetric indicators incorporated with Centaurea arvensis anthocyanin (CAE) were fabricated by two electrospinning and solvent casting methods and their performance as pH indicators were assessed. Chemical immobilization of CAE on PVA and PVA/Ҡ-carrageenan matrixes was approved by FT-IR analysis. According to SEM images, Ҡ-carrageenanaddition improved the homogeneity of films and decreased the diameter of nanofibers. The crystalline structure and thermal properties of polymeric matrixes were affected by anthocyanin incorporation. CAE had an adverse effect on mechanical properties of films and nanofibers. The preparation method and type of solid matrix affected the responsiveness and the tonality of responded color. Electrospun nanofibers showed high responsiveness (10 s) than colorimetric films (15-40 min) to pH changes. The indicators displayed color variations from heather violet to green over the 2-12 pH range. The designed indicators have potential to be applied as visual pH label in food intelligent packaging.
Collapse
Affiliation(s)
- Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Fariba Zeynali
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Fabrication of Ag NPs decorated on electrospun PVA/PEI nanofibers as SERS substrate for detection of enrofloxacin. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Kołbuk D, Ciechomska M, Jeznach O, Sajkiewicz P. Effect of crystallinity and related surface properties on gene expression of primary fibroblasts. RSC Adv 2022; 12:4016-4028. [PMID: 35425452 PMCID: PMC8980997 DOI: 10.1039/d1ra07237d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
The biomaterial-cells interface is one of the most fundamental issues in tissue regeneration. Despite many years of scientific work, there is no clear answer to what determines the desired adhesion of cells and the synthesis of ECM proteins. Crystallinity is a characteristic of the structure that influences the surface and bulk properties of semicrystalline polymers used in medicine. The crystallinity of polycaprolactone (PCL) was varied by changing the molecular weight of the polymer and the annealing procedure. Measurements of surface free energy showed differences related to substrate crystallinity. Additionally, the water contact angle was determined to characterise surface wettability which was crucial in the analysis of protein absorption. X-ray photoelectron spectroscopy was used to indicate oxygen bonds amount on the surface. Finally, the impact of the crystallinity, and related properties were demonstrated on dermal fibroblasts' response. Cellular proliferation and expression of selected genes: α-SMA, collagen I, TIMP, integrin were analysed.
Collapse
Affiliation(s)
- Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5b 02-106 Warsaw Poland
| | - Marzena Ciechomska
- National Institute of Geriatrics, Rheumatology and Rehabilitation Spartańska 1 02-637 Warsaw Poland
| | - Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5b 02-106 Warsaw Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5b 02-106 Warsaw Poland
| |
Collapse
|
10
|
Nunes R, Bogas S, Faria MJ, Gonçalves H, Lúcio M, Viseu T, Sarmento B, das Neves J. Electrospun fibers for vaginal administration of tenofovir disoproxil fumarate and emtricitabine in the context of topical pre-exposure prophylaxis. J Control Release 2021; 334:453-462. [PMID: 33961916 DOI: 10.1016/j.jconrel.2021.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
Women are particularly vulnerable to sexual HIV-1 transmission. Oral pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) is highly effective in avoiding new infections in men, but protection has only been shown to be moderate in women. Such differences have been associated, at least partially, to poor drug penetration of the lower female genital tract and the need for strict adherence to continuous daily oral intake of TDF/FTC. On-demand topical microbicide products could help circumvent these limitations. We developed electrospun fibers based on polycaprolactone (PCL fibers) or liposomes associated to poly(vinyl alcohol) (liposomes-in-PVA fibers) for the vaginal co-delivery of TDF and FTC, and assessed their pharmacokinetics in mice. PCL fibers and liposomes-in-PVA fibers were tested for morphological and physicochemical properties using scanning electron microscopy, differential scanning calorimetry and X-ray diffractometry. Fibers featured organoleptic and mechanical properties compatible with their suitable handling and vaginal administration. Fluorescent quenching of mucin in vitro - used as a proxy for mucoadhesion - was intense for PCL fibers, but mild for liposomes-in-PVA fibers. Both fibers were shown safe in vitro and able to rapidly release drug content (15-30 min) under sink conditions. Liposomes-in-PVA fibers allowed increasing genital drug concentrations after a single intravaginal administration when compared to continuous daily treatment for five days with 25-times higher oral doses. For instance, the levels of tenofovir and FTC in vaginal lavage were around 4- and 29-fold higher, respectively. PCL fibers were also superior to oral treatment, although to a minor extent (approximately 2-fold higher drug concentrations in lavage). Vaginal tissue drug levels were generally low for all treatments, while systemic drug exposure was negligible in the case of fibers. These data suggest that proposed fibers may provide an interesting alternative or an ancillary option to oral PrEP in women.
Collapse
Affiliation(s)
- Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - Sarah Bogas
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal
| | - Maria João Faria
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal
| | | | - Marlene Lúcio
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal; CBMA - Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal.
| | - Teresa Viseu
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal.
| |
Collapse
|
11
|
Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles. Polymers (Basel) 2020; 13:polym13010057. [PMID: 33375726 PMCID: PMC7795713 DOI: 10.3390/polym13010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/02/2022] Open
Abstract
This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.
Collapse
|
12
|
Electrospun nanofibers of poly(vinyl alcohol) and chitosan-based emulsions functionalized with cabreuva essential oil. Int J Biol Macromol 2020; 160:307-318. [DOI: 10.1016/j.ijbiomac.2020.05.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
|
13
|
Li X, Li B, Ullah MW, Panday R, Cao J, Li Q, Zhang Y, Wang L, Yang G. Water-stable and finasteride-loaded polyvinyl alcohol nanofibrous particles with sustained drug release for improved prostatic artery embolization — In vitro and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111107. [DOI: 10.1016/j.msec.2020.111107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/18/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
|
14
|
More N, Ranglani D, Kharche S, Kapusetti G. Electrospun mat of thermal‐treatment‐induced nanocomposite hydrogel of polyvinyl alcohol and cerium oxide for biomedical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Namdev More
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Deepak Ranglani
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Shubham Kharche
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Govinda Kapusetti
- Department of Medical DevicesNational Institute of Pharmaceutical Education and Research Ahmedabad India
| |
Collapse
|
15
|
Functional Micro- and Nanofibers Obtained by Nonwoven Post-Modification. Polymers (Basel) 2020; 12:polym12051087. [PMID: 32397603 PMCID: PMC7285086 DOI: 10.3390/polym12051087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Micro- and nanofibers are historically-known materials that are continuously reinvented due to their valuable properties. They display promise for applications in many fields, from tissue engineering to catalysis or sensors. In the first application, micro- and nanofibers are mainly produced from a limited library of biomaterials with properties that need alteration before use. Post-modification is a very effective method for attaining on-demand features and functions of nonwovens. This review summarizes and presents methods of functionalization of nonwovens produced by electrostatic means. The reviewed modifications are grouped into physical methods, chemical modification, and mixed methods.
Collapse
|
16
|
Yeo JH, Kim M, Lee H, Cho J, Park J. Facile and Novel Eco-Friendly Poly(Vinyl Alcohol) Nanofilters Using the Photocatalytic Property of Titanium Dioxide. ACS OMEGA 2020; 5:5026-5033. [PMID: 32201788 PMCID: PMC7081405 DOI: 10.1021/acsomega.9b03944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 05/08/2023]
Abstract
This study aimed to develop a highly efficient nanofilter for capturing fine particles using electrostatic forces. Poly(vinyl alcohol) (PVA), a water-soluble synthetic polymer, was selected as the main component of the filter because it can be easily fabricated by electrospinning. Titanium dioxide (TiO2) nanopowder with an anatase structure was applied to the nanofilters as it has the highest photocatalytic activity among the existing photocatalysts. PVA nanofilters fabricated by electrospinning could still be dissolved in water by hydrolysis. Therefore, heat treatment was performed to make the nanofilters stable, thereby forming C=O bonds by keto-enol tautomerization. Structural changes in the PVA nanofilter before and after heat treatment were investigated by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis. As the TiO2 concentration increased, the fiber diameter of the PVA nanofilter decreased and a homogeneous fiber was obtained. The filtration efficiency and pressure drop also improved significantly, compared to those of the PVA-only nanofilter. Moreover, we observed eco-friendly decomposition of the PVA/TiO2 nanofilter into water and carbon dioxide by a photocatalytic reaction under UV irradiation.
Collapse
Affiliation(s)
- Ji Hyun Yeo
- Department of Biosystems
& Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic
of Korea
| | - Myounguk Kim
- Fibrous Ceramics & Aerospace Materials Center, Korea Institute of Ceramic Engineering and Technology, Jinju 52851, Republic of Korea
| | - Hakjun Lee
- Department of Biosystems
& Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jihyun Cho
- Department of Biosystems
& Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jongshin Park
- Department of Biosystems
& Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic
of Korea
- Research Industry of Agriculture
and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- . Tel: +82-2-880-4623. Fax: +82-2-880-4628
| |
Collapse
|
17
|
Steffens L, Morás AM, Arantes PR, Masterson K, Cao Z, Nugent M, Moura DJ. Electrospun PVA-Dacarbazine nanofibers as a novel nano brain-implant for treatment of glioblastoma: in silico and in vitro characterization. Eur J Pharm Sci 2020; 143:105183. [DOI: 10.1016/j.ejps.2019.105183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
|
18
|
|
19
|
Jeyasubramanian K, Muthusankar E, Hikku GS, Selvakumar N. Improved Thermal and Fire Retardant Behavior of Polyvinyl Alcohol Matrix Using Nanocomposites. INTERNATIONAL JOURNAL OF NANOSCIENCE 2019. [DOI: 10.1142/s0219581x18500254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This report discusses in detail about the Fire retardant (FR) characteristics of polyvinyl alcohol (PVA) matrix fabricated by impregnating zinc borate nanoparticles (ZB Nps) as FR with trace amounts of copper chloride/aluminum chloride by solvent casting method. ZB Nps prepared by co-precipitation method are characterized using XRD, FTIR, SEM, TEM, etc. XRD pattern revealed the crystal geometry of ZB Nps and SEM and TEM micrographs depict a rod-like structure with 300–400[Formula: see text]nm size. Appropriate amount of ZB Nps and transition metal salts are mixed with PVA in aqueous medium and thin film samples are obtained by solvent casting method. The vibrational spectra, thermal stability and flammability of the polymeric composites are characterized using FTIR, TG/DTA and Flammability tester, respectively. FTIR spectra confirm the existence of ZB Nps in the prepared polymer composites. TG/DTA studies revealed higher degradation temperature and thermal stability of polymer composite over pure PVA. The limiting oxygen index (LOI) test presented a convincing account about the improved FR nature of obtained polymer nano composite with a significant LOI of 56% compared to virgin polymer which have LOI of 19.6%.
Collapse
Affiliation(s)
- K. Jeyasubramanian
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi 626005, Tamilnadu, India
| | - E. Muthusankar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal 609 609, India
| | - G. S. Hikku
- Department of Electronics and Communication Engineering, PSN College of Engineering and Technology, Tirunelveli 627152, Tamilnadu, India
| | - N. Selvakumar
- Centre for Nanoscience and Technology, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamilnadu, India
| |
Collapse
|
20
|
Moazzami Goudarzi Z, Behzad T, Ghasemi-Mobarakeh L, Kharaziha M, Enayati MS. Structural and mechanical properties of fibrous poly (caprolactone)/gelatin nanocomposite incorporated with cellulose nanofibers. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02756-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Mirmohammad Sadeghi S, Vaezi M, Kazemzadeh A, Jamjah R. Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method. J Appl Polym Sci 2018. [DOI: 10.1002/app.46337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Mohammadreza Vaezi
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; Karaj Iran
| | - Asghar Kazemzadeh
- Department of Semiconductors; Materials and Energy Research Center; Karaj Iran
| | | |
Collapse
|
22
|
Enayati MS, Behzad T, Sajkiewicz P, Rafienia M, Bagheri R, Ghasemi-Mobarakeh L, Kolbuk D, Pahlevanneshan Z, Bonakdar SH. Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res A 2018; 106:1111-1120. [DOI: 10.1002/jbm.a.36309] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Mohammad Saied Enayati
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B; Warsaw 02-106 Poland
| | - Tayebeh Behzad
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Pawel Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B; Warsaw 02-106 Poland
| | - Mohammad Rafienia
- Biosensor Research Center; Isfahan University of Medical Sciences; Isfahan Iran
| | - Rouhollah Bagheri
- Department of Chemical Engineering; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | | | - Dorota Kolbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B; Warsaw 02-106 Poland
| | | | | |
Collapse
|
23
|
Cu(acac)2–PVA composite nanofibers in catalysis of Michael addition of carbon nucleophiles to α,β-unsaturated carbonyl compounds. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0536-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|