1
|
Arshad N, Batool SR, Razzaq S, Arshad M, Rasheed A, Ashraf M, Nawab Y, Nazeer MA. Recent advancements in polyurethane-based membranes for gas separation. ENVIRONMENTAL RESEARCH 2024; 252:118953. [PMID: 38636643 DOI: 10.1016/j.envres.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
Collapse
Affiliation(s)
- Noureen Arshad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Liberty Mills Limited, Karachi, 75700, Pakistan.
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Sadia Razzaq
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Mubeen Arshad
- Department of Prosthodontics, Baqai Medical University, Karachi, 74600, Pakistan
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Munir Ashraf
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Functional Textile Research Group, National Textile University, Faisalabad, 37610, Pakistan
| | - Yasir Nawab
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; National Center for Composite Materials, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Biomaterials and Tissue Engineering Research Laboratory, National Textile University, Faisalabad, 37610, Pakistan.
| |
Collapse
|
2
|
Sintas JI, Bean RH, Zhang R, Long TE. Nonisocyanate Polyurethane Segmented Copolymers from Bis-Carbonylimidazolides. Macromol Rapid Commun 2024:e2400057. [PMID: 38471478 DOI: 10.1002/marc.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Bis-carbonylimidazolide (BCI) functionalization enables an efficient synthetic strategy to generate high molecular weight segmented nonisocyanate polyurethanes (NIPUs). Melt phase polymerization of ED-2003 Jeffamine, 4,4'-methylenebis(cyclohexylamine), and a BCI monomer that mimics a 1,4-butanediol chain extender enables polyether NIPUs that contain varying concentrations of hard segments ranging from 40 to 80 wt. %. Dynamic mechanical analysis and differential scanning calorimetry reveal thermal transitions for soft, hard, and mixed phases. Hard segment incorporations between 40 and 60 wt. % display up to three distinct phases pertaining to the poly(ethylene glycol) (PEG) soft segment Tg , melting transition, and hard segment Tg , while higher hard segment concentrations prohibit soft segment crystallization, presumably due to restricted molecular mobility from the hard segment. Atomic force microscopy allows for visualization and size determination of nanophase-separated regimes, revealing a nanoscale rod-like assembly of HS. Small-angle X-ray scattering confirms nanophase separation within the NIPU, characterizing both nanoscale amorphous domains and varying degrees of crystallinity. These NIPUs, which are synthesized with BCI monomers, display expected phase separation that is comparable to isocyanate-derived analogues. This work demonstrates nanophase separation in BCI-derived NIPUs and the feasibility of this nonisocyanate synthetic pathway for the preparation of segmented PU copolymers.
Collapse
Affiliation(s)
- Jose I Sintas
- School of Molecular Sciences & Biodesign Center for Sustainable Macromolecular Materials and Manufacturing (SM3), Arizona State University, Tempe, AZ, 85287, USA
| | - Ren H Bean
- School of Molecular Sciences & Biodesign Center for Sustainable Macromolecular Materials and Manufacturing (SM3), Arizona State University, Tempe, AZ, 85287, USA
| | - Rui Zhang
- Eyring Materials Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Timothy E Long
- School of Molecular Sciences & Biodesign Center for Sustainable Macromolecular Materials and Manufacturing (SM3), Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
3
|
Khoubi-Arani Z. Improvement of compressible regular solution model using Sanchez-Lacombe equation of state for phase behavior prediction of polymer blends. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
5
|
Khorshidi S, Karkhaneh A. Cylindrical polyester/calcium peroxide oxygen-releasing microparticles: molecular dynamics simulation and experimental analyses. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-022-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Kurapati R, Natarajan U. Role of Chemical Linkage in Solvation of Polyurethanes in Organic Solvents Studied by Explicit Molecular Dynamics Simulations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raviteja Kurapati
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai600036, India
| | - Upendra Natarajan
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai600036, India
| |
Collapse
|
7
|
Yuan L, Zhang C, Wang C, Wei N, Wan J, Zhu C, Fang H, Shi M. Effect of the crosslinking degree on the microstructure and thermomechanical properties of a polymer grouting material. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Allami T, Alamiery A, Nassir MH, Kadhum AH. Investigating Physio-Thermo-Mechanical Properties of Polyurethane and Thermoplastics Nanocomposite in Various Applications. Polymers (Basel) 2021; 13:2467. [PMID: 34372071 PMCID: PMC8347130 DOI: 10.3390/polym13152467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
The effect of the soft and hard polyurethane (PU) segments caused by the hydrogen link in phase-separation kinetics was studied to investigate the morphological annealing of PU and thermoplastic polyurethane (TPU). The significance of the segmented PUs is to achieve enough stability for further applications in biomedical and environmental fields. In addition, other research focuses on widening the plastic features and adjusting the PU-polyimide ratio to create elastomer of the poly(urethane-imide). Regarding TPU- and PU-nanocomposite, numerous studies investigated the incorporation of inorganic nanofillers such as carbon or clay to incorporating TPU-nanocomposite in several applications. Additionally, the complete exfoliation was observed up to 5% and 3% of TPU-clay modified with 12 amino lauric acid and benzidine, respectively. PU-nanocomposite of 5 wt.% Cloisite®30B showed an increase in modulus and tensile strength by 110% and 160%, respectively. However, the nanocomposite PU-0.5 wt.% Carbone Nanotubes (CNTs) show an increase in the tensile modulus by 30% to 90% for blown and flat films, respectively. Coating PU influences stress-strain behavior because of the interaction between the soft segment and physical crosslinkers. The thermophysical properties of the TPU matrix have shown two glass transition temperatures (Tg's) corresponding to the soft and the hard segment. Adding a small amount of tethered clay shifts Tg for both segments by 44 °C and 13 °C, respectively, while adding clay from 1 to 5 wt.% results in increasing the thermal stability of TPU composite from 12 to 34 °C, respectively. The differential scanning calorimetry (DSC) was used to investigate the phase structure of PU dispersion, showing an increase in thermal stability, solubility, and flexibility. Regarding the electrical properties, the maximum piezoresistivity (10 S/m) of 7.4 wt.% MWCNT was enhanced by 92.92%. The chemical structure of the PU-CNT composite has shown a degree of agglomeration under disruption of the sp2 carbon structure. However, with extended graphene loading to 5.7 wt.%, piezoresistivity could hit 10-1 S/m, less than 100 times that of PU. In addition to electrical properties, the acoustic behavior of MWCNT (0.35 wt.%)/SiO2 (0.2 wt.%)/PU has shown sound absorption of 80 dB compared to the PU foam sample. Other nanofillers, such as SiO2, TiO2, ZnO, Al2O3, were studied showing an improvement in the thermal stability of the polymer and enhancing scratch and abrasion resistance.
Collapse
Affiliation(s)
- Tyser Allami
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia; (A.A.); (M.H.N.); (A.H.K.)
| | | | | | | |
Collapse
|
9
|
Marcano A, Fatyeyeva K, Koun M, Dubuis P, Grimme M, Chappey C, Marais S. Enhanced water and oxygen barrier performance of flexible polyurethane membranes for biomedical application. J Biomed Mater Res A 2021; 110:105-121. [PMID: 34288381 DOI: 10.1002/jbm.a.37269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 01/13/2023]
Abstract
In order to improve water and oxygen barrier properties, the surface of two commercial medical grade polyurethane (PU) membranes (Chronoflex® AR-LT and Bionate® II) was modified by a spray deposited film of poly(ethylene-co-vinyl alcohol) (EVOH). The influence of the temperature, the deposited layer thickness and the EVOH ethylene group percentage (27%, 32%, and 44% for EVOH27, EVOH32, and EVOH44, respectively) on the barrier properties of the PU/EVOH multilayered membranes was investigated. The increase of the EVOH layer thickness leads to higher oxygen barrier properties (the highest barrier improvement factor of 412 was obtained). However, in case of the deposited layer thickness higher than 18 μm, microcracks appeared on the treated surface promote a significant loss of the barrier effect. Due to its higher crystallinity degree, EVOH27 provides a higher oxygen barrier effect compared to EVOH32 and EVOH44. On the contrary, an increase of the water barrier properties was observed with the increase of the percentage of ethylene groups. Moreover, the delamination of the EVOH layer was noted after water permeation, especially in case of EVOH44, which is the most hydrophobic layer. Nevertheless, significant decrease of the water and oxygen permeability of the modified PU membranes was achieved, thus showing the benefit of using the EVOH spray deposition for the biomedical application, which requires high performance material with flexible and barrier properties.
Collapse
Affiliation(s)
- Aracelys Marcano
- Normandie Université, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), Rouen, France.,CARMAT SA, Vélizy Villacoublay, France
| | - Kateryna Fatyeyeva
- Normandie Université, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), Rouen, France
| | | | | | | | - Corinne Chappey
- Normandie Université, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), Rouen, France
| | - Stéphane Marais
- Normandie Université, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), Rouen, France
| |
Collapse
|
10
|
Akram N, Saleem S, Zia KM, Saeed M, Usman M, Maqsood S, Mumtaz N, Khan WG, Hafiz-Ur-Rehman. Stoichiometric-architectural impact on thermo-mechanical and morphological behavior of segmented Polyurethane elastomers. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02566-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Lores NJ, Hung X, Talou MH, Abraham GA, Caracciolo PC. Novel three‐dimensional printing of poly(ester urethane) scaffolds for biomedical applications. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nayla J. Lores
- División Polímeros Biomédicos, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA (UNMdP‐CONICET) Mar del Plata Argentina
| | - Xavier Hung
- División Cerámicos, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA (UNMdP‐CONICET) Mar del Plata Argentina
| | - Mariano H. Talou
- División Cerámicos, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA (UNMdP‐CONICET) Mar del Plata Argentina
| | - Gustavo A. Abraham
- División Polímeros Biomédicos, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA (UNMdP‐CONICET) Mar del Plata Argentina
| | - Pablo C. Caracciolo
- División Polímeros Biomédicos, Instituto de Investigaciones en Ciencia y Tecnología de Materiales INTEMA (UNMdP‐CONICET) Mar del Plata Argentina
| |
Collapse
|
12
|
Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering. MATERIALS 2020; 13:ma13194457. [PMID: 33050040 PMCID: PMC7579379 DOI: 10.3390/ma13194457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
This paper addresses the potential of self-made polyester-urethane filament as a candidate for Fused Filament Fabrication (FFF)-based 3D printing (3DP) in medical applications. Since the industry does not provide many ready-made solutions of medical-grade polyurethane filaments, we undertook research aimed at presenting the process of thermoplastic polyurethane (TPU) filament formation, detailed characteristics, and 3DP of specially designed elastic porous structures as candidates in cancellous tissue engineering. Additionally, we examined whether 3D printing affects the structure and thermal stability of the filament. According to the obtained results, the processing parameters leading to the formation of high-quality TPU filament (TPU_F) were captured. The results showed that TPU_F remains stable under the FFF 3DP conditions. The series of in vitro studies involving long- and short-term degradation (0.1 M phosphate-buffered saline (PBS); 5 M sodium hydroxide (NaOH)), cytotoxicity (ISO 10993:5) and bioactivity (simulated body fluid (SBF) incubation), showed that TPU printouts possessing degradability of long-term degradable tissue constructs, are biocompatible and susceptible to mineralization in terms of hydroxyapatite (HAp) formation during SBF exposure. The formation of HAp on the surface of the specially designed porous tissue structures (PTS) was confirmed by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) studies. The compression test of PTS showed that the samples were strengthened due to SBF exposure and deposited HAp on their surface. Moreover, the determined values of the tensile strength (~30 MPa), Young’s modulus (~0.2 GPa), and compression strength (~1.1 MPa) allowed pre-consideration of TPU_F for FFF 3DP of cancellous bone tissue structures.
Collapse
|
13
|
Self-assembly of a patterned hydrophobic-hydrophilic surface by soft segment microphase separation in a segmented polyurethane: Combined experimental study and molecular dynamics simulation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122424] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Rheological investigation of carbon-based hybrid polyurethane nanocomposites with continuous networks. IRANIAN POLYMER JOURNAL 2019. [DOI: 10.1007/s13726-019-00745-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Sarabiyan Nejad S, Rezaei M, Bagheri M. Polyurethane/Nitrogen-Doped Graphene Quantum Dot (N-GQD) nanocomposites: synthesis, characterization, thermal, mechanical and shape memory properties. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1647243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sanaz Sarabiyan Nejad
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mostafa Rezaei
- Institute of Polymeric Materials, Polymer Engineering Department, Sahand University of Technology, Tabriz, Iran
| | - Massoumeh Bagheri
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|