1
|
Liu X, Zhao Y, Niu Y, Xie Q, Nie H, Jin Y, Zhang Y, Lu Y, Zhu S, Zuo W, Yu C. Urinary single-cell sequence analysis of the urinary macrophage in different outcomes of membranous nephropathy. Clin Kidney J 2023; 16:2405-2416. [PMID: 38046013 PMCID: PMC10689170 DOI: 10.1093/ckj/sfad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 12/05/2023] Open
Abstract
Background Great progress has been made in the diagnosis and treatment of membranous nephropathy (MN). However, a significant number of patients do not respond to immunosuppressive therapy and eventually progress to end-stage kidney disease. To investigate the mechanism of different outcome of MN, we performed single-cell sequencing to analyze the urine cells of patients with and without complete remission of MN. Methods Urine single-cell RNA sequencing was performed on 12 healthy controls (HC) and 15 patients with MN. The patients were divided into a complete remission group (CR, n = 9) and a no remission group (NR, n = 6). Results (i) Macrophages were the largest group in urine cells, comprising 48.02%, 68.96% and 20.95% in the HC, CR and NR groups, respectively. (ii) Urinary macrophages expressing FIColin-1 and S100 calcium-binding protein A8 were mainly found in the HC and CR groups, indicating that they were derived from bone marrow and peripheral blood, while the urinary macrophages expressing the regulator of G-protein signaling 1 (RGS1) and HLA-DPA1, mainly found in the NR group, were derived from renal resident macrophages. (iii) In healthy adults, urine macrophages expressed the metallothionein family, indicating that they can regulate anti-inflammatory and proinflammatory functions bidirectionally. In the CR group, the urine macrophages showed strong proinflammatory properties. In the NR group, the urinary macrophages mainly associated with the level of proteinuria and the impaired renal function. Conclusions Our study firstly delineated the differences in urinary cell maps between healthy individuals and MN patients with CR or NR outcomes. Not only the origin but also the function of urine macrophages were different in the HC, CR and NR groups.
Collapse
Affiliation(s)
- Xi Liu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Zhao
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yangyang Niu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qionghong Xie
- Division of Nephrology, Huashan Hospital, and Nephrology Research Institute, Fudan University, Shanghai, China
| | - Hao Nie
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Jin
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingying Zhang
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuqiu Lu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Saiya Zhu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Zuo
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
3
|
Li MS, Li Y, Liu Y, Zhou XJ, Zhang H. An Updated Review and Meta Analysis of Lipoprotein Glomerulopathy. Front Med (Lausanne) 2022; 9:905007. [PMID: 35602473 PMCID: PMC9120586 DOI: 10.3389/fmed.2022.905007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
More than 200 cases of lipoprotein glomerulopathy (LPG) have been reported since it was first discovered 30 years ago. Although relatively rare, LPG is clinically an important cause of nephrotic syndrome and end-stage renal disease. Mutations in the APOE gene are the leading cause of LPG. APOE mutations are an important determinant of lipid profiles and cardiovascular health in the population and can precipitate dysbetalipoproteinemia and glomerulopathy. Apolipoprotein E-related glomerular disorders include APOE2 homozygote glomerulopathy and LPG with heterozygous APOE mutations. In recent years, there has been a rapid increase in the number of LPG case reports and some progress in research into the mechanism and animal models of LPG. We consequently need to update recent epidemiological studies and the molecular mechanisms of LPG. This endeavor may help us not only to diagnose and treat LPG in a more personized manner but also to better understand the potential relationship between lipids and the kidney.
Collapse
Affiliation(s)
- Meng-Shi Li
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yang Li
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yang Liu
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Kidney Genetics Center, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Khalil YA, Rabès JP, Boileau C, Varret M. APOE gene variants in primary dyslipidemia. Atherosclerosis 2021; 328:11-22. [PMID: 34058468 DOI: 10.1016/j.atherosclerosis.2021.05.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023]
Abstract
Apolipoprotein E (apoE) is a major apolipoprotein involved in lipoprotein metabolism. It is a polymorphic protein and different isoforms are associated with variations in lipid and lipoprotein levels and thus cardiovascular risk. The isoform apoE4 is associated with an increase in LDL-cholesterol levels and thus a higher cardiovascular risk compared to apoE3. Whereas, apoE2 is associated with a mild decrease in LDL-cholesterol levels. In the presence of other risk factors, apoE2 homozygotes could develop type III hyperlipoproteinemia (familial dysbetalipoproteinemia or FD), an atherogenic disorder characterized by an accumulation of remnants of triglyceride-rich lipoproteins. Several rare APOE gene variants were reported in different types of dyslipidemias including FD, familial combined hyperlipidemia (FCH), lipoprotein glomerulopathy and bona fide autosomal dominant hypercholesterolemia (ADH). ADH is characterized by elevated LDL-cholesterol levels leading to coronary heart disease, and due to molecular alterations in three main genes: LDLR, APOB and PCSK9. The identification of the APOE-p.Leu167del variant as the causative molecular element in two different ADH families, paved the way to considering APOE as a candidate gene for ADH. Due to non mendelian interacting factors, common genetic and environmental factors and perhaps epigenetics, clinical presentation of lipid disorders associated with APOE variants often strongly overlap. More studies are needed to determine the spectrum of APOE implication in each of the diseases, notably ADH, in order to improve clinical and genetic diagnosis, prognosis and patient management. The purpose of this review is to comment on these APOE variants and on the molecular and clinical overlaps between dyslipidemias.
Collapse
Affiliation(s)
- Yara Abou Khalil
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France; Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé (PTS), Saint-Joseph University, Beirut, Lebanon
| | - Jean-Pierre Rabès
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Laboratory of Biochemistry and Molecular Genetics, Centre Hospitalo-Universitaire Ambroise Paré, HUPIFO, AP-HP. Paris-Saclay, Boulogne-Billancourt, France; UFR Simone Veil-Santé, UVSQ, Montigny-Le-Bretonneux, France
| | - Catherine Boileau
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France; Genetics Department, AP-HP, CHU Xavier Bichat, Paris, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalo-Universitaire Xavier Bichat, Paris, France; Université de Paris, Paris, France.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The functions, genetic variations and impact of apolipoprotein E on lipoprotein metabolism in general are placed in the context of clinical practice dealing with moderate dyslipidaemia as well as dysbetalipoproteinemia, a highly atherogenic disorder and lipoprotein glomerulopathy. RECENT FINDINGS Additional variants of apolipoprotein E and participation of apolipoprotein E in inflammation are of interest. The mostly favourable effects of apolipoprotein E2 as well as the atherogenic nature of apolipoproteinE4, which has an association with cognitive impairment, are confirmed. The contribution of remnant lipoproteins of triglyceride-rich lipoproteins, of which dysbetalipoproteinemia represents an extreme, is explored in atherosclerosis. Mimetic peptides may present new therapeutic approaches. Apolipoprotein E is an important determinant of the lipid profile and cardiovascular health in the population at large and can precipitate dysbetalipoproteinemia and glomerulopathy. Awareness of apolipoprotein E polymorphisms should improve medical care.
Collapse
|
6
|
Saito T, Matsunaga A, Fukunaga M, Nagahama K, Hara S, Muso E. Apolipoprotein E-related glomerular disorders. Kidney Int 2019; 97:279-288. [PMID: 31874799 DOI: 10.1016/j.kint.2019.10.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022]
Abstract
Of the glomerular disorders that occur due to apolipoprotein E (apoE) mutations, apoE2 homozygote glomerulopathy and lipoprotein glomerulopathy (LPG) have been characterized. ApoE2 homozygote glomerulopathy has been found in individuals expressing homozygous apoE2/2. This was characterized histologically by glomerulosclerosis with marked infiltration of foam cells derived from macrophages, and occasionally with non-lamellated lipoprotein thrombi. Recently, several cases of apoE Toyonaka (Ser197Cys) combined with homozygous apoE2/2 have been reported, in which non-immune membranous nephropathy-like features were observed in glomeruli. Interestingly, in these cases, apoE accumulation was identified by tandem mass spectrometry. Therefore, it is speculated that these findings may arise from apoE molecules without lipids, which result from hinge damage by apoE Toyonaka and may cross the glomerular basement membrane as small molecules. LPG is primarily associated with heterozygous apoE mutations surrounding the low-density lipoprotein-receptor binding site, and it is histologically characterized by lamellated lipoprotein thrombi that lack foam cells. Recent studies have suggested that LPG can be induced by thermodynamic destabilization, hydrophobic surface exposure, and the aggregation of apoE resulting from the incompatibility of apoE mutated residues within helical regions. Additionally, apoE5 may play a supporting role in the development of LPG and in lipid-induced kidney diseases via hyperlipoproteinemia. Thus, it is interesting that many apoE mutations contribute to characteristic glomerular disorders through various mechanisms. In particular, macrophages may uptake lipoproteins into the cytoplasm and contribute to the development of apoE2 homozygote glomerulopathy as foam cells, and their dysfunction may contribute to the accumulation of lipoproteins in the glomerulus, causing lipoprotein thrombi in LPG.
Collapse
Affiliation(s)
- Takao Saito
- Sanko Clinic, Fukuoka, Japan; Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Akira Matsunaga
- Department of Laboratory Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Kiyotaka Nagahama
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Shigeo Hara
- Department of Diagnostic Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Eri Muso
- Division of Nephrology and Dialysis, Kitano Hospital, Osaka, Japan; Department of Food and Nutrition, Faculty of Contemporary Home Economics, Kyoto Kacho University, Kyoto, Japan
| |
Collapse
|