1
|
Kaur N, Sharma K, Grewal P. Synthesis of heterocycles from urea and its derivatives. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2117630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Navjeet Kaur
- Department of Chemistry & Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kirti Sharma
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Pooja Grewal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
2
|
Affiliation(s)
- Jiajia Li
- School of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology Shenyang Liaoning China
| | - Lei Li
- School of Pharmaceutical and Bioengineering, Shenyang University of Chemical Technology Shenyang Liaoning China
| | | |
Collapse
|
3
|
Ebrahimiasl S, Behmagham F, Abdolmohammadi S, Kojabad RN, Vessally E. Recent Advances in the Application of Nanometal Catalysts for Glaser Coupling. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191022174928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
:
Synthesis of symmetrical 1,3-diynes from terminal alkynes through an oxidative
process is generally called Glaser coupling. The classic Glaser coupling is catalyzed
by copper salts under an atmosphere of molecular oxygen as an oxidant. Over the past
years, different metal catalysts and oxidants were successfully used in this atom economical
C-C coupling reaction. Moreover, several procedures for the preparation of unsymmetrical
1,3-diynes by coupling two different alkyne substrates have been developed. In this
review, we will highlight the usefulness of transition metal nanoparticles as efficient catalysts
in homo- and hetero-coupling of alkynes by hoping that it will be beneficial to the
development of novel and extremely efficient catalytic systems for this fast-growing and
important reaction.
Collapse
Affiliation(s)
| | - Farnaz Behmagham
- Department of Chemistry, Miyandoab Branch, Islamic Azad University, Miyandoab, Iran
| | - Shahrzad Abdolmohammadi
- Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran
| | - Rahman N. Kojabad
- Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
4
|
|
5
|
Monfared A, Mohammadi R, Hosseinian A, Sarhandi S, Kheirollahi Nezhad PD. Cycloaddition of atmospheric CO 2 to epoxides under solvent-free conditions: a straightforward route to carbonates by green chemistry metrics. RSC Adv 2019; 9:3884-3899. [PMID: 35518075 PMCID: PMC9060502 DOI: 10.1039/c8ra10233c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/13/2019] [Indexed: 01/09/2023] Open
Abstract
The conversion of carbon dioxide (CO2) into value-added organic compounds has received more and more attention over recent years, not only because this gas is one of the major anthropogenic greenhouse gases, but also because it has been regarded as an abundant, inexpensive, nontoxic, nonflammable, and renewable one-carbon (C1) resource. Along these lines, the synthesis of five-membered cyclic carbonates employing CO2 as a safe alternative to toxic reagents such as phosgene or its derivatives is of great interest because of their wide range of applications in organic synthesis. However, most of CO2 incorporation reactions into carbonates are carried out in toxic and non-recyclable organic solvents. Furthermore, these transformations usually proceed at elevated pressures or supercritical CO2 conditions. Recently, several catalytic systems have been developed that allow the synthesis of functionalized carbonates from the reaction of atmospheric CO2 with corresponding epoxides under solvent-free conditions. This review is an attempt to summarize the most important advances and discoveries in this interesting research arena. The review is divided into three major sections. The first section will discuss ionic liquid catalyzed coupling reactions. The second will cover organocatalyzed reactions. The third focuses exclusively on metal-catalyzed fixations. Notably, the third section has been classified based on the metal element that carries out the catalysis (i.e. copper, palladium, zinc).
Collapse
Affiliation(s)
- Aazam Monfared
- Department of Chemistry, Payame Noor University 19395-4697 Tehran Iran
| | - Robab Mohammadi
- Department of Chemistry, Payame Noor University 19395-4697 Tehran Iran
| | - Akram Hosseinian
- School of Engineering Science, College of Engineering, University of Tehran P. O. Box 11365-4563 Tehran Iran
| | - Shahriar Sarhandi
- Department of Chemistry, Payame Noor University 19395-4697 Tehran Iran
| | | |
Collapse
|
6
|
Arshadi S, Ebrahimiasl S, Hosseinian A, Monfared A, Vessally E. Recent developments in decarboxylative cross-coupling reactions between carboxylic acids and N–H compounds. RSC Adv 2019; 9:8964-8976. [PMID: 35517670 PMCID: PMC9062143 DOI: 10.1039/c9ra00929a] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/04/2019] [Indexed: 01/24/2023] Open
Abstract
Carboxylic acids and their derivatives are ubiquitous compounds in organic chemistry, and are widely commercially available in a large structural variety. Recently, carboxylic acids have been frequently used as non-toxic and environmentally benign alternatives to traditional organohalide coupling partners in various carbon–carbon and carbon–heteroatom cross-coupling reactions. Along this line, several methods have been reported for the synthesis of nitrogen-containing organic compounds through decarboxylative cross-coupling reactions between carboxylic acids and N–H compounds. This review focuses on recent advances and discoveries on these reactions with special attention on the mechanistic aspects of the reactions. Carboxylic acids and their derivatives are ubiquitous compounds in organic chemistry, and are widely commercially available in a large structural variety.![]()
Collapse
Affiliation(s)
| | | | - Akram Hosseinian
- School of Engineering Science
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | | | | |
Collapse
|
7
|
Arshadi S, Banaei A, Ebrahimiasl S, Monfared A, Vessally E. Solvent-free incorporation of CO2 into 2-oxazolidinones: a review. RSC Adv 2019; 9:19465-19482. [PMID: 35519371 PMCID: PMC9065275 DOI: 10.1039/c9ra00551j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/04/2019] [Indexed: 01/04/2023] Open
Abstract
This review is an attempt to give an overview on the recent advances and developments in the synthesis of 2-oxazolidinone frameworks through carbon dioxide (CO2) fixation reactions under solvent-free conditions. The cycloaddition of CO2 to aziridine derivatives is discussed first. This is followed by carboxylative cyclization of N-propargylamines with CO2 and three-component coupling of epoxides, amines, and CO2. Finally, cycloaddition of CO2 to propargylic alcohols and amines will be covered at the end of the review. The literature has been surveyed up until the end of 2018. This review is an overview on the recent advances in the synthesis of 2-oxazolidinones through CO2 fixation reactions under solvent-free conditions.![]()
Collapse
|
8
|
Vessally E, Nikpasand M, Ahmadi S, Delir Kheirollahi Nezhad P, Hosseinian A. Transition metal-catalyzed intramolecular cyclization of N-Boc-protected propargyl/ethynyl amines: a novel and convenient access to 2-oxazolidinone/oxazolone derivatives. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1542-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Hosseinian A, Mohammadi R, Ahmadi S, Monfared A, Rahmani Z. Arylhydrazines: novel and versatile electrophilic partners in cross-coupling reactions. RSC Adv 2018; 8:33828-33844. [PMID: 35548837 PMCID: PMC9086722 DOI: 10.1039/c8ra06423g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/06/2018] [Indexed: 11/23/2022] Open
Abstract
Arylhydrazines are extremely valuable compounds in organic chemistry that are widely used for the synthesis of a variety of biologically active molecules such as indoles, indazoles, pyrazoles, aryltriazoles, β-lactams and quinazolines. These compounds have also been widely utilized as arylation agents in oxidative cross-coupling reactions. In this review, we will highlight the most important explorations and developments in the carbon-carbon and carbon-heteroatom (nitrogen, phosphorus, sulfur, and selenium) cross-coupling of arylhydrazines. The literature has been surveyed from 2001 to June 2018.
Collapse
Affiliation(s)
- Akram Hosseinian
- School of Engineering Science, College of Engineering, University of Tehran P. O. Box 11365-4563 Tehran Iran
| | - Robab Mohammadi
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| | - Sheida Ahmadi
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| | - Aazam Monfared
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| | - Zahra Rahmani
- Department of Chemistry, Tabriz Branch, Islamic Azad University Tabriz Iran
| |
Collapse
|
10
|
Hosseinian A, Hosseini Nasab FA, Ahmadi S, Rahmani Z, Vessally E. Decarboxylative cross-coupling reactions for P(O)-C bond formation. RSC Adv 2018; 8:26383-26398. [PMID: 35541946 PMCID: PMC9083186 DOI: 10.1039/c8ra04557g] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/03/2018] [Indexed: 12/20/2022] Open
Abstract
Phosphorus-containing compounds are one of the most important classes of organic compounds, which have wide applications in organic chemistry, medicinal chemistry, agricultural chemistry, and materials chemistry. In particular, organophosphorus compounds bearing a P(O)-C bond have attracted significant attention in recent decades due to their widespread biological and pharmacological activities. In this review, we will highlight the most important developments in the construction of P(O)-C bonds through decarboxylative C-P cross-coupling reactions. The literature has been surveyed from 2011 to May 2018.
Collapse
Affiliation(s)
- Akram Hosseinian
- School of Engineering Science, College of Engineering, University of Tehran P. O. Box 11365-4563 Tehran Iran
| | | | - Sheida Ahmadi
- Payame Noor University, Department of Chemistry 19395-4697 Tehran Iran
| | - Zahra Rahmani
- Department of Chemistry, Tabriz Branch, Islamic Azad University Tabriz Iran
| | - Esmail Vessally
- Payame Noor University, Department of Chemistry 19395-4697 Tehran Iran
| |
Collapse
|
11
|
Nejati K, Ahmadi S, Nikpassand M, Kheirollahi Nezhad PD, Vessally E. Diaryl ethers synthesis: nano-catalysts in carbon-oxygen cross-coupling reactions. RSC Adv 2018; 8:19125-19143. [PMID: 35539660 PMCID: PMC9080655 DOI: 10.1039/c8ra02818d] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/06/2018] [Indexed: 12/05/2022] Open
Abstract
The diaryl ether moiety is not only prevalent in a significant number of natural products and synthetic pharmaceuticals but also widely found in many pesticides, polymers, and ligands. Ullmann-type cross-coupling reactions between phenols and aryl halides are regarded as one of the most important methods for the synthesis of this important and versatile structural motif. In recent years, the use of nano-sized metal catalysts in this coupling reaction has attracted a lot of attention because of these catalysts with their high surface-to-volume ratio, high surface energy, and reactive morphology allows for rapid C-O bond formation under mild and ligand-free conditions. In this review we will highlight the power of these catalysts in Ullmann-type C-O cross-coupling reactions.
Collapse
Affiliation(s)
- Kamellia Nejati
- Department of Chemistry, Payame Noor University P. O. Box 19395-1697 Tehran Iran
| | - Sheida Ahmadi
- Department of Chemistry, Payame Noor University P. O. Box 19395-1697 Tehran Iran
| | | | | | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-1697 Tehran Iran
| |
Collapse
|
12
|
Dehydrative condensation of β-aminoalcohols with CO2: An environmentally benign access to 2-oxazolidinone derivatives. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Vessally E, Mohammadi R, Hosseinian A, Edjlali L, Babazadeh M. Three component coupling of amines, alkyl halides and carbon dioxide: An environmentally benign access to carbamate esters (urethanes). J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Didehban K, Vessally E, Hosseinian A, Edjlali L, Khosroshahi ES. Nanocatalysts for C–Se cross-coupling reactions. RSC Adv 2018. [DOI: 10.1039/c7ra12663h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This mini review is an attempt to highlight the most important contributions toward the applications of nanocatalysts in carbon–selenium cross-coupling reactions with the emphasis on the mechanistic aspects of the reactions.
Collapse
Affiliation(s)
| | | | - Akram Hosseinian
- Department of Engineering Science
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | - Ladan Edjlali
- Department of Chemistry
- Tabriz Branch
- Islamic Azad University
- Tabriz
- Iran
| | | |
Collapse
|
15
|
Didehban K, Vessally E, Salary M, Edjlali L, Babazadeh M. Synthesis of a variety of key medicinal heterocyclic compounds via chemical fixation of CO2 onto o-alkynylaniline derivatives. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2017.10.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|