1
|
Grisolia A, Dell’Olio G, Spadafora A, De Santo M, Morelli C, Leggio A, Pasqua L. Hybrid Polymer-Silica Nanostructured Materials for Environmental Remediation. Molecules 2023; 28:5105. [PMID: 37446768 PMCID: PMC10343502 DOI: 10.3390/molecules28135105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Due to the ever-growing global population, it is necessary to develop highly effective processes that minimize the impact of human activities and consumption on the environment. The levels of organic and inorganic contaminants have rapidly increased in recent years, posing a threat to ecosystems. Removing these toxic pollutants from the environment is a challenging task that requires physical, chemical, and biological methods. An effective solution involves the use of novel engineered materials, such as silica-based nanostructured materials, which exhibit a high removal capacity for various pollutants. The starting materials are also thermally and mechanically stable, allowing for easy design and development at the nanoscale through versatile functionalization procedures, enabling their effective use in pollutant capture. However, improvements concerning mechanical properties or applicability for repeated cycles may be required to refine their structural features. This review focuses on hybrid/composite polymer-silica nanostructured materials. The state of the art in nanomaterial synthesis, different techniques of functionalization, and polymer grafting are described. Furthermore, it explores the application of polymer-modified nanostructured materials for the capture of heavy metals, dyes, hydrocarbons and petroleum derivatives, drugs, and other organic compounds. The paper concludes by offering recommendations for future research aimed at advancing the application of polymer-silica nanostructured materials in the efficiency of pollutant uptake.
Collapse
Affiliation(s)
- Antonio Grisolia
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Gianluca Dell’Olio
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Angelica Spadafora
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| | - Marzia De Santo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (M.D.S.); (C.M.)
| | - Luigi Pasqua
- Department of Environmental Engineering, University of Calabria, via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (A.G.); (G.D.); (A.S.)
| |
Collapse
|
2
|
Saddik R, Hammoudan I, Tighadouini S, Roby O, Radi S, Al-Zaben MI, Ben Bacha A, Masand VH, Almarhoon ZM. Mesoporous Silica Modified with 2-Phenylimidazo[1,2-a] pyridine-3-carbaldehyde as an Effective Adsorbent for Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study. Molecules 2022; 27:5168. [PMID: 36014408 PMCID: PMC9414865 DOI: 10.3390/molecules27165168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we will present an efficient and selective adsorbent for the removal of Cu(II) ions from aqueous solutions. The silica-based adsorbent is functionalized by 2-phenylimidazo[1,2-a] pyridine-3-carbaldehyde (SiN-imd-py) and the characterization was carried out by applying various techniques including FT-IR, SEM, TGA and elemental analysis. The SiN-imd-py adsorbent shows a good selectivity and high adsorption capacity towards Cu(II) and reached 100 mg/g at pH = 6 and T = 25 °C. This adsorption capacity is important compared to other similar adsorbents which are currently published. The adsorption mechanism, thermodynamics, reusability and the effect of different experimental conditions, such as contact time, pH and temperature, on the adsorption process, were also investigated. In addition, a theoretical study was carried out to understand the adsorption mechanism and the active sites of the adsorbent, as well as the stability of the complex formed and the nature of the bonds.
Collapse
Affiliation(s)
- Rafik Saddik
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20000, Morocco
| | - Imad Hammoudan
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20000, Morocco
| | - Said Tighadouini
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20000, Morocco
| | - Othmane Roby
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20000, Morocco
| | - Smaail Radi
- Laboratory of applied Chemistry and Environment (LCAE), Faculty of Sciences, Mohamed Premier University, Oujda 60000, Morocco
| | - Maha I. Al-Zaben
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Vijay H. Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati 444 602, India
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
In-situ preparation of novel nanocomposites of PMMA and ordered mesoporous carbon (FDU-15). JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Darwish MSA, Mostafa MH, Al-Harbi LM. Polymeric Nanocomposites for Environmental and Industrial Applications. Int J Mol Sci 2022; 23:1023. [PMID: 35162946 PMCID: PMC8835668 DOI: 10.3390/ijms23031023] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Polymeric nanocomposites (PNC) have an outstanding potential for various applications as the integrated structure of the PNCs exhibits properties that none of its component materials individually possess. Moreover, it is possible to fabricate PNCs into desired shapes and sizes, which would enable controlling their properties, such as their surface area, magnetic behavior, optical properties, and catalytic activity. The low cost and light weight of PNCs have further contributed to their potential in various environmental and industrial applications. Stimuli-responsive nanocomposites are a subgroup of PNCs having a minimum of one promising chemical and physical property that may be controlled by or follow a stimulus response. Such outstanding properties and behaviors have extended the scope of application of these nanocomposites. The present review discusses the various methods of preparation available for PNCs, including in situ synthesis, solution mixing, melt blending, and electrospinning. In addition, various environmental and industrial applications of PNCs, including those in the fields of water treatment, electromagnetic shielding in aerospace applications, sensor devices, and food packaging, are outlined.
Collapse
Affiliation(s)
- Mohamed S A Darwish
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt
| | - Mohamed H Mostafa
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727, Egypt
| | - Laila M Al-Harbi
- Chemistry Department, Faculty of Science, King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Tighadouini S, Radi S, Roby O, Hammoudan I, Saddik R, Garcia Y, Almarhoon ZM, Mabkhot YN. Kinetics, thermodynamics, equilibrium, surface modelling, and atomic absorption analysis of selective Cu(ii) removal from aqueous solutions and rivers water using silica-2-(pyridin-2-ylmethoxy)ethan-1-ol hybrid material. RSC Adv 2021; 12:611-625. [PMID: 35424512 PMCID: PMC8978821 DOI: 10.1039/d1ra06640d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
The removal of heavy metals is attracting considerable attention due to their undesirable effects on the environment. In this investigation, a new adsorbent based on silica functionalized with pyridin-2-ylmethanol (SiPy) was successfully synthesized to yield to a hybrid material. FTIR, SEM, TGA, and specific surface area analysis were used to characterize the structure and morphology of the SiPy hybrid material. Various heavy metal ions such as Cu(ii), Zn(ii), Cd(ii), and Pb(ii) were selected to examine the adsorption efficiency of the newly prepared adsorbent, optimized at varying solution pH, contact time, concentration, and temperature. The adsorbent SiPy displayed good adsorption capacity of 90.25, 75.38, 55.23, and 35.12 mg g−1 for Cu(ii), Zn(ii), Cd(ii), and Pb(ii), respectively, at 25 min and pH = 6. The adsorption behaviors of metal ions onto the SiPy adsorbent fitted well with the pseudo-second-order kinetic mode and the isotherm was better described by the Langmuir isotherm. The thermodynamic studies disclose spontaneous and endothermic adsorption process. Furthermore, the SiPy adsorbent retained good selectivity and regeneration properties after five adsorption–desorption cycles of Cu(ii). A computational investigation of the adsorption mechanism indicates that the N-pyridine, O-hydroxyl, and ether O-atoms play a predominant role during the capture of Cu(ii), Zn(ii), Cd(ii), and Pb(ii). This study proposes the SiPy adsorbent as an attractive material for the selective removal of Cu(ii) from real river water and real industrial wastewater. The removal of heavy metals is attracting considerable attention due to their undesirable effects on the environment.![]()
Collapse
Affiliation(s)
- Said Tighadouini
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, BP: 5366 Casablanca Morocco
| | - Smaail Radi
- University Mohammed First, Faculty of Sciences, Laboratory of Applied Chemistry and Environment (LCAE) 60000 Oujda Morocco
| | - Othmane Roby
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, BP: 5366 Casablanca Morocco
| | - Imad Hammoudan
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, BP: 5366 Casablanca Morocco
| | - Rafik Saddik
- Laboratory of Organic Synthesis, Extraction and Valorization, Faculty of Sciences Ain Chock, Hassan II University, BP: 5366 Casablanca Morocco
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Yahia N Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University P.O. Box 960 Abha 61421 Saudi Arabia
| |
Collapse
|
6
|
A Highly Efficient Environmental-Friendly Adsorbent Based on Schiff Base for Removal of Cu(II) from Aqueous Solutions: A Combined Experimental and Theoretical Study. Molecules 2021; 26:molecules26175164. [PMID: 34500598 PMCID: PMC8434251 DOI: 10.3390/molecules26175164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Removal of heavy metals from drinking water sources and rivers is of strategic health importance and is essential for sustainable ecosystem development, in particular in polluted areas around the globe. In this work, new hybrid inorganic-organic material adsorbents made of ortho- (Si-o-OR) or para-Schiff base silica (Si-p-OR) were synthesized and characterized in depth. These hybrid adsorbents show a high selectivity to Cu(II), even in the presence of competing heavy metals (Zn(II), Cd(II), and Pb(II)), and also demonstrate great reusability after five adsorption-desorption cycles. Maximum sorption capacity for Cu(II) was found for Si-o-OR (79.36 mg g−1) and Si-p-OR (36.20 mg g−1) in no less than 25 min. Energy dispersive X-ray fluorescence and Fourier transform-infrared spectroscopy studies demonstrate that this uptake occurs due to a chelating effect, which allows these adsorbents to trap Cu(II) ions on their surfaces; this result is supported by a theoretical study for Si-o-OR. The new adsorbents were tested against real water samples extracted from two rivers from the Oriental region of Morocco.
Collapse
|
7
|
Han Y, Chen J, Gu X, Chen J. Adsorption of multi-bivalent heavy metal ions in aqueous solution onto aminopropyl-functionalized MCM-48 preparation by co-condensation. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1799009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ya Han
- Geological Survey Institute, Hebei GEO University, Shijiazhuang, China
| | - Jinjin Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Zhejiang, China
| | - Xingxing Gu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Zhejiang, China
| |
Collapse
|
8
|
Sun Y, Zhang P, Zha Q, Huang Y, Zheng W, Yang C, Wu Z. Novel iminodiacetic acid functionalized basalt fiber for adsorption of Cu (II) ions in batch experiments. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1947851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yue Sun
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Pengyu Zhang
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Qingyi Zha
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Yihan Huang
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Weisheng Zheng
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Caiqian Yang
- School of Civil Engineering, Southeast University, Nanjing, China
| | - Zhiren Wu
- Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Jadhav SA, Patil VS, Shinde PS, Thoravat SS, Patil PS. A short review on recent progress in mesoporous silicas for the removal of metal ions from water. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01255-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Polymer matrix nanocomposites for heavy metal adsorption: a review. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01864-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Copper Ions Removal from Water using A 2B 3 Type Hyperbranched Poly(amidoamine) Hydrogel Particles. Molecules 2019; 24:molecules24213866. [PMID: 31717783 PMCID: PMC6864665 DOI: 10.3390/molecules24213866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022] Open
Abstract
Micrometer-sized hyperbranched poly(amidoamine) (hPAMAM) particles are prepared with a simple A2B3 type Aza–Michael addition reaction between aminoethylpiperazine (AEP) and methylenebisacrylamide (MBA) in an inverse suspension polymerization condition. The synthesized particles exhibited surprisingly high Cu2+ sorption capacity (0.223g/g) for a solid-type absorbent. In addition to the high sorption ability of the particle, its simple synthetic process and convenience, due to its micrometer-sized spherical shape and recyclability, make it a practical and attractive absorbent for heavy metal ion removal from aqueous solutions.
Collapse
|
12
|
Pectic acid–graphene oxide nanocomposite as an adsorbent in vortex-assisted dispersive solid-phase extraction for preconcentration of copper ion followed by flame atomic absorption spectrometry. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02884-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|