1
|
Sukkar D, Falla-Angel J, Laval-Gilly P. Bees as environmental and toxicological bioindicators in the light of pesticide non-targeted exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178639. [PMID: 39864251 DOI: 10.1016/j.scitotenv.2025.178639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Pesticides have a significant impact on the environment, harming valuable non-target organisms like bees. Honeybees, in particular, are ideal bioindicators of pesticide exposure due to extensive research on how pesticides affect their behavior, immunity, development, biomolecules, and detoxification. However, wild pollinators are less studied in terms of pesticide exposure, and their inclusion is essential for a comprehensive risk assessment. Additionally, food chain organisms, such as the Asian hornet, could serve as indicators of pesticide bioaccumulation. Addressing gaps in honeybee toxicology, understanding the limitations, and exploring the role of wild pollinators and insects as complementary indicators, along with advancements in risk assessment methodologies, could enhance predictive models. These models would help anticipate environmental pesticide impacts while reducing the need for costly, time-consuming research.
Collapse
Affiliation(s)
- Dani Sukkar
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France.
| | | | | |
Collapse
|
2
|
Du Q, Shan Y, Hu H, Wu C, Wang D, Song X, Ma Y, Xi J, Ren X, Ma X, Ma Y. Fitness effect and transcription profile reveal sublethal effect of nitenpyram on the predator Chrysopa pallens (Neuroptera: Chrysopidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22073. [PMID: 38288485 DOI: 10.1002/arch.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Although neonicotinoids are widely used and important insecticide, there are growing concerns about their effect on nontarget insects and other organisms. Moreover, the effects of nitenpyram (NIT), a second generation of neonicotinoid insecticides, on Chrysopa pallens are still unclear. Therefore, this study purposed to investigate the acute toxicity of NIT to C. pallens using the spotting method. To examine the potential effects of a sublethal dose of NIT (LD30 , 1.85 ng of active ingredient per insect) on C. pallens, we constructed the life tables and analyzed the transcriptome data. The life table results showed that the period of second instar larvae, adult pre-oviposition period and total pre-oviposition period were significantly prolonged after exposure to sublethal dose of NIT, but had no significant effects on the other instars, longevity, oviposition days, and fecundity. The population parameters, including the preadult survival rate, gross reproduction rate, net reproductive rate, the intrinsic rate of increase, and finite rate of increase, were not significantly affected, and only the mean generation time was significantly prolonged by NIT. Transcriptome analysis showed that there were 68 differentially expressed genes (DEGs), including 50 upregulated genes and 18 downregulated genes. Moreover, 13 DEGs related to heat shock protein, nose resistant to fluoxetine protein 6, and prophenoloxidas were upregulated. This study showed the potential effects of sublethal doses of NIT on C. pallens and provided a theoretical reference for the comprehensive application of chemical and biological control in integrated pest management.
Collapse
Affiliation(s)
- Qiankun Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongpan Shan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongyan Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Changcai Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dan Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xianpeng Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yajie Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianping Xi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangliang Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiaoyan Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Yan Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
3
|
Su Y, Ren X, Ma X, Wang D, Hu H, Song X, Cui J, Ma Y, Yao Y. Evaluation of the Toxicity and Sublethal Effects of Acetamiprid and Dinotefuran on the Predator Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). TOXICS 2022; 10:toxics10060309. [PMID: 35736917 PMCID: PMC9228657 DOI: 10.3390/toxics10060309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023]
Abstract
Neonicotinoid insecticides affect the physiology or behavior of insects, posing risks to non-target organisms. In this study, the effects of sublethal doses of two neonicotinoid insecticides, acetamiprid and dinotefuran, against Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) were determined and compared. The results showed that acetamiprid and dinotefuran at LD10 (8.18 ng a.i. per insect and 9.36 ng a.i. per insect, respectively) and LD30 (16.84 ng a.i. per insect and 15.01 ng a.i. per insect, respectively) significantly prolonged the larval stages and pupal stages (except acetamiprid LD10), compared to control. In addition, acetamiprid and dinotefuran at LD30 significantly prolonged the adult preoviposition period (APOP) and total preoviposition period (TPOP). In contrast, the two insecticides at LD10 and LD30 had no significant effect on the longevity, fecundity, reproductive days, preadult survival rate (%), intrinsic rate of increase (r), net reproductive rate (R0), and finite rate of increase (λ). These results provide a theoretical basis for the rational use of these two insecticides and the utilization and protection of C. pallens.
Collapse
Affiliation(s)
- Yue Su
- Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, College of Agriculture, Tarim University, Aral 843300, China;
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Xiangliang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Dan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Hongyan Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Xianpeng Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.R.); (X.M.); (D.W.); (H.H.); (X.S.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Y.M.); (Y.Y.)
| | - Yongsheng Yao
- Key Laboratory of Production and Construction Corps of Agricultural Integrated Pest Management in Southern Xinjiang, College of Agriculture, Tarim University, Aral 843300, China;
- Correspondence: (Y.M.); (Y.Y.)
| |
Collapse
|
4
|
Andrade FP, Venzon M, das Dôres RGR, Franzin ML, Martins EF, de Araújo GJ, Fonseca MCM. Toxicity of Varronia curassavica Jacq. Essential Oil to Two Arthropod Pests and Their Natural Enemy. NEOTROPICAL ENTOMOLOGY 2021; 50:835-845. [PMID: 34398399 DOI: 10.1007/s13744-021-00906-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the toxicity of the Varronia curassavica Jacq. essential oil to two cosmopolitan and polyphagous pest species, the two-spotted spider mite (Tetranychus urticae Koch) and the green aphid (Myzus persicae Sulzer). Additionally, we tested the essential oil toxicity to a generalist predatory insect, the green lacewing Ceraeochrysa cubana Hagen. The treatments consisted of four essential oil concentrations (0.25, 0.5, 0.75 and 1.0%) and one control (Tween® 80 + water). At 0.75% concentration, the V. curassavica essential oil caused the highest mortalities for both pests. The concentration of 1.0% of the essential oil interfered mainly in the rates of oviposition and egg hatching and caused a decrease in the instantaneous population growth rate (ri) of T. urticae. Survival of the C. cubana was not affected by the highest tested concentration of the essential oil (1%). Tested concentrations V. curassavica essential oil were toxic to T. urticae and M. persicae, but not to the predator C. cubana.
Collapse
Affiliation(s)
| | - Madelaine Venzon
- Agriculture and Livestock Research Enterprise of Minas Gerais (EPAMIG), Viçosa, MG, Brazil.
| | | | | | | | | | | |
Collapse
|
5
|
Souza JR, Moreira LB, Lima LLR, Silva TG, Braga PPM, Carvalho GA. Susceptibility of Chrysoperla externa (Hagen, 1861) (Neuroptera: Crysopidae) to insecticides used in coffee crops. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1306-1314. [PMID: 32785888 DOI: 10.1007/s10646-020-02261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The coffee crop hosts pests such as mites, mealybugs, and aphids which serve as food for the predator Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). The preservation of this chrysopid in coffee agroecosystem is very important to achieve sustainability of this agricultural sector, and can be obtained by applying low toxicity insecticides. The present study aimed to evaluate the susceptibility of C. externa to azadiracthin, chlorpyrifos, ethiprole and teflubenzuron. Predator eggs, third instar larvae, pupae and adults were exposed to insecticides by Potter tower spraying. When evaluating exposure of C. externa eggs we observed that chlorpyrifos, ethiprole and teflubenzuron reduced larvae hatching, while azadiracthin prolonged first instar duration. Meanwhile, the exposure of third instar larvae to chlorpyrifos and ethiprole caused mortality of all insects after 72 h, while azadiracthin prolonged the larval development time; we also observed that no compound allowed the formation of adults. After pupae were exposed to chlorpyrifos and teflubenzuron, it was observed a reduction on the emergence of adults, while the longevity of adults from these pupae and the evaluated reproductive parameters were reduced by all insecticides. For the bioassay with adults, chlorpyrifos, ethiprole and teflubenzuron reduced the longevity of insects, while the reproductive parameters evaluated were negatively affected after exposure to azadiracthin and teflubenzuron. It was concluded that all insecticides negatively affected at least one biological characteristic of the predator in at least one of the insect's developmental stages, requiring further research in semi-field and field conditions to prove its toxicity.
Collapse
Affiliation(s)
- Jander Rodrigues Souza
- Department of Entomology of the Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-900, Brazil
| | - Luciano Bastos Moreira
- Department of Entomology of the Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-900, Brazil
| | | | - Túlio Guimarães Silva
- Department of Entomology of the Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-900, Brazil
| | | | - Geraldo Andrade Carvalho
- Department of Entomology of the Federal University of Lavras, UFLA, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
6
|
Selectivity of Entomopathogenic Fungi to Chrysoperla externa (Neuroptera: Chrysopidae). INSECTS 2020; 11:insects11100716. [PMID: 33086539 PMCID: PMC7603232 DOI: 10.3390/insects11100716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary Agricultural crop systems have adopted integrated management as a model of success in pest control; however, chemical control is still prioritized. The use of pesticides incorrectly and excessively has provided a reduction in natural enemies, selection of resistant populations and resurgence of pests. Chrysoperla externa is a predator found in several regions in Brazil that preys on different pest insects. Entomopathogenic fungi Beauveria and Metarhizium also stand out for causing epizootics on pests. Both predators and entomopathogens can simultaneously act as pest control; thus, verifying the selectivity of entomopathogenic fungi to predators increases the potential for biological control through synergism and conservation of natural enemies in the agroecosystem. Considering the control potential of these different biological control agents, in this study we evaluated the selectivity of Beauveria bassiana, Metarhizium anisopliae and Metarhizium rileyi to the larvae of this predator. The results provide evidence that the biological development of larvae of C. externa is not influenced by the entomopathogenic fungus. These species of fungi can be recommended, aiming at a management of populations of arthropod pests, with low effect on C. externa when it is present in the agrosystem. Abstract We aimed to evaluate the selectivity of entomopathogenic fungi to larvae of Chrysoperla externa (Neuroptera: Chrysopidae). For this purpose, Beauveria bassiana (strain ESALQ PL63), Metarhizium anisopliae (strain ESALQ E9) and Metarhizium rileyi (strain UFMS 03) were assessed at different concentrations (1 × 107, 1 × 108 and 1 × 109 conidia mL−1). The control treatment consisted of distilled water and Tween80 0.01. The treatments were applied with a Potter spray tower using two different methodologies: direct application (DA) and dry film (DF). Up to 96 h after application, no treatment provided a larval mortality above 3%. After 120 h, only B. bassiana induced significant mortality in all instars, with rates of 26%, 17% and 10% for first, second and third instar larval periods, respectively. There was no difference regarding to the application method or concentration of conidia. The percentage of individuals that revealed changes in the length of the larval and pupal periods varied among different treatments with entomopathogenic fungi and control treatments, application methodologies and concentrations. Despite B. bassiana revealing a higher mortality than M. anisopliae and M. rileyi on larvae of C. externa, these three entomopathogenic fungi may be used in association with C. externa for sustainable pest management.
Collapse
|
7
|
Shan YX, Zhu Y, Li JJ, Wang NM, Yu QT, Xue CB. Acute lethal and sublethal effects of four insecticides on the lacewing (Chrysoperla sinica Tjeder). CHEMOSPHERE 2020; 250:126321. [PMID: 32135440 DOI: 10.1016/j.chemosphere.2020.126321] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
The lacewing, Chrysoperla sinica, is an important predatory insect, which plays an important role in the integrated pest management of agroforestry pests. However, the extensive use of insecticides negatively affects C. sinica. The acute toxicity, risk level, and, sublethal effects on growth and production, predation ability, protective enzyme activity and genotoxicity of four insecticides: indoxacarb, emamectin benzoate, imidacloprid and lambda-cyhalothrin to C. sinica were studied. The results showed that all four insecticides had lethal toxicity to larvae of C. sinica. Among them, emamectin benzoate had the highest toxicity with LC50 value of 7.41 mg/L. The insecticides also had different effects on the growth and reproduction of C. sinica, of which lambda-cyhalothrin had the greatest impacts. Even at a very low LC1 concentration (3.37 mg/L), it had strong impacts on the growth, reproduction and predatory ability of C. sinica. The four insecticides also caused a decrease in the predatory ability of the lacewing, of which lambda-cyhalothrin had the greatest effect. During the larval stage, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were significantly decreased by the four insecticides. At the pupal and adult stages, the effects of the four insecticides on the activities of protective enzymes were different, and the activities of SOD, CAT and POD decreased or increased. Indoxacarb and lambda-cyhalothrin exposure induced DNA damage in the haemocytes of C. sinica and produced obvious genotoxicity. These results provide important scientific basis for the rational use of these insecticides and the protection and utilization of lacewing.
Collapse
Affiliation(s)
- Yin-Xue Shan
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yang Zhu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Jing-Jing Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Nian-Meng Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Qi-Tong Yu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Chao-Bin Xue
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
8
|
De Armas FS, Dionei Grutzmacher A, Edson Nava D, Antonio Pasini R, Rakes M, de Bastos Pazini J. Non-target toxicity of nine agrochemicals toward larvae and adults of two generalist predators active in peach orchards. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:327-339. [PMID: 32107697 DOI: 10.1007/s10646-020-02177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Chrysoperla externa and Coleomegilla quadrifasciata are important biological control agents in peach orchards. However, orchard management with these predatory insects is viable only by using selective agrochemicals. The objective of this study is to evaluate the toxicity of nine agrochemicals used in peach orchards in larval and adult stages of the C. externa and C. quadrifasciata in laboratory conditions. The bioassays followed the methodologies proposed by the International Organization for Biological and Integrated Control (IOBC). Larvae and adults of C. externa and C. quadrifasciata were exposed to the dry residues of these products. Lethal and sublethal effects were evaluated in bioassays with the larval and adult stages of both predators. The agrochemicals were classified according to the IOBC guidelines. The insecticide chlorantraniliprole was harmless (class 1) to the larval stage of C. externa and C. quadrifasciata. Azadirachtin, copper 25% + calcium 10%, and deltamethrin were harmless to the adult stage of both insect species. The organophosphates fenitrothion and malathion were harmful (class 4) to both species in the larval and adult stages and should not be used in peach orchards. Therefore, this study demonstrates the importance of toxicity and the lethal and sublethal effects of these agrochemicals to better determine their compatibility with IPM in peach production.
Collapse
Affiliation(s)
- Franciele Silva De Armas
- Department of Crop Protection, Federal University of Pelotas (UFPel), Postal Code 354, Capão do Leão, Pelotas, Rio Grande do Sul State, 96010-900, Brazil.
| | - Anderson Dionei Grutzmacher
- Department of Crop Protection, Federal University of Pelotas (UFPel), Postal Code 354, Capão do Leão, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| | - Dori Edson Nava
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Embrapa Clima Temperado (Temperate Climate Embrapa), Postal code 403, Pelotas, Rio Grande do Sul State, 96001-970, Brazil
| | - Rafael Antonio Pasini
- Centro de Ensino Superior Riograndense, Postal Code 99560-000, Sarandi, Rio Grande do Sul State, Brazil
| | - Matheus Rakes
- Department of Crop Protection, Federal University of Pelotas (UFPel), Postal Code 354, Capão do Leão, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| | - Juliano de Bastos Pazini
- Department of Crop Protection, Federal University of Pelotas (UFPel), Postal Code 354, Capão do Leão, Pelotas, Rio Grande do Sul State, 96010-900, Brazil
| |
Collapse
|
9
|
Rodrigo Rugno G, Cuervo Rugno JB, Anzolut Stansly P, Takao Yamamoto P. Pest Management Systems and Insecticide Tolerance of Lacewings (Neuroptera: Chrysopidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1183-1189. [PMID: 30768668 DOI: 10.1093/jee/toz024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Lacewings (Neuroptera: Chrysopidae) are part of the beneficial fauna found in citrus orchards under both organic and conventional pest management. Due to their importance, knowledge about susceptibility of these predators to insecticides is a key element for their use as biological control agents. We studied the inter- and intraspecific susceptibility of the following lacewing species to bifenthrin, chlorpyrifos, and imidacloprid: Ceraeochrysa cincta (Schneider) (Neuroptera: Chrysopidae), Ceraeochrysa cubana (Hagen), Ceraeochrysa paraguaria (Navás), and Chrysoperla externa (Hagen). Different concentrations of these insecticides were sprayed on first instar larvae of these lacewing species from six orchards (three organic and three conventional), and LC50s were estimated. Development and reproduction of the most common lacewing, C. cincta, from both organic and conventional management systems were also studied. Lacewings from conventional management areas do not always have greater tolerance to insecticides. Chrysoperla externa was the most susceptible species to insecticides. Ceraeochrysa cincta displayed the highest LC50 and its populations from the conventional system showed lower egg hatching but shorter egg and larval developmental time. Adults collected from orchards managed conventionally lived longer, exhibited a higher population growth rate and a reduced doubling time. Ceraeochrysa cincta was the more tolerant species to insecticides better coping with systems that rely on chemical control as the main pest management tactic used.
Collapse
Affiliation(s)
- Gabriel Rodrigo Rugno
- Luiz de Queiroz' College of Agriculture/University of São Paulo (ESALQ/USP), Avenida Pádua Dias, Piracicaba, São Paulo, Brazil
| | | | | | - Pedro Takao Yamamoto
- Luiz de Queiroz' College of Agriculture/University of São Paulo (ESALQ/USP), Avenida Pádua Dias, Piracicaba, São Paulo, Brazil
| |
Collapse
|