1
|
Ma J, Qian S, Ma N, Zhang L, Xu L, Liu X, Meng G. Effect of short-term 10 Hz repeated transcranial magnetic stimulation on postural control ability in patients with mild hemiparesis in acute ischemic stroke: a single-blinded randomized controlled trial. Front Neurol 2024; 15:1439904. [PMID: 39206286 PMCID: PMC11350563 DOI: 10.3389/fneur.2024.1439904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Background Previous studies have demonstrated that repetitive transcranial magnetic stimulation (rTMS) can improve postural control in subacute and chronic ischemic stroke, but further research is needed to investigate the effect of rTMS on acute ischemic stroke. Objective We compared the therapeutic effects of rTMS plus conventional rehabilitation and conventional rehabilitation on postural control in patients with mild hemiparesis in acute ischemic stroke. Methods Eighty-six patients with acute ischemic stroke were randomly assigned to either the experimental group or the control group within 1-7 days of onset. Patients in both groups received conventional rehabilitation for 2 weeks. Patients in the experimental group received rTMS treatments lasting for 2 weeks. Before and after the 2-week treatment, patients were assessed based on the Timed up and Go (TUG) test, Dual-Task Walking (DTW) test, Functional Ambulation Category (FAC), Tinetti Performance Oriented Mobility Assessment (POMA), gait kinematic parameters, Barthel Index (BI), Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and National Institutes of Health Stroke Scale (NIHSS). Additionally, TUG and single-task gait velocity were assessed at 2 months after the start of treatment, and independent walking recovery was also followed up. Results After 2 weeks of treatment, compared to conventional rehabilitation, participants who underwent rTMS treatment plus conventional rehabilitation exhibited notable enhancements in TUG, FAC, POMA, and some gait parameters [single-task gait velocity, gait stride length, gait cadence, gait cycle]. Changes in cognitive function partially mediated the improvement in single-task gait velocity and gait stride length by rTMS plus conventional rehabilitation. Generalized Estimating Equation (GEE) analysis showed that the trend of improvement in single-task gait velocity over time was more pronounced in the experimental group than in the control group. The results of the Kaplan-Meier curve indicated a median gait recovery time of 90 days for patients in the experimental group and 100 days for the control group. Multifactorial Cox regression analyses showed that rTMS plus conventional rehabilitation promoted faster recovery of independent walking compared with conventional rehabilitation. Conclusion rTMS plus conventional rehabilitation outperformed conventional rehabilitation in improving postural control in patients with acute ischemic stroke. Improvements in cognitive function may serve as a mediating factor in the favorable treatment outcome of rTMS plus conventional rehabilitation for improving postural control. Clinical trial registration https://www.chictr.org.cn, identifier ChiCTR1900026225.
Collapse
Affiliation(s)
- Jiangping Ma
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Qian
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Nuo Ma
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Zhang
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linghao Xu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guilin Meng
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Komatsu T, Hada T, Sasaki N, Kida H, Maku T, Nakada R, Kitagawa T, Sato T, Takatsu H, Sakuta K, Sakai K, Umehara T, Mitsumura H, Abo M, Iguchi Y. Effects and safety of high-frequency rTMS in subacute ischemic stroke patients. J Neurol Sci 2024; 462:123069. [PMID: 38824817 DOI: 10.1016/j.jns.2024.123069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVE Although high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has shown benefits in chronic stroke, its application in subacute ischemic stroke remains underexplored. This study aims to investigate the effects and safety of lesion-side HF-rTMS in subacute ischemic stroke. METHODS Prospective lesion-side HF-rTMS was conducted on consecutive ischemic stroke patients within 3 days of onset from February 2019 to June 2022. Inclusion criteria required persistent paralysis (NIHSS score ≥ 1 for at least 7 days). Exclusion criteria comprised cortical infarction, disturbance of consciousness, and age over 80 years. A conventional rehabilitation group meeting the same criteria from June 2015 to January 2019 served as a comparison. We compared the two groups regarding clinical background and outcome. We also evaluated incidence of epilepsy and exacerbation of the NIHSS score in the rTMS group. RESULTS Seventy-eight patients participated, with 50% in the HF-rTMS group. Median time from onset to HF-rTMS initiation was 9 (IQR 7-12) days. A favorable outcome (modified Rankin Scale score 0-2) at 3 months was more frequent in the rTMS group (80% vs. 44%, p = 0.002). HF-rTMS was independently associated with a favorable outcome at 3 months (OR = 5.60, 95% CI = 1.53-20.50, p = 0.009). No cases of epilepsy or exacerbation of NIHSS score were observed. CONCLUSIONS HF-rTMS demonstrates potential effectiveness and safety in subacute ischemic stroke patients.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan.
| | - Takuya Hada
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyuki Sasaki
- Department of Rehabilitation Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Kida
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Maku
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoji Nakada
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomomichi Kitagawa
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takeo Sato
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroki Takatsu
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenichi Sakuta
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenichiro Sakai
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Umehara
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidetaka Mitsumura
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Marín-Medina DS, Arenas-Vargas PA, Arias-Botero JC, Gómez-Vásquez M, Jaramillo-López MF, Gaspar-Toro JM. New approaches to recovery after stroke. Neurol Sci 2024; 45:55-63. [PMID: 37697027 PMCID: PMC10761524 DOI: 10.1007/s10072-023-07012-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
After a stroke, several mechanisms of neural plasticity can be activated, which may lead to significant recovery. Rehabilitation therapies aim to restore surviving tissue over time and reorganize neural connections. With more patients surviving stroke with varying degrees of neurological impairment, new technologies have emerged as a promising option for better functional outcomes. This review explores restorative therapies based on brain-computer interfaces, robot-assisted and virtual reality, brain stimulation, and cell therapies. Brain-computer interfaces allow for the translation of brain signals into motor patterns. Robot-assisted and virtual reality therapies provide interactive interfaces that simulate real-life situations and physical support to compensate for lost motor function. Brain stimulation can modify the electrical activity of neurons in the affected cortex. Cell therapy may promote regeneration in damaged brain tissue. Taken together, these new approaches could substantially benefit specific deficits such as arm-motor control and cognitive impairment after stroke, and even the chronic phase of recovery, where traditional rehabilitation methods may be limited, and the window for repair is narrow.
Collapse
Affiliation(s)
- Daniel S Marín-Medina
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Paula A Arenas-Vargas
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan C Arias-Botero
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuela Gómez-Vásquez
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Manuel F Jaramillo-López
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge M Gaspar-Toro
- Grupo de Investigación NeuroUnal, Neurology Unit, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Sheng R, Chen C, Chen H, Yu P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: insights into the molecular and cellular mechanisms of neuroinflammation. Front Immunol 2023; 14:1197422. [PMID: 37283739 PMCID: PMC10239808 DOI: 10.3389/fimmu.2023.1197422] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide, with most survivors reporting dysfunctions of motor, sensation, deglutition, cognition, emotion, and speech, etc. Repetitive transcranial magnetic stimulation (rTMS), one of noninvasive brain stimulation (NIBS) techniques, is able to modulate neural excitability of brain regions and has been utilized in neurological and psychiatric diseases. Moreover, a large number of studies have shown that the rTMS presents positive effects on function recovery of stroke patients. In this review, we would like to summarized the clinical benefits of rTMS for stroke rehabilitation, including improvements of motor impairment, dysphagia, depression, cognitive function, and central post-stroke pain. In addition, this review will also discuss the molecular and cellular mechanisms underlying rTMS-mediated stroke rehabilitation, especially immune regulatory mechanisms, such as regulation of immune cells and inflammatory cytokines. Moreover, the neuroimaging technique as an important tool in rTMS-mediated stroke rehabilitation has been discussed, to better understanding the mechanisms underlying the effects of rTMS. Finally, the current challenges and future prospects of rTMS-mediated stroke rehabilitation are also elucidated with the intention to accelerate its widespread clinical application.
Collapse
Affiliation(s)
- Rongjun Sheng
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, China
| | - Changchun Chen
- Department of Radiology, The People’s Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou, China
| | - Huan Chen
- Department of Radiology, The People’s Hospital of Longyou, Quzhou, China
| | - Peipei Yu
- Department of Radiology, Sanmen People’s Hospital, Taizhou, China
| |
Collapse
|
5
|
Qi S, Tian M, Rao Y, Sun C, Li X, Qiao J, Huang ZG. Applying transcranial magnetic stimulation to rehabilitation of poststroke lower extremity function and an improvement: Individual-target TMS. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1636. [PMID: 36437474 DOI: 10.1002/wcs.1636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
Abstract
Stroke is the leading cause of disability globally in need of novel and effective methods of rehabilitation. Intermittent theta burst stimulation (iTBS) has been adopted as a Level B recommendation for lower limb spasticity in guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Nonetheless, the methodological differences and deficits of existing work bring about heterogenous results and therefore limit the universal clinical use of rTMS in lower extremity (LE) rehabilitation. The variation of stimulated targets across motor cortex contributes mainly to these heterogeneities. This narrative review includes studies of rTMS on LE motor function rehabilitation in patients after stroke until now. Some analyses of brain imaging and electromagnetic simulation and quantification through computational modeling were also performed. rTMS appears capable of fostering LE motor rehabilitation after stroke, but the actually stimulated targets are considerably bias making it difficult to confirm effectiveness. The main reason for this phenomenon is probably inaccurate targeting of motor cortical leg representation. An underlying updated method is proposed as Individual-Target TMS (IT-TMS) combined with brain imaging. rTMS is a promising validated method for LE function regaining. Future studies should systematically compare the effects of IT-TMS with traditional rTMS using large samples in random clinical trials. This article is categorized under: Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Shun Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Meng Tian
- National TCM Academic School Inheritance Studio Project-Chang'an Mi Shi Internal Medicine School Inheritance Studio, Xi'an, Shaanxi, People's Republic of China
| | - Yang Rao
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Chuanzhu Sun
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Xiang Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, People's Republic of China.,Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, People's Republic of China
| | - Jin Qiao
- Department of Rehabilitation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, People's Republic of China.,Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.,The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Ni J, Jiang W, Gong X, Fan Y, Qiu H, Dou J, Zhang J, Wang H, Li C, Su M. Effect of rTMS intervention on upper limb motor function after stroke: A study based on fNIRS. Front Aging Neurosci 2023; 14:1077218. [PMID: 36711205 PMCID: PMC9880218 DOI: 10.3389/fnagi.2022.1077218] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Background Stroke is a disease with a high fatality rate worldwide and a major cause of long-term disability. In the rehabilitation of limb motor function after stroke, the rehabilitation of upper limb function takes a long time and the recovery progress is slow, which seriously affects the patients' self-care ability in daily life. Repeated transcranial magnetic stimulation (rTMS) has been increasingly used to improve limb dysfunction in patients with stroke. However, a standardized reference for selecting a magnetic stimulation regimen is not available. Whether to increase the inhibition of the contralateral hemispheric motor cortex remains controversial. This study has evaluated the effects of different rTMS stimulation programs on upper limb function and corresponding brain functional network characteristics of patients with stroke and sought a new objective standard based on changes in brain network parameters to guide accurate rTMS stimulation programs. Method Thirty-six patients with stroke were selected and divided into control group and treatment group by number table method, with 18 patients in each group, and 3 patients in the control group were turned out and lost due to changes in disease condition. The treatment group was divided into two groups. TMS1 group was given 1 Hz magnetic stimulation in the M1 region of the contralesional hemisphere +10 Hz magnetic stimulation in the M1 region of the affected hemisphere, and the TMS2 group was given 10 Hz magnetic stimulation in the M1 region of the affected hemisphere. The control group was given false stimulation. The treatment course was once a day for 5 days a week for 4 weeks. The Fugl-Meyer Assessment for upper extremity (FMA-UE) sand near-infrared brain function were collected before treatment, 2 weeks after treatment, and 4 weeks after treatment, and the brain function network was constructed. Changes in brain oxygenated hemoglobin concentration and brain network parameters were analyzed with the recovery of motor function (i.e., increased FMA score). Meanwhile, according to the average increment of brain network parameters, the rTMS stimulation group was divided into two groups with good efficacy and poor efficacy. Network parameters of the two groups before and after rTMS treatment were analyzed statistically. Results (1) Before treatment, there was no statistical difference in Fugl-Meyer score between the control group and the magnetic stimulation group (p = 0.178).Compared with before treatment, Fugl-Meyer scores of 2 and 4 weeks after treatment were significantly increased in both groups (p <0.001), and FMA scores of 4 weeks after treatment were significantly improved compared with 2 weeks after treatment (p < 0.001). FMA scores increased faster in the magnetic stimulation group at 2 and 4 weeks compared with the control group at the same time point (p <0.001).TMS1 and TMS2 were compared at the same time point, FMA score in TMS2 group increased more significantly after 4 weeks of treatment (p = 0.010). (2) Before treatment, HbO2 content in healthy sensory motor cortex (SMC) area of magnetic stimulation group and control group was higher than that in other region of interest (ROI) area, but there was no significant difference in ROI between the two groups. After 4 weeks of treatment, the HbO2 content in the healthy SMC area was significantly decreased (p < 0.001), while the HbO2 content in the affected SMC area was significantly increased, and the change was more significant in the magnetic stimulation group (p < 0.001). (3) In-depth study found that with the recovery of motor function (FMA upper limb score increase ≥4 points) after magnetic stimulation intervention, brain network parameters were significantly improved. The mean increment of network parameters in TMS1 group and TMS2 group was significantly different (χ 2 = 5.844, p = 0.016). TMS2 group was more advantageous than TMS1 group in improving the mean increment of brain network parameters. Conclusion (1) The rTMS treatment is beneficial to the recovery of upper limb motor function in stroke patients, and can significantly improve the intensity of brain network connection and reduce the island area. The island area refers to an isolated activated brain area that cannot transmit excitation to other related brain areas. (2) When the node degree of M1_Healthy region less than 0.52, it is suggested to perform promotion therapy only in the affected hemisphere. While the node degree greater than 0.52, and much larger than that in the M1_affected region. it is suggested that both inhibition in the contralesional hemisphere and high-frequency excitatory magnetic stimulation in the affected hemisphere can be performed. (3) In different brain functional network connection states, corresponding adjustment should be made to the treatment plan of rTMS to achieve optimal therapeutic effect and precise rehabilitation treatment.
Collapse
Affiliation(s)
- Jing Ni
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Jiangsu Rongjun Hospital, Wuxi, Jiangsu, China
| | - Wei Jiang
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Jiangsu Rongjun Hospital, Wuxi, Jiangsu, China
| | - Xueyang Gong
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Wuxi International Tongren Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Yingjie Fan
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Institute of Rehabilitation Soochow University, Suzhou, Jiangsu, China
| | - Hao Qiu
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Institute of Rehabilitation Soochow University, Suzhou, Jiangsu, China
| | - Jiaming Dou
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Department of Physical Medicine and Rehabilitation, Wuxi International Tongren Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Juan Zhang
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxing Wang
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China,*Correspondence: Hongxing Wang, ✉
| | - Chunguang Li
- The Key Laboratory of Robotics and System of Jiangsu Province, School of Mechanical and Electric Engineering, Soochow University, Suzhou, Jiangsu, China,Chunguang Li, ✉
| | - Min Su
- Department of Physical Medicine and Rehabilitation, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, China,Institute of Rehabilitation Soochow University, Suzhou, Jiangsu, China,First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,Min Su, ✉
| |
Collapse
|
7
|
Khatkova SE, Pogoreltseva OA, Dygileva VP, Gilveg AS, Shevchenko VS, Nikolaev EA, Karimov AN. [Experience of using rhythmic transcranial magnetic stimulation, extracorporeal shock wave therapy and botulinotherapy in individual motor recovery programs in patients with spastic paresis of the lower limb]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:118-123. [PMID: 37490676 DOI: 10.17116/jnevro2023123071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Walking disorder is one of the most frequent consequences of stroke and traumatic brain injury, occurring in 80% of cases. Spastic paresis of the muscles of the lower extremity is the cause formed in 20-40% of patients within a few weeks after brain damage. In this case, a complex of symptoms occurs: motor deficiency (muscle paresis), increased muscle tone (spasticity), biomechanical changes in muscles, joints and surrounding tissues, contractures. Recovery of walking is a difficult task due to the peculiarities of its organization in the norm. At the same time, changes occurring in the muscles of the lower limb after a stroke, their modular reorganization, the formation of various pathological patterns, violation of the regulation of movements by the central nervous system, rapidly occurring changes in muscles, ligaments, complicate this process. Improving walking is one of the most important priorities of rehabilitation. Already at the second (stationary) stage of rehabilitation, patients have a lack of proper support on the lower limb, which inevitably leads to excessive load on the second limb, a change in the body scheme, incorrect foot placement, violation of the mechanics of walking (moving from heel to toe) due to plantar flexion / turn of the foot, etc. All this makes patients dependent on outside help, and walking unsafe, increases the risk of falls and complications (arthropathy, contracture, etc.). In this regard, it is important to timely diagnose the totality of changes in the lower limb and create optimal comprehensive rehabilitation programs using highly effective treatment methods aimed at reducing the severity of the motor defect, reducing spasticity and preventing complications. The article discusses the place of rhythmic transcranial magnetic stimulation, extracorporeal shock wave therapy and botulinum therapy during rehabilitation in patients with spastic paresis of the lower limb after a stroke. The results of the protocol of clinical approbation «Complex rehabilitation of patients with lower limb spasticity after focal brain damage at the second stage of medical rehabilitation» are presented.
Collapse
Affiliation(s)
- S E Khatkova
- National Medical Research Center «Treatment and Rehabilitation Center», Moscow, Russia
| | - O A Pogoreltseva
- National Medical Research Center «Treatment and Rehabilitation Center», Moscow, Russia
| | - V P Dygileva
- National Medical Research Center «Treatment and Rehabilitation Center», Moscow, Russia
| | - A S Gilveg
- National Medical Research Center «Treatment and Rehabilitation Center», Moscow, Russia
| | - V S Shevchenko
- National Medical Research Center «Treatment and Rehabilitation Center», Moscow, Russia
| | - E A Nikolaev
- National Medical Research Center «Treatment and Rehabilitation Center», Moscow, Russia
| | - A N Karimov
- LLC «Medical Center «IsceLine», Moscow, Russia
| |
Collapse
|
8
|
Komatsu T, Hada T, Sasaki N, Kida H, Takahashi J, Maku T, Nakada R, Shiraishi T, Akiyama S, Kitagawa T, Sato T, Takatsu H, Sakuta K, Sakai K, Umehara T, Omoto S, Murakami H, Mitsumura H, Abo M, Iguchi Y. Effects and safety of high-frequency rTMS in acute intracerebral hemorrhage patients: A pilot study. J Neurol Sci 2022; 443:120473. [PMID: 36343585 DOI: 10.1016/j.jns.2022.120473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) in chronic intracerebral hemorrhage (ICH) is beneficial, it has been poorly investigated in rTMS for acute ICH. Our aim is to investigate the effects and safety of rTMS in acute spontaneous ICH. METHODS We prospectively performed HF-rTMS on consecutive patients with ICH within 24 h from onset between April 2019 and August 2021. The inclusion criterion was (1) persistent paralysis, with an NIHSS scale of 1 or higher for at least 3 days after onset. The exclusion criteria were (1) cortical, subcortical, and cerebellar ICH, (2) disturbance of consciousness, and (3) over 80 years of age. For the purpose of comparison, we used a conventional rehabilitation group whose patients met the same criteria between April 2016 and March 2019. We evaluated incidence of epilepsy and exacerbation of the NIHSS score in the rTMS group. We also compared the two groups regarding clinical background and outcome. RESULTS Enrolled in the study were a total of 44 patients. Of the patients, 22 (50%) were in the rTMS group. The median (IQR) time from onset to the start of rTMS was 9 (6-12) days. There were no cases of epilepsy or exacerbation of NIHSS after the start of rTMS. Favorable outcome (modified Rankin Scale score of between 0 and 2) at 3 months was frequently observed in the rTMS group (73% vs 27%, p = 0.006). HF-rTMS was independently associated with favorable outcome at 3 months (OR = 11.5, 95% CI = 2.194-60.447, p = 0.004). CONCLUSIONS HF-rTMS may be safe and effective in acute ICH patients.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan.
| | - Takuya Hada
- Department of Rehabilitation Medicine, the Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyuki Sasaki
- Department of Rehabilitation Medicine, the Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Kida
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Junichiro Takahashi
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Maku
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Ryoji Nakada
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Tomotaka Shiraishi
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Shiho Akiyama
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Tomomichi Kitagawa
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Takeo Sato
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Hiroki Takatsu
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Kenichi Sakuta
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Kenichiro Sakai
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Umehara
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan.
| | - Shusaku Omoto
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan.
| | - Hidetomo Murakami
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Hidetaka Mitsumura
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, the Jikei University School of Medicine, Tokyo, Japan.
| | - Yasuyuki Iguchi
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Study Protocol for a Multicenter, Randomized Controlled Trial to Improve Upper Extremity Hemiparesis in Chronic Stroke Patients by One-to-One Training (NEURO ®) with Repetitive Transcranial Magnetic Stimulation. J Clin Med 2022; 11:jcm11226835. [PMID: 36431312 PMCID: PMC9695575 DOI: 10.3390/jcm11226835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
During recovery from upper limb motor paralysis after stroke, it is important to (1) set the exercise difficulty level according to the motor paralysis severity, (2) provide adequate exercises, and (3) motivate the patient to achieve the goal. However, these factors have not been well-formulated. This multicenter, randomized controlled trial study aims to examine the therapeutic effects of these three factors on patients undergoing a novel intervention using repetitive transcranial magnetic stimulation and intensive one-to-one training (NEURO®) and to formulate a corresponding research protocol. The control group will receive conventional NEURO® occupational therapy. In the intervention group, four practice plans will be selected according to the Fugl-Meyer assessment (FMA-UE) scores of the upper extremity. The goal is to predict the post-treatment outcomes based on the pre-treatment FMA-UE scores. Based on the degree of difficulty and amount of practice required, we can formulate a practice plan to promote upper limb motor recovery. This occupational therapy plan will be less influenced by the therapist's skill, facilitating effective rehabilitation. The study findings may be utilized to promote upper limb motor paralysis recovery and provide a basis for proposing activities of daily living adapted to upper limb function.
Collapse
|
10
|
Sasaki N, Sato T, Yamatoku M, Yamano Y. Efficacy of repetitive transcranial magnetic stimulation for gait disturbance in HTLV-1 associated myelopathy. NeuroRehabilitation 2022; 51:519-526. [DOI: 10.3233/nre-220105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Human T-cell leukemia virus type 1 (HTLV-1) associated myelopathy (HAM) can damage the spinal cord, causing paraplegia, spasticity, and gait disturbance. Currently, there are few effective treatments. OBJECTIVE: We investigated the efficacy of repetitive transcranial magnetic stimulation (rTMS) on gait disturbance in patients with HAM. METHODS: rTMS at 10 Hz was applied to HAM patients aged 30–80 years with an Osame’s Motor Disability Score between 3 and 6. The stimulation site on the skull was the position where motor evoked potentials were most evidently elicited and leg motor areas were stimulated. Resting motor thresholds (minimum stimulation to induce motor evoked potential) were also determined. Each participant underwent 10 sessions of 2400 stimuli. Clinical measurements, including walking speed and stride length, were obtained. RESULTS: From 119 patients with HAM recruited, 12 were included in the rTMS group and 18 who did not undergo rTMS comprised the control group. rTMS significantly improved walking speed and stride length compared to controls. Particularly, resting motor thresholds decreased after 10 sessions of rTMS. CONCLUSIONS: rTMS improves walking speed in patients with HAM and may be an effective alternative for treating gait disturbance in patients with HAM.
Collapse
Affiliation(s)
- Nobuyuki Sasaki
- Department of Rehabilitation Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Tomoo Sato
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masato Yamatoku
- Department of Rehabilitation Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yoshihisa Yamano
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
11
|
Veldema J, Gharabaghi A. Non-invasive brain stimulation for improving gait, balance, and lower limbs motor function in stroke. J Neuroeng Rehabil 2022; 19:84. [PMID: 35922846 PMCID: PMC9351139 DOI: 10.1186/s12984-022-01062-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives This systematic review and meta-analysis aim to summarize and analyze the available evidence of non-invasive brain stimulation/spinal cord stimulation on gait, balance and/or lower limb motor recovery in stroke patients. Methods The PubMed database was searched from its inception through to 31/03/2021 for randomized controlled trials investigating repetitive transcranial magnetic stimulation or transcranial/trans-spinal direct current/alternating current stimulation for improving gait, balance and/or lower limb motor function in stroke patients. Results Overall, 25 appropriate studies (including 657 stroke subjects) were found. The data indicates that non-invasive brain stimulation/spinal cord stimulation is effective in supporting recovery. However, the effects are inhomogeneous across studies: (1) transcranial/trans-spinal direct current/alternating current stimulation induce greater effects than repetitive transcranial magnetic stimulation, and (2) bilateral application of non-invasive brain stimulation is superior to unilateral stimulation. Conclusions The current evidence encourages further research and suggests that more individualized approaches are necessary for increasing effect sizes in stroke patients.
Collapse
Affiliation(s)
- Jitka Veldema
- Department of Sport Science, Bielefeld University, 33 501, Bielefeld, Germany. .,Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany.
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Lu Y, Xia Y, Wu Y, Pan X, Wang Z, Li Y. Repetitive transcranial magnetic stimulation for upper limb motor function and activities of daily living in patients with stroke: a protocol of a systematic review and Bayesian network meta-analysis. BMJ Open 2022; 12:e051630. [PMID: 35273041 PMCID: PMC8915325 DOI: 10.1136/bmjopen-2021-051630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Patients with stroke usually suffer from varying degrees of movement dysfunction, which seriously affects their quality of life, especially for the upper limb dysfunction. Therefore, this study aims to compare the effects of different repetitive transcranial magnetic stimulation (rTMS) modalities on upper limb motor function and daily activities in patients with stroke. METHODS AND ANALYSIS Relevant research will be collected systematically from PubMed, Web of Science, Embase, Cochrane Library, ProQuest, Wanfang Database, China National Knowledge Infrastructure and Chinese Scientific and Journal Database (VIP) about randomised controlled trials of rTMS in the stroke treatment range from the establishment to November 2020. Primary outcomes will be obtained from scales measuring the upper limb motor function like Upper Extremity Fugl-Meyer Assessment Scale, Wolf Motor Function Test, Jebsen-Taylor Hand Function Test, Action Research Arm Test and Box and Block Test. The secondary outcomes include modified Barthel Index and adverse events (such as vertigo, headache and epilepsy), with the goal of assessing patients' activities of daily living and the safety of treatment. In order to avoid personal bias in the included studies, two reviewers will conduct the data extraction and quality evaluation independently, and all data analyses will be performed by Generate Mixed Treatment comparison software V.0.14.3 and Stata V.16.0. ETHICS AND DISSEMINATION The network meta-analysis (NMA) in this study does not require ethical approval because the data analysis will be used only to evaluate the rTMS treatment efficacy without patients' private information. In addition, the results will be disseminated in international conference reports and peer-reviewed manuscripts. PROSPERO REGISTRATION NUMBER CRD42020212253.
Collapse
Affiliation(s)
- Yue Lu
- Department of Health Sciences, Wuhan Sports University, Wuhan, Hubei, China
| | - Yuan Xia
- Department of Health Sciences, Wuhan Sports University, Wuhan, Hubei, China
| | - Yue Wu
- Department of Health Sciences, Wuhan Sports University, Wuhan, Hubei, China
| | - Xinyong Pan
- Department of Health Sciences, Wuhan Sports University, Wuhan, Hubei, China
| | - Zhenyu Wang
- Department of Health Sciences, Wuhan Sports University, Wuhan, Hubei, China
| | - Yongjie Li
- Department of Rehabilitation Medicine, Guizhou Orthopedics Hospital, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Krogh S, Jønsson AB, Aagaard P, Kasch H. Efficacy of repetitive transcranial magnetic stimulation for improving lower limb function in individuals with neurological disorders: A systematic review and meta-analysis of randomized sham-controlled trials. J Rehabil Med 2022; 54:jrm00256. [PMID: 34913062 PMCID: PMC8862648 DOI: 10.2340/jrm.v53.1097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE To determine the efficacy of repetitive transcranial magnetic stimulation vs sham stimulation on improving lower-limb functional outcomes in individuals with neurological disorders. DATA SOURCES PubMed, CINAHL, Embase and Scopus databases were searched from inception to 31 March 2020 to identify papers (n = 1,198). Two researchers independently reviewed studies for eligibility. Randomized clinical trials with parallel-group design, involving individuals with neurological disorders, including lower-limb functional outcome measures and published in scientific peer-reviewed journals were included. DATA EXTRACTION Two researchers independently screened eligible papers (n = 27) for study design, clinical population characteristics, stimulation protocol and relevant outcome measures, and assessed study quality. DATA SYNTHESIS Studies presented a moderate risk of selection, attrition and reporting bias. An overall effect of repetitive transcranial magnetic stimulation was found for outcomes: gait (effect size [95% confidence interval; 95% CI]: 0.51 [0.29; 0.74], p = 0.003) and muscle strength (0.99 [0.40; 1.58], p = 0.001) and disorders: stroke (0.20 [0.00; 0.39], p = 0.05), Parkinson's disease (1.01 [0.65; 1.37], p = 0.02) and spinal cord injury (0.50 [0.14; 0.85], p = 0.006), compared with sham. No effect was found for outcomes: mobility and balance. CONCLUSION Supplementary repetitive transcranial magnetic stimulation may promote rehabilitation focused on ambulation and muscle strength and overall lower-limb functional recovery in individuals with stroke, Parkinson's disease and spinal cord injury. Further evidence is needed to extrapolate these findings.
Collapse
Affiliation(s)
- Søren Krogh
- Department of Neurology, Regional Hospital Viborg, Department of Clinical Medicine, Aarhus University, Denmark.
| | | | | | | |
Collapse
|
14
|
Motolese F, Capone F, Di Lazzaro V. New tools for shaping plasticity to enhance recovery after stroke. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:299-315. [PMID: 35034743 DOI: 10.1016/b978-0-12-819410-2.00016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stroke is the second most common cause of death worldwide and its prevalence is projected to increase in the coming years in parallel with the increase of life expectancy. Despite the great improvements in the management of the acute phase of stroke, some residual disability persists in most patients thus requiring rehabilitation. One third of patients do not reach the maximal recovery potential and different approaches have been explored with the aim to boost up recovery. In this regard, noninvasive brain stimulation techniques have been widely used to induce neuroplasticity phenomena. Different protocols of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) can induce short- and long-term changes of synaptic excitability and are promising tools for enhancing recovery in stroke patients. New options for neuromodulation are currently under investigation. They include: vagal nerve stimulation (VNS) that can be delivered invasively, with implanted stimulators and noninvasively with transcutaneous VNS (tVNS); and extremely low-frequency (1-300Hz) magnetic fields. This chapter will provide an overview on the new techniques that are used for neuroprotection and for enhancing recovery after stroke.
Collapse
Affiliation(s)
- Francesco Motolese
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
15
|
Fan H, Song Y, Cen X, Yu P, Bíró I, Gu Y. The Effect of Repetitive Transcranial Magnetic Stimulation on Lower-Limb Motor Ability in Stroke Patients: A Systematic Review. Front Hum Neurosci 2021; 15:620573. [PMID: 34539362 PMCID: PMC8442991 DOI: 10.3389/fnhum.2021.620573] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is fundamental in inducing neuroplastic changes and promoting brain function restoration. Nevertheless, evidence based on the systematic assessment of the implication of rTMS in stroke patients is inadequate. This study aimed to evaluate the value of rTMS in the treatment of lower-limb motor dysfunction in stroke patients via gait characteristics. The electronic literature search was performed in ScienceDirect, Google Scholar, and PubMed databases using "repetitive transcranial magnetic stimulation," "gait," and "stroke" between 2000 and 2020. By screening all the identified studies, a total of 10 studies covering 257 stroke patients were included by matching the inclusion criteria, involving both rTMS with high (≥5 Hz) and low frequency (<5 Hz). Despite the limited study number and relatively high risk of bias, the results of this review primarily confirmed the enhancing effects of rTMS on the lower-limb motor ability (e.g., gait and balance) of stroke patients. In addition, 15- to 20-min course of rTMS for 2 to 3 weeks was found to be the most common setting, and 1 Hz and 10 Hz were the most commonly used low and high frequencies, respectively. These results might have significant clinical applications for patients with weakened lower-limb mobility after a stroke. Nevertheless, more rigorous studies in this field are much warranted. Systematic Review Registration:https://inplasy.com/, identifier INPLASY202180079.
Collapse
Affiliation(s)
- Huiliu Fan
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Yang Song
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Doctoral School of Safety and Security Sciences, Obuda University, Budapest, Hungary.,Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Xuanzhen Cen
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Doctoral School of Safety and Security Sciences, Obuda University, Budapest, Hungary.,Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Peimin Yu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - István Bíró
- Doctoral School of Safety and Security Sciences, Obuda University, Budapest, Hungary.,Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Jin Y, Pu T, Guo Z, Jiang B, Mu Q. Placebo effect of rTMS on post-stroke motor rehabilitation: a meta-analysis. Acta Neurol Belg 2021; 121:993-999. [PMID: 32772334 DOI: 10.1007/s13760-020-01460-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that placebo repetitive transcranial magnetic stimulation (rTMS) was effective on post-stroke motor rehabilitation. However, the placebo effect has not been systematically assessed. Therefore, this meta-analysis was conducted to resolve this issue and explore potential influencing factors further. PubMed, Embase, web of science and the Cochrane Library were searched for published randomised controlled trials (RCTs) with placebo rTMS treatment of stroke recovery until May 2019. The placebo effect size (Hedges' g) was estimated using the motor outcome of pre- and post- placebo rTMS treatment. Meta-regression analysis was also performed to explore potential influencing factors for the placebo effect. Twenty-six placebo-controlled trials (including 381 patients in placebo group) were selected. Effect size results (Hedges' g = 0.466, 95% CI 0.207-0.726; P < 0.05) showed a medium and significant placebo rTMS effect on improving post-stroke motor recovery. The mean ratio of the effect size of sham to real stimulation was 56%. Meta-regression analysis did not find significant result except for the treatment sessions, which was significantly correlated with the placebo effect size (r = 0.465, p = 0.031). In the follow-up observations (1, 2 and 3 months), the sham rTMS groups manifested gradually increased motor improvement, which was similar to the real group, but the amplitude was lower, which was sustained for at least 3 months. Placebo effect of rTMS on post-stroke motor recovery was medium but significant. Regarding different sham styles, the number of stimulation sessions had an impact on the effect.
Collapse
Affiliation(s)
- Yu Jin
- Department of Radiology and Institute of Rehabilitation and Imaging of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, 97 South Renmin Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Ting Pu
- Department of Big Data Center, Sichuan Cancer Hospital and Institute, Chengdu, 610000, China
| | - Zhiwei Guo
- Department of Radiology and Institute of Rehabilitation and Imaging of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, 97 South Renmin Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Binghu Jiang
- Department of Radiology and Institute of Rehabilitation and Imaging of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, 97 South Renmin Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Qiwen Mu
- Department of Radiology and Institute of Rehabilitation and Imaging of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, 97 South Renmin Road, Shunqing District, Nanchong, 637000, Sichuan, China.
- Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
17
|
Azizi S, Irani A, Shahrokhi A, Rahimian E, Mirbagheri MM. Contribution of altered corticospinal microstructure to gait impairment in children with cerebral palsy. Clin Neurophysiol 2021; 132:2211-2221. [PMID: 34311204 DOI: 10.1016/j.clinph.2021.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Corticospinal tract (CST) injury may lead to motor disorders in children with Cerebral Palsy (CP). However, the precise underlying mechanisms are still ambiguous. We aimed to characterize the CST structure and function in children with CP and determine their contributions to balance and gait impairments. METHOD Twenty-six children with spastic CP participated. Transcranial magnetic stimulation (TMS) and diffusion tensor imaging (DTI) were utilized to characterize CST structure and function. Common clinical measures were used to assess gait speed, endurance and balance, and mobility. RESULTS CST structure and function were significantly altered in children with CP. Different abnormal patterns of CST structure were identified as either abnormal appearance of brain hemispheres (Group-1) or semi-normal CST appearance (Group-2). We found significant correlations between the DTI parameters of the more affected CST and gait features only in Group-1. CONCLUSION CST structure and function are abnormal in children with CP and these abnormalities may contribute to balance and gait impairment in some children with CP. SIGNIFICANCE Our findings may lead to the development of further investigations on the mechanisms underlying gait impairment in children with CP and on decision-making for more effective rehabilitation.
Collapse
Affiliation(s)
- Shahla Azizi
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Irani
- Department of Occupational Therapy, Faculty of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Elham Rahimian
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mehdi M Mirbagheri
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Physical Medicine and Rehabilitation Department, Northwestern University, USA.
| |
Collapse
|
18
|
Repetitive peripheral magnetic stimulation combined with intensive physical therapy for gait disturbance after hemorrhagic stroke: an open-label case series. Int J Rehabil Res 2020; 43:235-239. [PMID: 32776765 DOI: 10.1097/mrr.0000000000000416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this pilot study, we aimed to determine the safety and feasibility of a 15-day protocol consisting of in-hospital repetitive peripheral magnetic stimulation (rPMS) combined with intensive physical therapy for the recovery of the gait disturbance in chronic stroke patients with lower limb hemiparesis. Seven hemorrhagic stroke patients with lower limb hemiparesis and gait disturbance (age: 50-78; time from onset of stroke: 7-107 months) were enrolled. rPMS was applied to the muscles of the paretic lower limb with a parabolic coil. A train of stimuli at a frequency of 20 Hz was applied for 3 s followed by a 27-s rest interval. Therapy with rPMS was performed with eighty such trains of stimuli (total 4800 pulses). Following rPMS therapy, 120 min of physical therapy was administrated daily. Each patient received this combination treatment over fifteen consecutive days, with the walking function of all participants assessed before and after the intervention. The proposed treatment protocol resulted in significant improvements in the walking speed, ambulation ability, and balance ability, but showed no significant effects on the endurance capacity, step length, and spasticity. No rPMS-related side effects were noted. Our protocol consisting of rPMS and intensive physical therapy appears well tolerated and feasible for therapy in hemorrhagic stroke patients with gait disturbance. Further large-scale studies are required to confirm its efficacy.
Collapse
|
19
|
Kenville R, Maudrich T, Maudrich D, Villringer A, Ragert P. Cerebellar Transcranial Direct Current Stimulation Improves Maximum Isometric Force Production during Isometric Barbell Squats. Brain Sci 2020; 10:brainsci10040235. [PMID: 32295234 PMCID: PMC7226563 DOI: 10.3390/brainsci10040235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022] Open
Abstract
Maximum contraction force (MVC) is an important predictor of athletic performance as well as physical fitness throughout life. Many everyday life activities involve multi-joint or whole-body movements that are determined in part through optimized muscle strength. Transcranial direct current stimulation (tDCS) has been reported to enhance muscle strength parameters in single-joint movements after its application to motor cortical areas, although tDCS effects on MIVC in compound movements remain to be investigated. Here, we tested whether anodal tDCS and/or sham stimulation over primary motor cortex (M1) and cerebellum (CB) improves maximum isometric contraction force (MIVC) during isometric barbell squats (iBS). Our results provide novel evidence that CB stimulation enhances MIVC during iBS. Although this indicates that parameters relating to muscle strength can be modulated through anodal tDCS of the cerebellum, our results serve as an initial reference point and need to be extended. Therefore, further studies are necessary to expand knowledge in this area of research through the inclusion of different tDCS paradigms, for example investigating dynamic barbell squats, as well as testing other whole-body movements.
Collapse
Affiliation(s)
- Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, D-04109 Leipzig, Germany; (T.M.); (P.R.)
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany; (D.M.); (A.V.)
- Correspondence: ; Tel.: +49-341-9940-2407
| | - Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, D-04109 Leipzig, Germany; (T.M.); (P.R.)
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany; (D.M.); (A.V.)
| | - Dennis Maudrich
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany; (D.M.); (A.V.)
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany; (D.M.); (A.V.)
- Clinic for Cognitive Neurology, University of Leipzig, 04103 Leipzig, Germany
- MindBrainBody Institute at Berlin School of Mind and Brain, Charité-Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, D-04109 Leipzig, Germany; (T.M.); (P.R.)
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, D-04103 Leipzig, Germany; (D.M.); (A.V.)
| |
Collapse
|
20
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1007] [Impact Index Per Article: 251.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
21
|
Tang Z, Xuan C, Li X, Dou Z, Lan Y, Wen H. Effect of different pulse numbers of transcranial magnetic stimulation on motor cortex excitability: Single-blind, randomized cross-over design. CNS Neurosci Ther 2019; 25:1277-1281. [PMID: 31696644 PMCID: PMC6834918 DOI: 10.1111/cns.13248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022] Open
Abstract
AIMS We aimed to investigate the effect of different pulse numbers of high-frequency repetitive transcranial magnetic stimulation (rTMS) over the motor cortex on cortical excitability in healthy participants. METHODS Fifteen healthy participants received 600 and 1200 pulses of 5-Hz rTMS on separate days in a random order. Stimulation (duration, 2 seconds and interval, 1 seconds) was delivered over the left primary motor cortex for the hand, at 90% of resting motor threshold (rMT). The rMT and motor evoked potential (MEP) were measured before stimulation, and at 0 and 30 minutes after rTMS. RESULTS No significant differences were observed between the two conditions for MEP (P = .919) or rMT (P = .266). Compared with baseline, MEP was increased significantly at 0 (P < .001) and 30 minutes (P < .001) after stimulation. After stimulation, rMT was decreased at 0 minute for the 600 and 1200 pulse conditions (P < .001), but had recovered by 30 minutes (P = .073). CONCLUSION Subthreshold 5-Hz rTMS increased motor cortex excitability in healthy humans. However, the number of pulses may exhibit a ceiling effect in that beyond a certain point, that is, increasing the number of pulses may exhibit no further increase in cortical excitability.
Collapse
Affiliation(s)
- Zhi‐Ming Tang
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Chun‐Yu Xuan
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xin Li
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Zu‐Lin Dou
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yu‐Jie Lan
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Hong‐Mei Wen
- Department of Rehabilitation MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
22
|
Tscherpel C, Grefkes C. [Brain stimulation for treating stroke-related motor deficits]. DER NERVENARZT 2019; 90:1005-1012. [PMID: 31538210 DOI: 10.1007/s00115-019-00799-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functional recovery of stroke-related deficits is mainly achieved through neural reorganization. Neurorehabilitative approaches, therefore, aim at supporting positive processes while suppressing maladaptive neuronal processes. This review summarizes the main findings of studies using non-invasive and invasive brain stimulation with respect to the benefits of the treatment for motor deficits after stroke. In addition, the article discusses possible approaches to enhance the effectiveness of neuromodulatory approaches and thus improve the outcome of patients.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland.,Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich, 52425, Jülich, Deutschland
| | - Christian Grefkes
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln, Kerpener Str. 62, 50937, Köln, Deutschland. .,Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich, 52425, Jülich, Deutschland.
| |
Collapse
|
23
|
Ghayour-Najafabadi M, Memari AH, Hosseini L, Shariat A, Cleland JA. Repetitive Transcranial Magnetic Stimulation for the Treatment of Lower Limb Dysfunction in Patients Poststroke: A Systematic Review with Meta-Analysis. J Stroke Cerebrovasc Dis 2019; 28:104412. [PMID: 31585773 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To investigate the effectiveness of repetitive transcranial magnetic stimulation (rTMS) in recovery of lower limb dysfunction in patients poststroke. PARTICIPANTS AND METHODS Cochrane Central Register of Controlled Trials, Medline, ISI web of knowledge, EBSCO, Embase, Cumulative Index to Nursing and Allied Health Literature and Scopus. RESULTS Fifteen trials with 385 patients were included. Results showed that rTMS had a significant effect on balance (standard mean difference [SMD] = .38; 95% confidence interval [CI], .07: .69; I2 = 51%) and mobility (SMD: -.67; 95% CI, -1.08: -.26; I2 = 72%). However, rTMS had no significant immediate effects on the lower limb subscale of the Fugl-Meyer Assessment (FMA-L) (SMD = .01; 95% CI, -.29: .31; I2 = 0%). Continued effects of rTMS was also found to be significant during the follow-up period (SMD = .46; 95% CI, .09: .84; I2 = 14%). CONCLUSION rTMS was found to result in positive effects on mobility, balance and long-term prognosis of FMA-L. However data indicated that there is insufficient evidence for the effectiveness of rTMS in improving lower limb function.
Collapse
Affiliation(s)
- Mahboubeh Ghayour-Najafabadi
- Department of Motor Behavior, Faculty of Physical Education and Sport Science, University of Tehran, Tehran, Iran.
| | - Amir-Hossein Memari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lida Hosseini
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardalan Shariat
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
24
|
Lin LF, Chang KH, Huang YZ, Lai CH, Liou TH, Lin YN. Simultaneous stimulation in bilateral leg motor areas with intermittent theta burst stimulation to improve functional performance after stroke: a feasibility pilot study. Eur J Phys Rehabil Med 2019; 55:162-168. [DOI: 10.23736/s1973-9087.18.05245-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Tung YC, Lai CH, Liao CD, Huang SW, Liou TH, Chen HC. Repetitive transcranial magnetic stimulation of lower limb motor function in patients with stroke: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2019; 33:1102-1112. [PMID: 30864462 DOI: 10.1177/0269215519835889] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effects of repetitive transcranial magnetic stimulation (rTMS) on the post-stroke recovery of lower limb motor function. DATA SOURCES We searched the databases of PubMed, Cochrane Library, and Embase. The randomized controlled trials were published by 25 January 2019. REVIEW METHODS We included randomized controlled trials that evaluated the effects of rTMS on lower limb motor recovery in patients with stroke. Two reviewers independently screened the searched records, extracted data, and assessed the risk of bias. The treatment effect sizes were pooled in a meta-analysis by using the RevMan 5.3 software. The internal validity was assessed using topics suggested by the Physiotherapy Evidence Database (PEDro). RESULTS Eight studies with 169 participants were included in the meta-analysis. Pooled estimates demonstrated that rTMS significantly improved the body function of the lower limbs (standardized mean difference (SMD) = 0.66; P < 0.01), lower limb activity (SMD = 0.66; P < 0.01), and motor-evoked potential (SMD = 1.13; P < 0.01). The subgroup analyses results also revealed that rTMS improved walking speed (SMD = 1.13) and lower limb scores on the Fugl-Meyer Assessment scale (SMD = 0.63). We found no significant differences between the groups in different mean post-stroke time or stimulation mode over lower limb motor recovery. Only one study reported mild adverse effects. CONCLUSION rTMS may have short-term therapeutic effects on the lower limbs of patients with stroke. Furthermore, the application of rTMS is safe. However, this evidence is limited by a potential risk of bias.
Collapse
Affiliation(s)
- Yi-Chun Tung
- 1 Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei
| | - Chien-Hung Lai
- 1 Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei.,2 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Chun-De Liao
- 3 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City.,4 School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Shih-Wei Huang
- 2 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,3 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City
| | - Tsan-Hon Liou
- 2 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,3 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City.,5 Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei
| | - Hung-Chou Chen
- 2 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,3 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City.,6 Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, New Taipei City
| |
Collapse
|
26
|
Xiang H, Sun J, Tang X, Zeng K, Wu X. The effect and optimal parameters of repetitive transcranial magnetic stimulation on motor recovery in stroke patients: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2019; 33:847-864. [PMID: 30773896 DOI: 10.1177/0269215519829897] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The primary aim of this meta-analysis was to evaluate the effects of repetitive transcranial magnetic stimulation (rTMS) on limb movement recovery post-stroke and cortex excitability, to explore the optimal parameters of rTMS and suitable stroke population. Second, adverse events were also included. DATA SOURCES The databases of PubMed, EBSCO, MEDLINE, the Cochrane Central Register of Controlled Trials, EBM Reviews-Cochrane Database, the Chinese National Knowledge Infrastructure, and the Chinese Science and Technology Journals Database were searched for randomized controlled trials exploring the effects of rTMS on limb motor function recovery post-stroke before December 2018. REVIEW METHODS The effect sizes of rTMS on limb motor recovery, the effect size of rTMS stimulation parameters, and different stroke population were summarized by calculating the standardized mean difference (SMD) and the 95% confidence interval using fixed/random effect models as appropriate. RESULTS For the motor function assessment, 42 eligible studies involving 1168 stroke patients were identified. The summary effect size indicated that rTMS had positive effects on limb motor recovery (SMD = 0.50, P < 0.00001) and activities of daily living (SMD = 0.82, P < 0.00001), and motor-evoked potentials of the stimulated hemisphere differed according to the stimulation frequency, that is, the high-frequency group (SMD = 0.57, P = 0.0006), except the low-frequency group (SMD = -0.27, P = 0.05). No significant differences were observed among the stimulation parameter subgroups except for the sessions subgroup ( P = 0.02). Only 10 included articles reported transient mild discomfort after rTMS. CONCLUSIONS rTMS promoted the recovery of limb motor function and changed the cortex excitability. rTMS may be better for early and pure subcortical stroke patients. Regarding different stimulation parameters, the number of stimulation sessions has an impact on the effect of rTMS.
Collapse
Affiliation(s)
- Huifang Xiang
- 1 Department of Rehabilitation Medicine, Chonggang General Hospital, Chongqing, China
| | - Jing Sun
- 2 Department of Gastrointestinal Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Tang
- 3 Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kebin Zeng
- 3 Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiushu Wu
- 3 Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
He JL, Fuelscher I, Enticott PG, Teo WP, Barhoun P, Hyde C. Interhemispheric Cortical Inhibition Is Reduced in Young Adults With Developmental Coordination Disorder. Front Neurol 2018; 9:179. [PMID: 29628909 PMCID: PMC5876243 DOI: 10.3389/fneur.2018.00179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/07/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction While the etiology of developmental coordination disorder (DCD) is yet to be established, brain-behavior modeling provides a cogent argument that neuropathology may subserve the motor difficulties typical of DCD. We argue that a number of the core behavioral features of the DCD profile (such as poor surround inhibition, compromised motor inhibition, and the presence of mirror movements) are consistent with difficulties regulating inhibition within the primary motor cortex (M1). This study aimed to be the first account of the integrity of cortical inhibition in motor cortices in DCD. Method The sample consisted of eight adults with DCD aged (18–30 years) and 10 aged matched neurotypical controls. Participants received a common battery of single and paired-pulse transcranial magnetic stimulation from which a series of neurophysiological measures classically used to measure intra- [e.g., short-interval cortical inhibition (SICI), long-interval cortical inhibition (LICI), and cortical silent period] and inter hemispheric [e.g., ipsilateral silent period (ISP)] cortical inhibition of the M1 at rest were recorded. Results While no group differences were observed for any measure of intrahemispheric cortical inhibition, individuals with DCD demonstrated significantly reduced interhemispheric cortical inhibition relative to controls, shown by consistently lower ISPratios. Conclusion Our findings are consistent with the view that regulation of cortical inhibition of M1 activity may be atypical in individuals with DCD, indicating differential GABAergic operation. This effect, however, appears to be select to cortical inhibition. Importantly, our data support the notion that reduced interhemispheric M1 cortical inhibition may at least partly explain commonly reported difficulties with bimanual motor control in DCD. The neurochemical implications and limitations of this evidence will be discussed.
Collapse
Affiliation(s)
- Jason L He
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Ian Fuelscher
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Peter G Enticott
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Wei-Peng Teo
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Pamela Barhoun
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Christian Hyde
- Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
28
|
Kwong PWH, Ng GYF, Chung RCK, Ng SSM. Bilateral Transcutaneous Electrical Nerve Stimulation Improves Lower-Limb Motor Function in Subjects With Chronic Stroke: A Randomized Controlled Trial. J Am Heart Assoc 2018; 7:e007341. [PMID: 29437598 PMCID: PMC5850185 DOI: 10.1161/jaha.117.007341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/10/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Transcutaneous electrical nerve stimulation (TENS) has been used to augment the efficacy of task-oriented training (TOT) after stroke. Bilateral intervention approaches have also been shown to be effective in augmenting motor function after stroke. The purpose of this study was to compare the efficacy of bilateral TENS combined with TOT versus unilateral TENS combined with TOT in improving lower-limb motor function in subjects with chronic stroke. METHODS AND RESULTS Eighty subjects were randomly assigned to bilateral TENS+TOT or to unilateral TENS+TOT and underwent 20 sessions of training over a 10-week period. The outcome measures included the maximal strength of the lower-limb muscles and the results of the Lower Extremity Motor Coordination Test, Berg Balance Scale, Step Test, and Timed Up and Go test. Each participant was assessed at baseline, after 10 and 20 sessions of training and 3 months after the cessation of training. The subjects in the bilateral TENS+TOT group showed greater improvement in paretic ankle dorsiflexion strength (β=1.32; P=0.032) and in the completion time for the Timed Up and Go test (β=-1.54; P=0.004) than those in the unilateral TENS+TOT group. However, there were no significant between-group differences for other outcome measures. CONCLUSIONS The application of bilateral TENS over the common peroneal nerve combined with TOT was superior to the application of unilateral TENS combined with TOT in improving paretic ankle dorsiflexion strength after 10 sessions of training and in improving the completion time for the Timed Up and Go test after 20 sessions of training. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02152813.
Collapse
Affiliation(s)
- Patrick W H Kwong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Gabriel Y F Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Raymond C K Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
29
|
Nakayama Y, Abo M. The Feasibility of the Adaptation of Ability for Basic Movement Scale II for Patients with Parkinson Disease. BRAIN & NEUROREHABILITATION 2018. [DOI: 10.12786/bn.2018.11.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yasuhide Nakayama
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Abo
- Department of Rehabilitation Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|