1
|
Abbasi H, Jourabchi-Ghadim N, Asgarzade A, Mirshekari M, Ebrahimi-Mameghani M. Unveiling the veil of adipokines: A meta-analysis and systematic review in amyotrophic lateral sclerosis. Neuroscience 2024; 563:1-9. [PMID: 39505137 DOI: 10.1016/j.neuroscience.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Adipokines are proposed to be associated with ALS progression through assorted pathways. Therefore, The present meta-analysis explored the link between various adipokines and ALS progression. METHOD International database like PubMed, Scopus, and Web of Science databases were searched to achieve eligible papers published before December 2023. The following PICO structure was utilized: Population (patients with ALS); Intervention (serum concentrations of ghrelin, leptin, and adiponectin), Comparison (with or without controls), and Outcome (ALS progression). the risk of bias of selected papers was assessed through the Newcastle-Ottawa Scale (NOS) tool. RESULTS 11 out of 240 papers were selected for this study which were published between 2010 and 2024. Lower serum leptin concentrations were detected in the ALS compared to control groups (WMD: -0.91, 95% CI:-1.77, -0.05). Serum concentrations of adiponectin were higher in ALS compared to control groups (WMD: 0.41, 95% CI:-0.7, 0.89). Ultimately, The serum concentrations of ghrelin in the ALS groups were lower than control groups (WMD: -1.21, 95% CI: -2.95, 0.53). CONCLUSION Our findings revealed that serum concentrations of ghrelin and leptin were higher in ALS patients compared to control, unlike adiponectin.
Collapse
Affiliation(s)
- Hamid Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Neda Jourabchi-Ghadim
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mobin Mirshekari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehrangiz Ebrahimi-Mameghani
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Liu YJ, Lee CW, Liao YC, Huang JJT, Kuo HC, Jih KY, Lee YC, Chern Y. The role of adiponectin-AMPK axis in TDP-43 mislocalization and disease severity in ALS. Neurobiol Dis 2024; 202:106715. [PMID: 39490684 DOI: 10.1016/j.nbd.2024.106715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Hypermetabolism is a prominent characteristic of ALS patients. Aberrant activation of AMPK, an energy sensor regulated by adiponectin, is known to cause TDP-43 mislocalization, an early event in ALS pathogenesis. This study aims to evaluate the association between key energy mediators and clinical severity in ALS patients. We found that plasma adiponectin levels were significantly higher in ALS patients with ALSFRS-R scores below 38 compared to controls (p = 0.047). Additionally, adiponectin concentration was inversely correlated with ALSFRS-R scores (p = 0.021). Immunofluorescence staining of PBMCs revealed negative associations between AMPK activation, TDP-43 mislocalization, and ALSFRS-R scores. We then examined the hypothesis that adiponectin may activate the AMPK-TDP-43 axis in motor neurons. Our results demonstrated that adiponectin treatment of NSC34 cells and HiPSC-MNs induced AMPK activation and TDP-43 mislocalization in an adiponectin receptor-dependent manner. Collectively, these findings suggest that elevated plasma adiponectin may enhance AMPK activation, leading to TDP-43 mislocalization in both PBMCs and motor neurons of ALS patients. This highlights the potential involvement of the adiponectin-AMPK-TDP-43 axis in the dysregulated energy balance observed in ALS.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Lee
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, and Department of Neurology and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kang-Yang Jih
- Department of Neurology, Taipei Veterans General Hospital, and Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, and Department of Neurology and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Maity S, Mayer MG, Shu Q, Linh H, Bao D, Blair RV, He Y, Lyon CJ, Hu TY, Fischer T, Fan J. Cerebrospinal Fluid Protein Markers Indicate Neuro-Damage in SARS-CoV-2-Infected Nonhuman Primates. Mol Cell Proteomics 2023; 22:100523. [PMID: 36870567 PMCID: PMC9981268 DOI: 10.1016/j.mcpro.2023.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Neurologic manifestations are among the most frequently reported complications of COVID-19. However, given the paucity of tissue samples and the highly infectious nature of the etiologic agent of COVID-19, we have limited information to understand the neuropathogenesis of COVID-19. Therefore, to better understand the impact of COVID-19 on the brain, we used mass-spectrometry-based proteomics with a data-independent acquisition mode to investigate cerebrospinal fluid (CSF) proteins collected from two different nonhuman primates, Rhesus Macaque and African Green Monkeys, for the neurologic effects of the infection. These monkeys exhibited minimal to mild pulmonary pathology but moderate to severe central nervous system (CNS) pathology. Our results indicated that CSF proteome changes after infection resolution corresponded with bronchial virus abundance during early infection and revealed substantial differences between the infected nonhuman primates and their age-matched uninfected controls, suggesting these differences could reflect altered secretion of CNS factors in response to SARS-CoV-2-induced neuropathology. We also observed the infected animals exhibited highly scattered data distributions compared to their corresponding controls indicating the heterogeneity of the CSF proteome change and the host response to the viral infection. Dysregulated CSF proteins were preferentially enriched in functional pathways associated with progressive neurodegenerative disorders, hemostasis, and innate immune responses that could influence neuroinflammatory responses following COVID-19. Mapping these dysregulated proteins to the Human Brain Protein Atlas found that they tended to be enriched in brain regions that exhibit more frequent injury following COVID-19. It, therefore, appears reasonable to speculate that such CSF protein changes could serve as signatures for neurologic injury, identify important regulatory pathways in this process, and potentially reveal therapeutic targets to prevent or attenuate the development of neurologic injuries following COVID-19.
Collapse
Affiliation(s)
- Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Meredith G Mayer
- Division of Comparative Pathology, National Primate Research Center, Covington, Louisiana, USA
| | - Qingbo Shu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Hellmers Linh
- Division of Comparative Pathology, National Primate Research Center, Covington, Louisiana, USA
| | - Duran Bao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Robert V Blair
- Division of Comparative Pathology, National Primate Research Center, Covington, Louisiana, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Christopher J Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Tracy Fischer
- Division of Comparative Pathology, National Primate Research Center, Covington, Louisiana, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA; Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA.
| |
Collapse
|
4
|
Adipsin as a novel prognostic biomarker for cardiovascular diseases. COR ET VASA 2022. [DOI: 10.33678/cor.2021.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Mentis AFA, Bougea AM, Chrousos GP. Amyotrophic lateral sclerosis (ALS) and the endocrine system: Are there any further ties to be explored? AGING BRAIN 2021; 1:100024. [PMID: 36911507 PMCID: PMC9997134 DOI: 10.1016/j.nbas.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) belongs to the family of neurodegenerative disorders and is classified as fronto-temporal dementia (FTD), progressive muscular atrophy, primary lateral sclerosis, and pseudobulbar palsy. Even though endocrine dysfunction independently impacts the ALS-related survival rate, the complex connection between ALS and the endocrine system has not been studied in depth. Here we review earlier and recent findings on how ALS interacts with hormones a) of the hypothalamus and pituitary gland, b) the thyroid gland, c) the pancreas, d) the adipose tissue, e) the parathyroid glands, f) the bones, g) the adrenal glands, and h) the gonads (ovaries and testes). Of note, endocrine issues should always be explored in patients with ALS, especially those with low skeletal muscle and bone mass, vitamin D deficiency, and decreased insulin sensitivity (diabetes mellitus). Because ALS is a progressively deteriorating disease, addressing any potential endocrine co-morbidities in patients with this malady is quite important for decreasing the overall ALS-associated disease burden. Importantly, as this burden is estimated to increase globally in the decades to follow, in part because of an increasingly aging population, it is high time for future multi-center, multi-ethnic studies to assess the link between ALS and the endocrine system in significantly larger patient populations. Last, the psychosocial stress experienced by patients with ALS and its psycho-neuro-endocrinological sequelae, including hypothalamic-pituitaryadrenal dysregulation, should become an area of intensive study in the future.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Anastasia M Bougea
- Memory & Movement Disorders Clinic, 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
6
|
Kataoka H, Sugie K. Serum adiponectin levels between patients with Parkinson’s disease and those with PSP. Neurol Sci 2020; 41:1125-1131. [DOI: 10.1007/s10072-019-04216-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
|
7
|
Ohtsuki T, Satoh K, Shimizu T, Ikeda S, Kikuchi N, Satoh T, Kurosawa R, Nogi M, Sunamura S, Yaoita N, Omura J, Aoki T, Tatebe S, Sugimura K, Takahashi J, Miyata S, Shimokawa H. Identification of Adipsin as a Novel Prognostic Biomarker in Patients With Coronary Artery Disease. J Am Heart Assoc 2019; 8:e013716. [PMID: 31752640 PMCID: PMC6912964 DOI: 10.1161/jaha.119.013716] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Circulating proteins are exposed to vascular endothelial layer and influence their functions. Among them, adipsin is a member of the trypsin family of peptidases and is mainly secreted from adipocytes, monocytes, and macrophages, catalyzing the rate‐limiting step of the alternative complement pathway. However, its pathophysiological role in cardiovascular disease remains to be elucidated. Here, we examined whether serum adipsin levels have a prognostic impact in patients with coronary artery disease. Methods and Results In 370 consecutive patients undergoing diagnostic coronary angiography, we performed a cytokine array analysis for screening serum levels of 50 cytokines/chemokines and growth factors. Among them, classification and regression analysis identified adipsin as the best biomarker for prediction of their long‐term prognosis (median 71 months; interquartile range, 55–81 months). Kaplan–Meier curve showed that higher adipsin levels (≥400 ng/mL) were significantly associated with all‐cause death (hazard ratio [HR], 4.2; 95% CI, 1.7–10.6 [P<0.001]) and rehospitalization (HR, 2.4; 95% CI, 1.7–3.5 [P<0.001]). Interestingly, higher high‐sensitivity C‐reactive protein levels (≥1 mg/L) were significantly correlated with all‐cause death (HR, 3.2; 95% CI, 1.7–5.9 [P<0.001]) and rehospitalization (HR, 1.5, 95% CI, 1.1–1.9 [P<0.01]). Importantly, the combination of adipsin (≥400 ng/mL) and high‐sensitivity C‐reactive protein (≥1 mg/L) was more significantly associated with all‐cause death (HR, 21.0; 95% CI, 2.9–154.1 [P<0.001]). Finally, the receiver operating characteristic curve demonstrated that serum adipsin levels predict the death caused by acute myocardial infarction in patients with coronary artery disease (C‐statistic, 0.847). Conclusions These results indicate that adipsin is a novel biomarker that predicts all‐cause death and rehospitalization in patients with coronary artery disease, demonstrating the novel aspects of the alternative complementary system in the pathogenesis of coronary artery disease.
Collapse
Affiliation(s)
- Tomohiro Ohtsuki
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Kimio Satoh
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Toru Shimizu
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Shohei Ikeda
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Nobuhiro Kikuchi
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Taijyu Satoh
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Ryo Kurosawa
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Masamichi Nogi
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Shinichiro Sunamura
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Nobuhiro Yaoita
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Junichi Omura
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Tatsuo Aoki
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Shunsuke Tatebe
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Koichiro Sugimura
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Satoshi Miyata
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
8
|
Adipsin, MIP-1b, and IL-8 as CSF Biomarker Panels for ALS Diagnosis. DISEASE MARKERS 2018; 2018:3023826. [PMID: 30405855 PMCID: PMC6199888 DOI: 10.1155/2018/3023826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder that selectively attacks motor neurons in the brain and spinal cord. Despite important advances in the knowledge of the etiology and progression of the disease, there are still no solid grounds in which a clinician could make an early objective and reliable diagnosis from which patients could benefit. Diagnosis is difficult and basically made by clinical rating scales (ALSRs and El Escorial). The possible finding of biomarkers to aid in the early diagnosis and rate of disease progression could serve for future innovative therapeutic approaches. Recently, it has been suggested that ALS has an important immune component that could represent either the cause or the consequence of the disease. In this report, we analyzed 19 different cytokines and growth factors in the cerebrospinal fluid of 77 ALS patients and 13 controls by decision tree and PanelomiX program. Results showed an increase of Adipsin, MIP-1b, and IL-6, associated with a decrease of IL-8 thresholds, related with ALS patients. This biomarker panel analysis could represent an important aid for diagnosis of ALS alongside the clinical and neurophysiological criteria.
Collapse
|