1
|
Calic Z, Peric S, Vujnic M, Bjelica B, Bozovic I, Rakocevic‐Stojanovic V, Bradshaw A, Colebatch JG, Welgampola MS. Video head impulse gain is impaired in myotonic dystrophy types 1 and 2. Eur J Neurol 2024; 31:e16513. [PMID: 39403824 PMCID: PMC11554875 DOI: 10.1111/ene.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 11/13/2024]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to examine vestibulo-ocular reflex (VOR) characteristics in myotonic dystrophy type 1 (DM1) and type 2 (DM2) using video head impulse testing (vHIT). METHODS VOR gain, refixation saccade prevalence, first saccade amplitude, onset latency, peak velocity, and duration were compared in DM1, DM2, age-matched normal controls, and patients with peripheral and central vestibulopathies. RESULTS Fifty percent of DM1 and 37.5% of DM2 patients demonstrated reduced VOR gain. Refixation saccade prevalence for horizontal canal (HC) and posterior canal (PC) was significantly higher in DM1 (101 ± 42%, 82 ± 47%) and DM2 (70 ± 45%, 61 ± 38%) compared to controls (40 ± 28% and 43 ± 33%, p < 0.05). The first saccade amplitudes and peak velocities were higher in HC and PC planes in DM1 and DM2 compared to controls (p < 0.05). HC slow phase eye velocity profiles in DM1 showed delayed peaks. The asymmetry ratio, which represents the percentage difference between the first and second halves of the slow phase eye velocity response, was therefore negative (-22.5 ± 17%, -2.3 ± 16%, and - 4.7 ± 8% in DM1, DM2, and controls). HC VOR gains were lower and gain asymmetry ratio was larger and negative in patients with DM1 with moderate to severe ptosis and a history of imbalance and falls compared to the remaining DM1 patients (p < 0.05). In peripheral vestibulopathies, saccade amplitude was larger, peak velocity was higher, and onset latency was shorter (p < 0.05) than in DM1. In central vestibulopathy (posterior circulation strokes), saccade peak velocity was higher, but amplitude and onset latency were not significantly different from DM1. CONCLUSIONS VOR impairment is common in DM1 and DM2. In DM1, refixation saccade characteristics are closer to central than peripheral vestibulopathies. Delayed peaks in the vHIT eye velocity profile observed in patients with DM1 may reflect extraocular muscle weakness. VOR impairment and VOR asymmetry in DM1 are associated with imbalance and falls.
Collapse
Affiliation(s)
- Zeljka Calic
- Department of Neurophysiology, Liverpool HospitalSydneyNew South WalesAustralia
- South Western Sydney Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Stojan Peric
- Neurology Clinic, Clinical Centre of Serbia, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | - Milorad Vujnic
- Department of Pathophysiology, Faculty of MedicineUniversity of Banja Luka, Institute of Physical Medicine and Rehabilitation “Dr Miroslav Zotovic”Banja LukaBosnia and Herzegovina
| | - Bogdan Bjelica
- Neurology Clinic, Clinical Centre of Serbia, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
- Department of NeurologyHannover Medical SchoolHannoverGermany
| | - Ivo Bozovic
- Neurology Clinic, Clinical Centre of Serbia, Faculty of MedicineUniversity of BelgradeBelgradeSerbia
| | | | - Andrew Bradshaw
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Central Clinical School, University of SydneySydneyNew South WalesAustralia
| | - James G. Colebatch
- Institute of Neurological Sciences, Prince of Wales Clinical School, University of New South WalesSydneyNew South WalesAustralia
| | - Miriam S. Welgampola
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Central Clinical School, University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Damen MJ, Muilwijk OG, Olde Dubbelink TBG, van Engelen BGM, Voermans NC, Tieleman AA. Life Expectancy and Causes of Death in Patients with Myotonic Dystrophy Type 2. J Neuromuscul Dis 2024:JND240089. [PMID: 39240646 DOI: 10.3233/jnd-240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Background Myotonic Dystrophy type 2 (DM2) is a dominantly inherited multisystem disease caused by a CCTG repeat expansion in intron 1 of the CNBP gene. Although in the last two decades over 1500 patients with DM2 have been diagnosed worldwide, our clinical impression of a reduced life expectancy in DM2 has not been investigated previously. Objective The aim of this observational study was to determine the life expectancy and the causes of death in patients with genetically confirmed DM2. Methods We identified the data of all deceased patients with DM2 in the Dutch neuromuscular database between 2000 and 2023. Ages and causes of death and the patients' clinical features during lifetime were determined. Age of death in DM2 was compared to the general population by using life tables with prognostic cohort life expectancy (CLE) and period life expectancy (PLE) data of the Dutch electronic database of statistics (CBS StatLine). Results Twenty-six deceased patients were identified in the Dutch DM2 cohort (n = 125). Median age of death in DM2 (70.9 years) was significantly lower compared to sex- and age-matched CLE (78.1 years) and PLE (82.1 years) in the Netherlands. Main causes of death were cardiac diseases (31%) and pneumonia (27%). Seven patients (27%) had a malignancy at the time of death. Conclusion These results provide new insights into the phenotype of DM2. Life expectancy in patients with DM2 is reduced, possibly attributable to multiple causes including increased risk of cardiac disease, pneumonia, and malignancies. The occurrence of a significantly reduced life expectancy has implications for clinical practice and may form a basis for advanced care planning, including end-of-life care, to optimize quality of life for patients with DM2 and their family. Research in larger cohorts should be done to confirm these findings and to ascertain more about the natural course in DM2.
Collapse
Affiliation(s)
- Manon J Damen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Otto G Muilwijk
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom B G Olde Dubbelink
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alide A Tieleman
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Lee KY, Seah C, Li C, Chen YF, Chen CY, Wu CI, Liao PC, Shyu YC, Olafson HR, McKee KK, Wang ET, Yeh CH, Wang CH. Mice lacking MBNL1 and MBNL2 exhibit sudden cardiac death and molecular signatures recapitulating myotonic dystrophy. Hum Mol Genet 2022; 31:3144-3160. [PMID: 35567413 PMCID: PMC9476621 DOI: 10.1093/hmg/ddac108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by expansions of C(C)TG repeats in the non-coding regions of the DMPK and CNBP genes, and DM patients often suffer from sudden cardiac death due to lethal conduction block or arrhythmia. Specific molecular changes that underlie DM cardiac pathology have been linked to repeat-associated depletion of Muscleblind-like (MBNL) 1 and 2 proteins and upregulation of CUGBP, Elav-like family member 1 (CELF1). Hypothesis solely targeting MBNL1 or CELF1 pathways that could address all the consequences of repeat expansion in heart remained inconclusive, particularly when the direct cause of mortality and results of transcriptome analyses remained undetermined in Mbnl compound knockout (KO) mice with cardiac phenotypes. Here, we develop Myh6-Cre double KO (DKO) (Mbnl1−/−; Mbnl2cond/cond; Myh6-Cre+/−) mice to eliminate Mbnl1/2 in cardiomyocytes and observe spontaneous lethal cardiac events under no anesthesia. RNA sequencing recapitulates DM heart spliceopathy and shows gene expression changes that were previously undescribed in DM heart studies. Notably, immunoblotting reveals a nearly 6-fold increase of Calsequestrin 1 and 50% reduction of epidermal growth factor proteins. Our findings demonstrate that complete ablation of MBNL1/2 in cardiomyocytes is essential for generating sudden death due to lethal cardiac rhythms and reveal potential mechanisms for DM heart pathogenesis.
Collapse
Affiliation(s)
- Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Carol Seah
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Ching Li
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Fu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chwen-Yu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Ching-I Wu
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Po-Cheng Liao
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Hailey R Olafson
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Kendra K McKee
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko Branch, Taoyuan, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
4
|
Blaszczyk E, Gröschel J, Schulz-Menger J. Role of CMR Imaging in Diagnostics and Evaluation of Cardiac Involvement in Muscle Dystrophies. Curr Heart Fail Rep 2021; 18:211-224. [PMID: 34319529 PMCID: PMC8342365 DOI: 10.1007/s11897-021-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW This review aims to outline the utility of cardiac magnetic resonance (CMR) in patients with different types of muscular dystrophies for the assessment of myocardial involvement, risk stratification and in guiding therapeutic decisions. RECENT FINDINGS In patients suffering from muscular dystrophies (MD), even mild initial dysfunction may lead to severe heart failure over a time course of years. CMR plays an increasing role in the diagnosis and clinical care of these patients, mostly due to its unique capability to precisely characterize subclinical and progressive changes in cardiac geometry, function in order to differentiate myocardial injury it allows the identification of inflammation, focal and diffuse fibrosis as well as fatty infiltration. CMR may provide additional information in addition to the physical examination, laboratory tests, ECG, and echocardiography. Further trials are needed to investigate the potential impact of CMR on the therapeutic decision-making as well as the assessment of long-term prognosis in different forms of muscular dystrophies. In addition to the basic cardiovascular evaluation, CMR can provide a robust, non-invasive technique for the evaluation of subclinical myocardial tissue injury like fat infiltration and focal and diffuse fibrosis. Furthermore, CMR has a unique capability to detect the progression of myocardial tissue damage in patients with a preserved systolic function.
Collapse
Affiliation(s)
- Edyta Blaszczyk
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a joint cooperation between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Jan Gröschel
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a joint cooperation between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a joint cooperation between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
5
|
Roy B, Wu Q, Whitaker CH, Felice KJ. Myotonic Muscular Dystrophy Type 2 in CT, USA: A Single-Center Experience With 50 Patients. J Clin Neuromuscul Dis 2021; 22:135-146. [PMID: 33595997 DOI: 10.1097/cnd.0000000000000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Myotonic dystrophy type 2 (DM2) is an autosomal dominant disorder due to a (CCTG)n repeat expansion in intron 1 of the CNBP gene. In this article, we report the clinicopathologic findings in 50 patients seen at a single site over a 27 year period. DM2 was the fifth most common type of muscular dystrophy seen at our center with a 5-fold lower frequency as compared to DM1. Age of symptom onset ranged from 15 to 72 years, and the mean duration between symptom onset and diagnosis was 7.4 years. Weakness referable to the proximal lower extremities was the presenting symptom in 62% of patients. The degree of generalized weakness varied from severe in 30% to no weakness in 20% of patients. Clinical myotonia was noted in 18% and myotonic discharges on electromyography in 97% of patients. Pain symptoms were uncommon in our cohort. A significant correlation was noted between limb weakness and degree of muscle pathologic changes. There was no correlation between CCTG repeat size and other clinicopathologic findings. Six patients (12%) had cardiac abnormalities including one who developed progressive nonischemic dilated cardiomyopathy ultimately leading to cardiac transplantation. In 21 patients followed for 2 or more years, we noted a mean rate of decline in total Medical Research Council score of about 1% per year.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT
| | - Qian Wu
- Department of Pathology and Laboratory Medicine, University of Connecticut School of Medicine, Farmington, CT; and
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Muscular Dystrophy Association Care Center, Hospital for Special Care, New Britain, CT
| | - Kevin J Felice
- Department of Neuromuscular Medicine, Muscular Dystrophy Association Care Center, Hospital for Special Care, New Britain, CT
| |
Collapse
|
6
|
Fonseca AC, Almeida AG, Santos MO, Ferro JM. Neurological complications of cardiomyopathies. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:91-109. [PMID: 33632460 DOI: 10.1016/b978-0-12-819814-8.00001-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
There is a multifaceted relationship between the cardiomyopathies and a wide spectrum of neurological disorders. Severe acute neurological events, such as a status epilepticus and aneurysmal subarachnoid hemorrhage, may result in an acute cardiomyopathy the likes of Takotsubo cardiomyopathy. Conversely, the cardiomyopathies may result in a wide array of neurological disorders. Diagnosis of a cardiomyopathy may have already been established at the time of the index neurological event, or the neurological event may have prompted subsequent cardiac investigations, which ultimately lead to the diagnosis of a cardiomyopathy. The cardiomyopathies belong to one of the many phenotypes of complex genetic diseases or syndromes, which may also involve the central or peripheral nervous systems. A number of exogenous agents or risk factors such as diphtheria, alcohol, and several viruses may result in secondary cardiomyopathies accompanied by several neurological manifestations. A variety of neuromuscular disorders, such as myotonic dystrophy or amyloidosis, may demonstrate cardiac involvement during their clinical course. Furthermore, a number of genetic cardiomyopathies phenotypically incorporate during their clinical evolution, a gamut of neurological manifestations, usually neuromuscular in nature. Likewise, neurological complications may be the result of diagnostic procedures or medications for the cardiomyopathies and vice versa. Neurological manifestations of the cardiomyopathies are broad and include, among others, transient ischemic attacks, ischemic strokes, intracranial hemorrhages, syncope, muscle weakness and atrophy, myotonia, cramps, ataxia, seizures, intellectual developmental disorder, cognitive impairment, dementia, oculomotor palsies, deafness, retinal involvement, and headaches.
Collapse
Affiliation(s)
- Ana Catarina Fonseca
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ana G Almeida
- Cardiology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel Oliveira Santos
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José M Ferro
- Neurology Service, Hospital Santa Maria, Centro Hospitalar Lisboa Norte and Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
7
|
Meola G. Myotonic dystrophy type 2: the 2020 update. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:222-234. [PMID: 33458578 PMCID: PMC7783423 DOI: 10.36185/2532-1900-026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
The myotonic dystrophies are the commonest cause of adult-onset muscular dystrophy. Phenotypes of DM1 and DM2 are similar, but there are some important differences, including the presence or absence of congenital form, muscles primarily affected (distal vs proximal), involved muscle fiber types (type 1 vs type 2 fibers), and some associated multisystemic phenotypes. There is currently no cure for the myotonic dystrophies but effective management significantly reduces the morbidity and mortality of patients. For the enormous understanding of the molecular pathogenesis of myotonic dystrophy type 1 and myotonic dystrophy type 2, these diseases are now called "spliceopathies" and are mediated by a primary disorder of RNA rather than proteins. Despite clinical and genetic similarities, myotonic dystrophy type 1 and type 2 are distinct disorders requiring different diagnostic and management strategies. Gene therapy for myotonic dystrophy type 1 and myotonic dystrophy type 2 appears to be very close and the near future is an exciting time for clinicians and patients.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| |
Collapse
|
8
|
Peric S. Non-routine cardiac tests still have no defined role in assessment of myotonic dystrophy type 2. Acta Neurol Belg 2020; 120:967-968. [PMID: 31228022 DOI: 10.1007/s13760-019-01174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Stojan Peric
- Department for Neuromuscular Disorders, Neurology Clinic, School of Medicine, Clinical Centre of Serbia, University of Belgrade, 6, Dr Subotic Street, 11000, Belgrade, Serbia.
| |
Collapse
|
9
|
The Face Is the Mirror of the Soul. The Cardiovascular Physical Exam Is Not Yet Dead! Curr Probl Cardiol 2020; 46:100644. [PMID: 32600656 DOI: 10.1016/j.cpcardiol.2020.100644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
Abstract
Cardiac pathology can be congenital or acquired with underlying genetic predispositions. In this era of medicine there is a concern that the comprehensive physical examination doctors prided themselves on is becoming a lost art. Research studies have also revealed a decline in physical examination skills. The full clinical cardiovascular examination is indeed quite complex and does take significant time to master. It is critical that physicians be competent in the physical exam. Not identifying subtle clinical findings leading to missed or delayed diagnosis which can lead to significant morbidity and mortality. In this paper we intend to highlight the clinical cardiovascular findings that may be detected on patients even before initiating the physical exam. The head and neck visual examination may be quite revealing.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This article describes the clinical features, pathogenesis, prevalence, diagnosis, and management of myotonic dystrophy type 1 and myotonic dystrophy type 2. RECENT FINDINGS The prevalence of myotonic dystrophy type 1 is better understood than the prevalence of myotonic dystrophy type 2, and new evidence indicates that the risk of cancer is increased in patients with the myotonic dystrophies. In addition, descriptions of the clinical symptoms and relative risks of comorbidities such as cardiac arrhythmias associated with myotonic dystrophy type 1 have been improved. SUMMARY Myotonic dystrophy type 1 and myotonic dystrophy type 2 are both characterized by progressive muscle weakness, early-onset cataracts, and myotonia. However, both disorders have multisystem manifestations that require a comprehensive management plan. While no disease-modifying therapies have yet been identified, advances in therapeutic development have a promising future.
Collapse
|
11
|
Comprehensive investigations are required to manage cardiac disease in myotonic dystrophy 2. Acta Neurol Belg 2020; 120:441-442. [PMID: 30693450 DOI: 10.1007/s13760-019-01082-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/19/2019] [Indexed: 10/27/2022]
|